函数双变量问题处理技巧

合集下载

导数中双变量问题的四种策略

导数中双变量问题的四种策略

导数中双变量问题的四种策略双变量问题的几种处理策略策略一:合并思想已知函数$f(x)=\ln x$的图像上任意不同的两点的中点为$A(x_1,y_1)$。

$B(x_2,y_2)$,线段$AB$的中点为$C(x,y)$,记直线$AB$的斜率为$k$,试证明:$k>f'(x)$。

解析:因为$f(x)=\ln x$,所以$f'(x)=\frac{1}{x}$。

又因为k=\frac{f(x_2)-f(x_1)}{x_2-x_1}=\frac{\ln x_2-\lnx_1}{x_2-x_1}=\frac{\ln\frac{x_2}{x_1}}{x_2-x_1}$$不妨设$x_2>x_1$,要比较$k$与$f(x)$的大小,即比较frac{\ln\frac{x_2}{x_1}}{x_2-x_1}\text{和}\frac{1}{x_1}$$的大小,即比较ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}\text{和}e^{\frac{1}{x_2-x_1}}$$的大小。

又因为$x_2>x_1$,所以frac{x_2-x_1}{x_2+1}<\ln\left(\frac{x_2}{x_1}\right)^{\frac{1}{x_2-x_1}}<\frac{x_2-x_1}{x_1}$$因此frac{x_2-x_1}{x_2+1}<k<\frac{x_2-x_1}{x_1}$$又因为$x_2>x_1$,所以$\frac{x_2-x_1}{x_2+1}>\frac{1}{2}$,因此$k>f'(x)$。

策略二:分离思想问题2:若$g(x)=\ln x+\frac{1}{x}$,求$a$的取值范围,使得对任意的$x_1,x_2\in(1,2)$,都有$g(x_2)-g(x_1)<-1$。

导数中的双变量问题解题策略(史上最全题型)

导数中的双变量问题解题策略(史上最全题型)

令h(t)
ln t
(1 )(t 1) ,(0 t
t
1)
h '(t)
1 t
(1 )2 (t )2
(t
1)(t 2 ) t(t )2
当 2 1时, h '(t) 0 h(t)在(0,1)内单调递增 h(t) h(1) 0,合题;
当 2 1时,易知h(t)在(0, 2 ) 内单调递增,在( 2,1) 内单调递减, h(1) 0,h(t) 0不恒成立,不合题。
1
ax1
ax2
a( x1
x2 )
a
1 x1 x2
ln x1 x1
ln x2
x2
1 x1 x2
(1 )( x1 1)
ln
x1
ln
x2
(1 )(x1 x1 x2
x2 )
ln
x1 x2
x2
x1
,令 x1 t,t (0,1) x2
x2
ln t (1 )(t 1) 在(0,1)上恒成立, t
x12
x1 x22
ln
x1 x1
ln x2 x2
1, 从而原不等式即证
x1(x1 x2 ) x12 x22
(ln
x1
ln
x2 )
0
( x1 )2 x1
x2
x2
( x1 )2 1
ln
x1 x2
0,令t
x1 x2
,t
1,设g(t)
t2 t2
t ln t(t 1
1),
x2
g '(t) (2t 1)(t2 1) (t2 t) 2t 1 t4 t3 t 1 t3(1 t) (t 1) 0

