CIE标准色度学系统

合集下载

第三章CIE色度学体系ppt课件

第三章CIE色度学体系ppt课件
通过颜色匹配实验获取表示颜色的 三刺激值,这就是CIE标准色度系统的基 本出发点。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
颜色空间
一种颜色与一组R、 G、B值相对应,R、G、 B值相同的颜色,颜色感 觉(外貌)必定相同。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
四、色品坐标和色品图
三原色各自在R+G+B总量中的相对比例 叫做色品坐标,用符号r,g,b来表示。 (chromaticity coordinates)
色品坐标与 三刺激值关系式
r=R/(R+G+B) g=G/(R+G+B) b=B/(R+G+B)=1-r-g
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
色品图(Chromaticity diagram)
挡屏
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
颜色视觉特性
2°视场下用上述选定三原色匹配等能光谱色的R、
G、B三刺激值,用光谱三刺激值
r,g 来,b 表
示 ,这一组函数叫做“CIE1931-RGB系统标准色
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

CIE标准色度学系统

CIE标准色度学系统

⑶规定( 规定 X)和( 和 Z)的亮度为 的亮度为0,XZ线称为无 亮度线 无亮度线 的各点只代表 度 亮度线。无亮度线上的各点只代表色度, 没有亮度,但Y既代表色度,也代表亮度。 为了使用方便,XYZ三角形经过转换就成 为麦克斯韦直线三角形,即目前国际通用 的CIE 1931 色度图。
• CIE 1931 标准观察者光谱三刺激值 标准 察者光谱 刺激值X‐,Y‐,Z‐ 分别代表匹配各波长等能光谱刺激所需要 的红、绿、蓝三原色的量。在理论上,要 想得到某一波长的光谱颜色 想得到某 波长的光谱颜色,可以从表中 可以从表中 ‐ ‐ ‐ 或图上查出相应的X ,Y ,Z 三刺激值,也 就是说 按X‐,Y‐,Z‐数量的红、绿、蓝设 就是说,按 数量的红 绿 蓝设 想原色相加,便能得到该光谱色。
X k ( ) x ( ) Y k ( ) y ( ) Z k ( ) z ( )
4. 根据下式,求出光源的色度坐标。 根据 式 求出光源的色度坐标
X x X Y Z Y y X Y Z Z z X Y Z
1931 CIE‐RGB系统
莱 特 ( W.D.Wright,1928‐1929 ) 选 择 650 、 530 和 460nm 的 三 原 色 和 吉 尔 德 (J.Guild,1931)选择630、542和460nm三原 色,由若干名观察者在2°视场范围内,用 视场范围内,用 这三种原色匹配等能光谱的各种颜色。
光谱三刺激值与光谱色色度坐标的关系为: 光谱 刺激值与光谱色色度坐标的关系为 r= r‐ /( r‐ + g‐ + b‐ ), g= g‐ /( r‐ + g‐ + b‐ ), b= b‐ /( r‐ + g‐ + b‐ ) 1931 CIE‐RGB 系统用700nm,546.1 546 1 nm和 435.8 nm作为三原色是因为700nm是可见光 的红色末端 546.1 的红色末端, 546 1 nm和435.8 435 8 nm是两个较 为明亮的汞亮线谱,三者都比较容易精确 地产生 来 地产生出来。

CIE标准色度系统课程(PDF 50页)