导数中双变量问题的四种策略

导数中双变量问题的四种策略

双变量问题的几种处理策略策略一:合的思想问题1:已知函数x x f ln )(=的图象上任意不同的两点,,线段的中点为,记直线的斜率为,试证明:.解析:因为∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与的大小.令,则, ∴在上位增函数.又,∴, ∴,即二:分的思想问题2:若1ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,,都有,求a 的取值范围.解析∵ ,∴由题意得在区间(]2,1上是减函数. ∴ ()11,y x A ()22,y x B AB),(00y x C AB k )(0x f k '>x x f ln )(=xx f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=12x x >k )(0x f '1212lnx x x x -212x x +12x x >12lnx x 1)1(2)(212122112+-=+-x x x x x x x x )1(1)1(2ln )(≥+--=x x x x x h 0)1()1()1(41)(222≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12=>h x x h 1)1(2ln 121212+->x x x x x x )(0x f k '>21x x ≠1)()(1212-<--x x x g x g 1)()(1212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2++-='x ax x F由在恒成立. 设,,则 ∴在上为增函数,∴.策略3:变得思想设函数x x x f ln )(=,若,求证 解析:, ,所以在上是增函数,上是减函数.因为,所以即,同理. 所以 又因为当且仅当“”时,取等号. 又,, 所以,所以, 所以:.问题4:已知函数()21ln ,2f x x x mx x m R =--∈,若函数()f x 有两个极值点12,x x ,求证: 212x x e >解析:欲证212x x e >,需证: 12ln ln 2x x +>,若()f x 有两个极值点12,x x ,即函数()'f x 有两个零点,又()'ln f x x mx =-, 所以12,x x 是方程()'0f x =的两个不同实根313)1()1(0)(222+++=+++≥⇒≤'xx x x x x a x F []2,1∈x =)(x m 3132+++x x x []2,1∈x 0312)(2>+-='xx x m )(x m []2,1227)2(=≥m a 1),1,1(,2121<+∈x x e x x 42121)(x x x x +<x x xx f x g ln )()(==e x x x g 1,0ln 1)(==+=),1(+∞e )(x g )1,0(e11211<+<<x x x e111212121ln )()ln()()(x x x g x x x x x x g =>++=+)ln(ln 211211x x x x x x ++<)ln(ln 212212x x x x x x ++<)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+,421221≥++x x x x 21x x =1),1,1(,2121<+∈x x ex x 0)ln(21<+x x )ln(4)ln()2(21211221x x x x x x x x +≤+++)ln(4ln ln 2121x x x x +<+42121)(x x x x +<于是,有1122ln 0{ln 0x mx x mx -=-=,解得1212ln ln x x m x x +=+,另一方面,由1122ln 0{ln 0x mx x mx -=-=,得()2121ln ln x x m x x -=-,从而可得21122112ln ln ln ln x x x x x x x x -+=-+,于是()()222121111222111lnln ln ln ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪-+⎝⎭+==--.又120x x <<, 设21x t x =,则1t >.因此, ()121ln ln ln ,1t t x x t ++=-1t >. 要证12ln ln 2x x +>,即证:()1ln 2,11t t t t +>>-.即当1t >时,有()21ln 1t t t ->+. 设函数()()21ln ,11t h t t t t -=-≥+,则()()()()()()222212111011t t t h t t t t t +---'=-=≥++, 所以, ()h t 为()1,+∞上的增函数.注意到, ()10h =,因此, ()()10h t h ≥=.于是,当1t >时,有()21ln 1t t t ->+. 所以,有12ln ln 2x x +>成立, 212x x e >.问题5:x m x x x f x --=221ln )(已知函数,若()x f 有两个极值点x 1,x 2,(x 1<x 2),且x x x x x a 12112ln 2ln ->-恒成立,求整数a 的最大值。