CIE标准色度系统课程(PDF 50页)
第二部分 CIE标准色度系统 (CIE calorimetric system)
2.6 CIE 标准照明体和标准光源
我们知道,照明光源对物体的颜色影响很大。不同的光源,
有着各自的光谱能量分布及颜色,在它们的照射下物体表面呈现 的颜色也随之变化,确定颜色离不光源。
为了统一对颜色的认识,首先必须要规定标准的照明光源。 CIE规定的标准照明体是指特定的光谱能量分布(《色度学》 p229),是规定的光源颜色标准。因为光源的颜色与光源的色温 密切相关,所以CIE规定了四种标准照明体的色温标准: 这4种标 准光源的名称见下表,在这4种标准光源中,常用的C光源和D65 光源,我国以D65为标准光源。
显色性Color rendering: 光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼
真的程度;光源的显色性是由显色指数来表明,它表示物体在光 下颜色比基准光(太阳光)照明时颜色的偏离,能较全面反映光 源的颜色特性。显色性高的光源对颜色表现较好,我们所见到的 颜色也就接近自然色,显色性低的光源对颜色表现较差,我们所 见到的颜色偏差也较大。国际照明委员会CIE把太阳的显色指数 定为100,各类光源的显色指数各不相同,如:高压钠灯显色指 数Ra=23,荧光灯管显色指数Ra=60~90。显色分两种:
• 人造光源来实现标准照明体的规定
CIE规定的标准照明体是指特定的光谱能量分布(《色度 学》p229-),是规定的光源颜色标准。它并不是必须由一个光源 直接提供,也并不一定用某一光源来实现。为了实现CIE规定的 标准照明体的要求,还必须规定标准光源,以具体实现标准照明 体所要求的光谱能量分布。CIE推荐下列人造光源来实现标准照 明体的规定: √ 标准光源A:色温为2856K的充气螺旋钨丝灯,其光色偏黄(白 织灯)。

色度学原理与CIE标准色度学系统

色度学原理与CIE标准色度学系统

色度学原理与CIE标准色度学系统一、引言色度学是一门研究颜色的科学,它涉及到物体反射、发射和感知的光的属性。

色度学的研究对于许多应用领域都具有重要意义,如图像处理、印刷、设计等。

CIE标准色度学系统作为国际上广泛应用的色度学标准,为我们提供了描述颜色的一套分析方法和标准。

二、色度学基础2.1 光的色彩与频率色彩来源于光的特性,光的色彩与其频率有直接关系。

常见的可见光波长范围在380-780纳米之间,对应的频率范围为400-790THz。

不同频率的光波经过人眼感觉,形成不同的颜色感知。

2.2 色光三基色原理色光三基色原理是指将可见光的色彩分解为三种基本色彩,通过不同的基本色彩的混合来形成各种其他颜色。

一般来说,最常用的三基色是红色、绿色和蓝色,这也是彩色显示技术的基础。

2.3 颜色感知人眼对于颜色的感知是通过视锥细胞来实现的。

根据颜色的感知级别,可以将颜色分为亮度、饱和度和色相三个属性。

亮度表示颜色的明暗程度,饱和度表示颜色的纯度,色相表示颜色的种类和类别。

三、CIE标准色度学系统3.1 CIE标准色度学系统简介CIE标准色度学系统是国际照明委员会(CIE)制定的一套描述和标准化颜色的系统。

它通过数学模型和测量标准,将各种颜色归纳成一组三刺激值,即人眼对应的红、绿、蓝三种光的感知量。

3.2 CIE XYZ色彩空间CIE XYZ色彩空间是CIE标准色度学系统的基础,它是一种线性变换的色彩空间,能够精确地表示所有可见光的颜色。

CIE XYZ色彩空间以人眼的感知为基础,通过三个轴表示红、绿、蓝三种感知的亮度值。

3.3 CIE色度图CIE色度图是CIE标准色度学系统中的一种图形表示方式,它将颜色以坐标的形式展示在一个平面内。

CIE色度图中,色度坐标表示颜色的色相和饱和度,亮度值表示颜色的亮度。

通过CIE色度图,可以直观地比较不同颜色之间的差异。

3.4 CIE L a b*色彩空间CIE L a b色彩空间是一种非线性变换的色彩空间,它将颜色表示为一组三维坐标。

CIE标准色度学系统介绍

CIE标准色度学系统介绍

CIE标准色度学系统介绍所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值与色度坐标r、g、b均变为正值。

(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。

它们在图5-27中的色度坐标分别为:从图5-27中能够看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。

因此整个光谱色变成了以XYZ三角形作为色域的域内色。

在XYZ系统中所得到的光谱三刺激值、、、与色度坐标x、y、z将完全变成正值。

经数学变换,两组颜色空间的三刺激值有下列关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,因此,只要明白某一颜色的色度坐标r、g、b,即能够求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。