数学双变量函数问题的处理方法

数学双变量函数问题的处理方法

Җ㊀山东㊀王永宗㊀㊀函数是高中数学的重点㊁难点知识,涉及的问题类型较多,其中双变量函数问题在各类测试以及高考中出现频率较高.部分学生难以在短时间内找到解题思路,解题效率较低.授课中为使学生掌握双变量函数问题的处理方法,教师应做好相关题型的汇总,并在课堂上为学生讲解例题的解题思路,使其掌握该类问题的解题技巧,促进学生解题水平的提升.1㊀引入参数部分双变量函数问题需要引入新的参数,构建新的函数,借助导数知识对新的函数进行研究,包括单调性㊁最值等.要注意的是构建新函数时需要找准参数的取值范围.例1㊀已知f (x )=e 4x -1,g (x )=12+l n (2x ),若f (m )=g (n )成立,则n -m 的最小值为(㊀㊀).A.2l n2-13㊀㊀B .1+2l n23C .1+l n24㊀㊀D.1-l n24很多学生解答该题时仅仅知道将m ,n 的值代入,但却不知道接下来该怎么处理.教学中应注重给予学生启发,引导学生引入参数k ,构建关于k 的函数,而后讨论新函数的单调性,找到其最小值.令e 4m -1=12+l n (2n )=k (k >0),则m =14+l n k 4,n =12e k -12,令h (k )=n -m =12e k -12-l n k 4-14,对h (k )进行求导可得h ᶄ(k )=12ek -12-14k,因为h ᶄ(k )单调递增,且h ᶄ(12)=0,则h (k )在(0,12)上单调递减,在(12,+ɕ)上单调递增,则h m i n (k )=h (12)=1+l n24,故选C .2㊀等价转化等价转化是解决双变量函数问题的重要方法之一.为使学生掌握等价转化的技巧,教学中既要注重为学生讲解恒成立问题与存在性问题之间的区别,又要列出常见的等价转化方法,使学生深入理解.例2㊀已知函数f (x )=(x +1)3e -x +1,g (x )=(x +1)2+a ,若存在x 1,x 2ɪR ,使得f (x 2)>g (x 1),则实数a 的取值范围为.读题可知,该问题为存在性问题,可将问题转化为f m a x (x )ȡg m i n (x ),此时只要求出两个函数的最大值与最小值即可.对函数f (x )进行求导得f ᶄ(x )=3(x +1)2e -x +1-(x +1)3e -x +1=(x +1)2e -x +1(-x +2),由f ᶄ(x )=0,解得x =-1或x =2.当x <2时,f ᶄ(x )>0,f (x )单调递增;当x >2时,f ᶄ(x )<0,f (x )单调递减,则f m a x (x )=f (2)=27e .由二次函数知识可得g m i n (x )=g (-1)=a .因此a ɤ27e,a 的取值范围为(-ɕ,27e].3㊀分离参数求解参数范围的问题常采用分离参数法,在解决双变量函数问题时也可使用.例3㊀已知函数f (x )=a ln x +12x 2-a x (a 为常数)有两个极值点.(1)求实数a 的取值范围;(2)设f (x )的两个极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求λ的最小值.(1)通过求导转化为一元二次方程有两个正根问题,不难求出a 的取值范围为(4,+ɕ).(2)易知f (x 1)+f (x 2)=a l n x 1x 2+12(x 1+x 2)2-x 1x 2-a (x 1+x 2),且由(1)知x 1+x 2=a >0,x 1x 2=a >0,则f (x 1)+f (x 2)=a (l n a -12a -1),故f (x 1)+f (x 2)x 1+x 2=l n a -12a -1.令h (a )=l n a -12a -1,则h ᶄ(a )=1a -12,因为a >4,所以h ᶄ(a )<0,h (a )在(4,+ɕ)上单调递减,即h (a )<h (4)=l n4-3,又因为x 1+x 2>0,则f (x 1)+f (x 2)<λ(x 1+x 2)等价于f (x 1)+f (x 2)x 1+x 2<λ.综上,λ的最小值为l n4-3.(作者单位:山东省青岛西海岸新区第八高级中学)7。

解答双变量问题的三个“妙招”

解答双变量问题的三个“妙招”

方法集锦双变量问题比较复杂,且具有较强的综合性.其考查形式呈现多样化的特点,对同学们的数学思维和运算能力有较高的要求.当题目中出现了双变量时,很多同学会习惯性地把自变量看成主元,导致解题过程繁琐,甚至有时不知该如何下手.那么,如何高效地解答这类问题呢?有三个“妙招”.一、分离参数若已知一个变量的取值范围,要求另外一个变量的取值范围,则不能按照常规思路,将已知取值范围的变量作为主元,而要变换一下思路,采用分离参数法,将要求的变量分离出来,并构造出新函数,将问题转化为关于另一个变量的函数最值问题.利用导数法或函数的性质求最值,就可以得到另一个变量的取值范围.例1.对任意n ∈N *,恒有(1+1n)2n +a ≤e 2恒成立,求实数a 的最大值.解:在(1+1n )2n +a≤e 2的两边取对数得:(n +a 2)ln (1+1n )≤1.所以a 2≤1ln æèöø1+1n -n,设F ()x =1ln ()1+x -1x (x ∈(0,1]),则F ′()x =(1+x )ln 2()1+x -x 2x 2(1+x )ln 2(1+x ),设h ()x =(1+x )ln 2()1+x -x 2,则h ′()x =ln 2()1+x +2ln ()1+x -2x ,h ″()x =2[ln ()1+x -x ]1+x,再设m ()x =ln (1+x )-x ,则m ′()x =11+x-1<0,所以m (x )在(0,1]上单调递减,则m ()x <m ()0=0,则h ′()x <h ′()0=0,所以h (x )在(0,1]上单调递减,即h ()x <h ()0=0,所以F ′()x <0,所以F (x )在(0,1]上单调递减,则F ()x ≥F ()1=1ln 2-1,即a 2≤1ln 2-1,得a ≤2ln 2-2,所以实数a 的最大值为2ln 2-2.将a 分离出来,再将离散的变量n 用连续的变量x 表示出来,把问题变成函数最值问题,就可以用函数思想来解题.二、确立主元对于含有两个变量的问题,有时可以将其中的一个变量看作常数,将另外一个变量看成主元来求解.运用这种方法解题,要明确两个变量对已知关系式和目标式的影响,选取合适的变量作为主元.一般地,若已知变量的取值范围或已知含有该变量的等量关系式,则可以将该变量视为主元.例2.试证明:e 2x -2t ()e x +x +x 2+2t 2+1≥32.证明:令f ()x =e 2x -2t ()e x +x +x 2+2t 2+1=2(t -e x+x 2)2+12(e x -x )2+1≥12(e x -x )2+1.令g ()x =e x -x ,则g ′()x =e x -1,所以g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,易得g (x )的最小值为g ()0=1,即12(e x-x )2+1≥32,综上可得,e 2x -2t ()e x +x +x 2+2t 2+1≥32.三、利用函数的单调性因为双变量问题中含有变量,所以可以构造函数,将问题看作函数问题,利用函数的单调性来求得问题的答案.可根据函数单调性的定义判断函数的单调性,也可根据导函数与函数单调性之间的关系来进行判断.例3.已知函数f ()x =ln x +kx.对任意x 1>x 2>0,f ()x 1-f ()x 2<x 1-x 2恒成立,求实数k 的取值范围.解:由f ()x 1-f ()x 2<x 1-x 2得f ()x 1-x 1<f (x 2)-x 2,设g ()x =f ()x -x =ln x +kx-x (x >0),因为f ()x 1-f ()x 2<x 1-x 2,所以函数g (x )在()0,+∞上单调递减,于是g ′()x =1x -kx 2-1≤0在()0,+∞上恒成立,所以k ≥-x 2+x =-(x -12)2+14≥14,则实数k 的取值范围为[14,+∞).根据已知关系式f ()x 1-f ()x 2<x 1-x 2,以及函数单调性的定义,可以判定该函数为增函数,据此可以确定函数g ()x =f ()x -x 的单调性,进而根据g ()x 的单调性解题.参数分离法、利用函数的单调性、主元法的适用情形均不相同.针对不同的题目,同学们需仔细分析题目中的条件,选用合适的方法进行求解,才会达到事半功倍的效果.(作者单位:江西省九江第一中学)40。

双变量问题处理技巧

双变量问题处理技巧

双变量问题处理技巧双变量问题处理技巧双变量问题是指涉及两个变量之间的关系或相互影响的问题。

在许多领域中,如统计学、经济学和社会科学等,研究人员经常遇到需要处理双变量问题的情况。

下面将介绍一些处理双变量问题的技巧。

1. 散点图分析:散点图是一种常用的数据可视化方法,可以用来展示两个变量之间的关系。

通过绘制散点图,可以观察到变量之间的相关性,包括线性关系、非线性关系或者无关系。

根据散点图的形状和趋势,可以判断变量之间的关系类型,并进一步分析相关性的强度。

2. 相关性分析:相关性分析用于度量两个变量之间的相关性程度。

常用的相关性系数包括皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于线性关系的变量,而斯皮尔曼相关系数适用于非线性关系的变量。