通过式(5-9)的变换,对光谱色或者一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。

表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。

从表5-3中能够看到所有光谱色度坐标x(l),y(l),z(l)的数值均为正值。

(毫微米)x y z3800.17410.00500.82090.001450.00000.0065 3850.17400.00500.82100.00220.00010.0105 3900.17380.00490.82130.00420.00010.0201 3950.17360.00490.82150.00760.00020.0362 4000.17330.00480.82190.01430.00040.0679 4050.17300.00480.82220.02320.00060.1102 4100.17260.00480.82260.04350.00120.2074 4150.17210.00480.82310.07760.00220.3713 4200.17140.00510.82350.13440.00400.6456 4250.17030.00580.82390.21480.0073 1.0391 4300.16890.00690.82420.28390.0116 1.3856 4350.16690.00860.82450.32850.0168 1.6230 4400.16440.01090.82470.34830.0230 1.7471 4450.16110.01380.82510.34810.0298 1.7826 4500.15660.01770.82570.33620.0380 1.7721 4550.15100.02270.82630.31870.0480 1.7441 4600.14400.02970.82630.29080.0600 1.6692 4650.13550.03990.82460.25110.0739 1.5281 4700.12410.05780.81810.19540.0910 1.2876 4750.10960.08680.80360.14210.1126 1.0419 4800.09130.13270.77600.09560.13900.8130 4850.06870.20070.73060.05800.16930.6162 4900.04540.29500.65960.03200.20800.4652 4950.02350.41270.56380.01470.25860.3533 5000.00820.53840.45340.00490.32300.2720 5050.00390.65480.34130.00240.40730.2123 5100.01390.75020.23590.00930.50300.1582 5150.03890.81200.14910.02910.60820.1117 5200.07430.83380.09190.06330.71000.07826750.73270.26730.00000.06360.02320.0000 6800.73340.26660.00000.04680.01700.0000 6850.73400.26600.00000.03290.01190.0000 6900.73440.26560.00000.02270.00820.0000 6950.73460.26540.00000.01580.00570.0000 7000.73470.26530.00000.01140.00410.0000 7050.73470.26530.00000.00810.00290.0000 7100.73470.26530.00000.00580.00210.0000 7150.73470.26530.00000.00410.00150.0000 7200.73470.26530.00000.00290.00100.0000 7250.73470.26530.00000.00200.00070.0000 7300.73470.26530.00000.00140.00050.0000 7350.73470.26530.00000.00100.00040.0000 7400.73470.26530.00000.00070.00020.0000 7450.73470.26530.00000.00050.00020.0000 7500.73470.26530.00000.00030.00010.0000 7550.73470.26530.00000.00020.00010.0000 7600.73470.26530.00000.00020.00010.0000 7650.73470.26530.00000.00010.00000.0000 7700.73470.26530.00000.00010.00000.0000 7750.73470.26530.00000.00010.00000.00007800.73470.26530.00000.00000.00000.0000按5毫微米间隔求与:=21.3714;=21.3711;=21.3715为了使用方便,图5-27中的XYZ三角形,经转换变为直角三角形(图5-28),其色度坐标为x、y。