相关性分析可以帮助我们了解两个变量之间的关系强度和方向。

3. 线性回归分析:线性回归分析是一种用于建立两个变量之间线性关系的模型。

通过拟合数据点到一条直线或曲线上,可以建立一个数学模型来预测或解释一个变量对另一个变量的影响。

线性回归分析可以帮助我们确定两个变量之间的因果关系,并进行预测和解释。

4. 多元回归分析:多元回归分析是一种用于处理多个自变量和一个因变量之间关系的方法。

当我们需要控制其他变量的影响,以及确定多个自变量对因变量的独立贡献时,可以使用多元回归分析。

通过多元回归分析,我们可以建立一个多变量的模型,更全面地理解变量之间的关系。

5. 因果推断:在处理双变量问题时,我们常常需要确定两个变量之间的因果关系。

因果推断是一种从相关性到因果关系的推断方法,可以帮助我们确定一个变量对另一个变量的影响。

在进行因果推断时,需要注意排除混淆变量的干扰,并使用实验证据或因果分析方法来支持因果关系的存在。

总之,处理双变量问题需要运用适当的技巧和方法来分析和解释两个变量之间的关系。

通过散点图分析、相关性分析、线性回归分析、多元回归分析和因果推断等方法,我们可以更好地理解和解释双变量问题,并得出有意义的结论。

破解双变量不等式问题的两个“妙招”

思路探寻而t =x +x 2+y 2>0,所以t ≥45.当t =45时,x =310,y =25,符合题意,故选A.我们引入新元t ,通过等量代换构造关于y 的一元二次方程,即可根据方程有解的必要条件,利用Δ≥0建立不等式,利用判别式法求得t 的取值范围.四、利用解析几何知识求解在解答代数问题受阻时,我们不妨转换思考问题的角度,从代数式的几何意义入手,利用解析几何知识来解题.一般地,可将y =x 看作一条直线,将y =x 2+k 看作一条抛物线,将x 2+y 2=1看作一个圆,构造出几何图形.这样便可通过研究直线、曲线、圆的方程及其位置关系,确定目标式取最值的情形,从而求得目标式的最值.解:因为x ,y >0,2x +y =1,所以该式可看作一条直线的方程,设z =x +x 2+y 2,该式可看作直线2x +y =1上在第一象限的点P (x ,y )到y 轴的距离d 与原点的距离之和.设原点关于直线2x +y =1的对称点的坐标为O 1(m ,n ),由此可以得到如下的方程组:ìíîïïïï2⋅m +02+n +02-1=0,(-2)⋅n -0m -0=-1,解得ìíîïïïïm =45,n =25,所以O 1()45,25.由图形的对称性可得,|PO 1|=|PO|,所以z =|PO 1|+d ,所以当PO 1⊥y 轴时z 最小,故当且仅当x =310,y =25时,z min =45.故选A.我们从代数式的几何意义入手,将2x +y =1看作一条直线,将z =x +x 2+y 2看作直线2x +y =1上在第一象限的点P (x ,y )到y 轴的距离d 与原点的距离之和,便将问题转化为解析几何问题,利用点关于直线的对称性、直线之间的垂直关系求得目标式的最值.总之,求解多元最值问题,需运用发散性思维,将问题与所学的知识关联起来,寻找各个知识点与问题中式子、数量之间的契合点,从不同角度进行分析、思考,以获得不同的解题方案.(作者单位:江苏省盐城市射阳县高级中学)双变量不等式问题是近几年高考试题中的“常客”,且常以压轴题的形式出现,这类问题的难度一般较大,侧重于考查函数的单调性、导数与函数单调性之间的关系、不等式的性质等.解答双变量不等式问题,往往需通过构造同构式、指定主元,才能将问题转化为常规的单变量不等式问题,以利用函数、导数、不等式的性质顺利求得问题的答案.一、构造同构式在解答双变量不等式问题时,我们可先将不等式进行适当的变形,使不等号两边式子的结构相同或相似;然后根据其特征,构造函数模型,将双变量看作函数的两个自变量;再根据函数单调性的定义、导数与函数单调性之间的关系判断出函数的单调性,即可根据函数的单调性求得函数的最值,从而证明不等式成立.例1.已知f (x )=12x 2-ax +(a -1)ln x ,其中1<a <5,证明:对于任意的x 1,x 2∈(0,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>-1.证明:设x 1>x 2,函数g (x )=f (x )+x ,由f (x )=12x 2-ax +(a -1)ln x 可得:g (x )=12x 2+(1-a )x +(a -1)ln x ,对g (x )求导得g '(x )=x +a -1x-(a -1),50而x +a -1x-(a -1a -1)=1-(a -1-1)2,因为1<a <5,所以g '(x )>0,所以g (x )在定义域内单调递增,又因为x 1>x 2,所以g (x 1)>g (x 2).所以f (x 1)+x 1>f (x 2)+x 2,则f (x 1)-f (x 2)x 1-x 2>-1.同理可证当x 1<x 2时,f (x 1)-f (x 2)x 1-x 2>-1.我们先将不等式f (x 1)-f (x 2)x 1-x 2>-1化为f (x 1)+x 1>f (x 2)+x 2,即可构造出同构式,据此构造出函数g (x )=f (x )+x ,转而将双变量不等式问题转化为单变量函数g (x )的单调性问题,利用导数与函数单调性之间的关系判断出函数的单调性,即可证明不等式.例2.已知函数f (x )=ln x +x 2-3x ,对于任意的x 1,x 2∈[1,10],当x 2>x 1时,不等式f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2恒成立,求实数m 的取值范围.解:将f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2变形可得f (x 1)-m x 1>f (x 2)-m x 2,设函数h (x )=f (x )-m x ,即h (x )=ln x +x 2-3x -mx,求导得h '(x )=1x +2x -3+m x2≤0,将其变形可得关于m 的不等式m ≤-2x 3+3x 2-x .设函数F (x )=-2x 3+3x 2-x ,求导得F '(x )=-6x 2+6x -1=-6(x -12)2+12<0,可知函数F (x )在[1,10]上单调递减,所以F (x )min =F (10)=-1710,即m ≤-1710,所以参数m 的取值范围为(-∞,-1710].先将目标不等式f (x 1)-f (x 2)>m (x 2-x 1)x 1x 2变形,构造出同构式和函数h (x )=f (x )-m x,即可将问题转化为关于单变量x 的函数最值问题.值得注意的是,在求最值时,不仅运用到了分离参数法,还用到了导数法.若无法直接求得参数的范围,就可以考虑对参数进行适当的变形,将其与题目中的条件相联系,把问题转变为求某一个函数的最值问题,这样可使解题思路柳暗花明.二、指定主元对于双变量不等式问题,往往可根据已知条件和解题需求,指定其中一个变量为主元,根据两变量之间的联系,将问题转化为关于该主元的不等式问题来求解.通常可将已知取值范围或已知关系式的变量指定为主元,通过研究主元的范围、变化规律、最值来探究另一个变量的取值范围.例3.对于任意n ∈N *,恒有(1+1n)2n +a ≤e 2,求实数a 的最大值.解:在(1+1n)2n +a ≤e 2的两边同时取对数,可得(n +a 2)ln(1+1n )≤1.由1+1n >1,可得a 2≤1ln(1+1n)-n ,设g (x )=1ln(x +1)-1x (x ∈(]0,1),则g '(x )=(1+x )[ln (1+x )]2-x 2x 2(1+x )[ln (1+x )]2.设h (x )=(1+x )[ln (1+x )]2-x 2(x ∈(]0,1),则h '(x )=[ln (1+x )]2+2ln(1+x )-2x ,h ″(x )=2[ln(1+x )-x ]1+x.再设f (x )=ln(1+x )-x ,则f '(x )=11+x-1<0,从而可知f (x )在(]0,1上单调递减,所以f (x )<f (0)=0,所以h (x )在(]0,1上单调递减,从而可知h (x )<h (0)=0,所以g '(x )<0,所以g (x )在(]0,1上单调递减,所以g (x )≥g (1)=1ln2-1,即a 2≤1ln2-1,所以实数a 的最大值为2ln2-2.我们将n 看作主元,通过分离参变量,将a 用含n 的函数式表示出来.再构造函数,通过研究其导数,判断出函数的单调性,求得函数的最值,进而求得参数的取值范围.虽然双变量不等式问题较为复杂,但我们只要能根据不等式的结构特征构造出同构式,或结合题意指定合适的主元,便能将问题转化为简单的单变量单调性、最值问题,利用函数的单调性、导数的性质来解题,快速求得问题的答案.(作者单位:江苏省东台中学)思路探寻51。

函数导数中双变量问题的四种转化化归思想

处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学)361000在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路,造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学们以帮助和启发。

一、改变“主变量”思想例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围.分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思想方法为改变“主变量”思想。

解: 01)1(122≥-+-⇔≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0)2(0)2(≥-≥⇔h h 得{1301203222≥-≤⇔≥+-≥-+x x x x x x 或。

对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。

二、指定“主变量”思想例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明.分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下解:构造函数),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m mx m x m x ex e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时,0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。

高考数学之双变量的处理策略

高考数学之双变量的处理策略一、知识点睛所要求最值的式子或者所要证明的不等式中有两个变量,这一类题型我们通常要把变量的个数变少,转化为含单变量的问题二、方法点拨方法一:所要证明的不等式中含有两个变量x 1,x 2,我们可以指定其中一个变量x 1为主元,x 2为常数,构造单变量函数方法二:整体代换,通过换元,化双变量为单变量方法三:整合结构,把结构相同化,构造新函数方法四:划归为值域或最值思想三、跟进训练1.(2015新课标全国Ⅱ)设函数f (x )=e mx +x 2-mx.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,x 2 ∈[-1,1],都有)2()1(x f x f -≤e -1,求m 的取值范围.2.定义:设函数f (x )在(a,b )内可导,若f ′(x)为区间(a,b )内的增函数,则称f (x )为(a,b )内的下凸函数.(Ⅰ)已知f (x )=e x -ax 3+x 在(0,+∞)内为下凸函数,试求实数a 的取值范围; (Ⅱ)设f (x )为(a ,b )内的下凸函数,求证:对于任意正数λ1,λ2, λ1+λ2 =1,不等式f (λ1x 1+λ2x 2 )≤λ1f (x 1)+λ2 f (x 2)对任意的x 1,x 2 ∈(a,b )恒成立.3.已知函数f (x )=x -1-alnx (a ∈R )(1)若曲线y=f (x )在x=1处的切线方程为3x -y -3=0,求实数a 的值.(2)求证:f (x )≥0恒成立的充要条件是a=1(3)若a <0,且对任意x 1,x 2 ∈(0,1],都有f (x 1)-f (x 2)≤42111x x -,求实数a 的取值范围.4.已知函数f (x )=21x 2-ax+(a -1)lnx ,a >1. (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)证明:若a <5,则对于任意x 1,x 2 ∈(0,+∞),x 1≠x 2 ,有21)2()1(x x x f x f -->-1。

例谈导数中双变量问题的常见处理策略


(
2
0
1
8年全国Ⅰ卷文科第2
1题
x
改编)
已知函数 f(
x)
=ae -l
nx-1。
过程略)
26
1
(
x >1),
x

1
1

所以 h(
,
a)
+∞ 上递增,
mi
n =h
e
e
要证 f (
x)≥0,只 需 证 h(
a)≥0,即 证
1
x-1
h(
a)
=e -l
nx-1≥0。
mi
n =h
e
x-1
构造 函 数 g (
x )=e -l
时,
0,
h(
t)单 调 递 减;当
2
t∈
1
单调递增。
,
h(
t)
+∞ 时,
2
因此,
h(
t)
mi
n =h
1
选 B。
=l
n2,
2
评析:
本题中直接寻 求 变 量 m 、
n 之间的
b
1
⇔2
l
nt<ta
t
a
b
a
t)
=2
l
nt>1 。构造函数 g(
b
2
1
1
(
,
则g
t>1)
'(
t)
=-1 <0。
t
t
所以 g(
t)
<g(
a-b
(
1) a
⇔l
n a -l
nb <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数双变量问题处理技巧
【策略1】改变主元(又叫:反客为主)
对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。

【例1】已知2()1f x x mx m =+-≥在2m ≤时恒成立,求实数x 的取值范围.
【例2】对任意n N +∈恒有221
(1)n a e ++≤,求实数a 的最大值。

【解析】21(1)n n ++1
1ln(1)
n n
-+,设1(1)ln x =-+
【策略2】指定主元
有些问题虽然有两个变量,只要把其中一个当常数,另一个看成自变量,便可使问题得以解决,我们称这种思想方法为:指定主元。

【例3】已知0m n ≤<,试比较ln(1)n m e m -++与1ln(1)n ++的大小,并给出证明.
【例4】求证:2223
2()21x x e t e x x t -++++≥。

【策略3】化归为函数单调性问题
【例5】已知a b e >>,试比较b a 1()f x '=ln b
b
,ln b ∴【例6】已知函数2()ln ,(1)x f x a x x a a =+->,对1212,[1,1],()()1x x f x f x e ∀∈--≤-,求实数a 的取值范围。

()f x 在区间[1,1]-上的最大值与最小值的差,因此该问题便可化归为求函数()f x 在区间[1,1]-上的
最大值与最小值问题。

【解析】由()ln 2ln (1)ln 2x x f x a a x a a a x '=+-=-+,
(0)0f '=,当[1,0]x ∈-时,
10,ln 0,20x a a x -≤>≤,()0f x '∴≤,即()f x 在[1,0]-上递减;当]1,0[∈x 时,10x
a -≥,
,()1h a '=(1),f >-∴12max ,)|()x x f x ∀∈≤需ln a a -成立便可,于是构造(a φ()a φ∴在上递增,又()0e φ=,a 的取值范围为【例7】已知函数2()(1)ln 1f x a x ax =+++(1a <-),若对任意,(0,)m n ∈+∞,
()()4f m f n m n -≥-,求实数a 的取值范围。

,0,ax x a ><()f m f -n (*),因此,构造函数)40x +≤⇔
12a x ++上恒成立,于是再次构造函数2
1)48x x +=,0,ax x a ><,∴()f m n (*)
,因此,构造函数
【例8】已知函数()ln k
f x x x
=+,对120x x ∀>>都有1212()()f x f x x x -<-恒成立,求实数k 的取值范围。

【解析】由题可知,对120x x ∀>>都有1212()()f x f x x x -<-恒成立,即对120x x ∀>>都有
1122()()f x x f x x -<-恒成立,设()()ln ,(0)k g x f x x x x x x =-=+
->,则21'()10k
g x x x
=--≤在(0,)+∞恒成立,易得2211()24k x x x ≥-+=--+在(0,)+∞恒成立,即1
4k ≥。

【例9】已知函数2()ln 3f x x ax x =+-。

⑴函数()f x 在点(1,(1))f 处的切线方程为2y =-,求函数()f x 的极值; ⑵当1a =时,对于[]12,1,10x
x ∀∈,当21x x >时,不等式211212
()
()()m x x f x f x x x -->恒成立,求实数m
的取值范围。

⑴讨论()f x 的单调性;
⑵记函数()f x 的两个零点为12,x x 且12x x <,已知0λ>,若不等式121ln ln x x λλ+<+恒成立,求实数λ的取值范围。

内单调递减,(1)0,h =∴【策略4】整体代换,变量归-
【例11】已知函数1ln 2)(2
-+=x x x f ,若21,x x 是两个不相等的正数,且12()()0f x f x +=,试比较12x x +与2的大小,并说明理由。

【解析】
22
2121212121212()()022ln()()222ln()
f x f x x x x x x x x x x x +=⇔+=-⇔+=+-①,设
【例12】已知函数2
()ln 2(0)G x x a x bx a =--+>有两个零点21,x x ,且201,,x x x 成等差数列,
试探究)(0x G '值的符号。

【解析】依题意得12()0()0G x G x =⎧⎨=⎩得21112222ln 20(1)ln 20(2)
x bx a x x bx a x ⎧--+=⎪
⎨--+=⎪⎩,21x x ≠ ,不妨设210x x <<,由⑴
]
1
②,构造函数上恒成立。

∴(h 0()G x x '=【证明】由题可知,
12x x >>22ln 1x +,从而原不等式即证0,令x t =。

相关文档
最新文档