CIE标准色度系统

CIE标准色度系统
A ≡ B, C ≡ D
A+C ≡ B + D
式中符号“ ”代 表颜色相互匹配

相减的情况也成立。 相减的情况也成立。即
A ≡ B, C ≡ D
A−C ≡ B − D
一个单位量的颜色与另一个单位量的颜色相同,那么 一个单位量的颜色与另一个单位量的颜色相同, 这两种颜色数量同时扩大或缩小相同倍数则两颜色仍为相 同。即 A≡B
2.光谱三刺激值 . 在颜色匹配实验中, 在颜色匹配实验中,待测色光也可以是某一种波长 的单色光(亦称为光谱色 亦称为光谱色), 的单色光 亦称为光谱色 ,对应一种波长的单色光可以得 到一组三刺激值R、 、 。 到一组三刺激值 、G、B。对不同波长的单色光做一系 列类似的匹配实验, 列类似的匹配实验,可以得到对应于各种波长单色光的 三刺激值。 三刺激值。如果将各单色光的辐射能量值都保持为相同 (这样的光谱分布称为等能光谱 来做上述一系列实验,所 这样的光谱分布称为等能光谱)来做上述一系列实验 这样的光谱分布称为等能光谱 来做上述一系列实验, 得到的三刺激值称为光谱三刺激值,也就是匹配等能光 得到的三刺激值称为光谱三刺激值, 谱色的三原色的数量。 表示。 谱色的三原色的数量。用符号 r , g , b 表示。光谱 三刺激值又称为颜色匹配函数, 三刺激值又称为颜色匹配函数,它的数值只决定于人眼 的视觉特性。 的视觉特性。匹配方程表示为
nA ≡ nB
根据代替律可知,只要在感觉上颜色是相同的, 根据代替律可知, 只要在感觉上颜色是相同的, 便可 以互相代替,所得的视觉效果是相同的, 以互相代替, 所得的视觉效果是相同的, 因而可以利用 颜色混合的方法来产生或代替所需要的颜色。 例如: 颜色混合的方法来产生或代替所需要的颜色 。 例如 : 如果没有B种颜色 种颜色, 设 A + B ≡ C ,如果没有 种颜色,但是 X + Y ≡ B ,那 么 A + ( X + Y ) ≡ C 。这个由代替而产生的混合色与原来 的混合色具有相同的效果。 的混合色具有相同的效果。 (4) 混合色的总亮度等于组成混合色的各种颜色光的亮度 总和,称为亮度相加定律。 总和,称为亮度相加定律。 格拉斯曼定律仅适用于各种颜色光的相加混合过程。 格拉斯曼定律仅适用于各种颜色光的相加混合过程。 三、颜色匹配方程 颜色匹配的结果可用格拉斯曼定律来阐述, 颜色匹配的结果可用格拉斯曼定律来阐述,还可以 用代数式和几何图形来表示。 用代数式和几何图形来表示。 用代数式表示色匹配称为颜色匹配方程 用代数式表示色匹配称为颜色匹配方程 表示为下列方程: 表示为下列方程

第二章CIE标准色度系统1

第二章CIE标准色度系统1
R=170 G=22 B=174 R=255 G=0 B=255 R=0 G=255 B=0 R=0 G=0 B=255
C 2R 2G 1B
(R、 G、 B是原色光)
第一节 颜色匹配
光谱三刺激值匹配实验 用 三原色光匹配等能光谱色。 光谱三刺激值 匹配等能光 谱色的三原色数量(记 ~ ~ )。 r 、g 为 ~ 、b
5 0
53
5
48
0.4
47
m
0
g
-0.5 0 -0.4
0.5
1
1.5 X
第二节 CIE标准色度系统
CIE1931XYZ标准色度系统
使用假象三原色将 r (), g (),b () 光谱三刺激值转换变为XYZ系统的光谱三刺 x ( ), ~ y ( ), ~ z ( ),这样新建立的 激值称为CIE1931标准色度观察者光谱刺激值 ~ 色度系统称为CIE1931-XYZ系统
CIE1931-RGB标准色度观察者光谱三刺激值曲线
0.4 0.35 0.3
三刺激值
0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 380 430 480 530 580 630 680 730 780
波长(nm)
第二节 CIE标准色度系统
光谱色色品坐标
r g ~ b b ~ ~ g ~b r
A 大于1 B 大于3 C 等于1 D 等于3 13、匹配标准白光时的三原色色光数量都确定为一个单位,此时——。
A R=G=B=1
B R=G=B=3
C R=G=B〈1
D RGB不相等
第二节 CIE标准色度系统
CIE标准色度系统:CIE所规定的一系列颜色测量原理、 条件、数据和计算方法被称为CIE标准色度系统。 CIE色度系统以两组实验数据为基础: 1.CIE1931标准色度观察者光谱三刺激值:实用于小 于4度视场颜色测量; 2.CIE1964补充标准色度观察者光谱三刺激值:实用 于大于4度视场颜色测量

CIE标准色度学系统

CIE标准色度学系统

28
29
21
1—CIE1931标准色度学系统
CIE1931标准色度图 特点: 1.x +y + z=1 ∆λ=5nm 2.光谱轨迹特点 3.三原色坐标 4.无亮度线 5.等能白光点 6.主波长 7.色饱和度 8.混合中间色 1.700-770nm 9.颜色视觉特点 2.540-700nm
3.380-540nm 4.互补色
22
2—CIE1964补充色度学系统
• 适用范围:适合10°大视场观察
实验者 三原色 被试数 量 视场范围 三原色单位规定
645.2nm红光、 斯泰尔和 526.3nm绿光、 伯奇 444.4nm蓝光 640nm红光、 斯柏林斯 545nm绿光、 卡娅 465nm蓝光
49
10°
相加匹配NPL白色的条件 下,定三者为等量关系
11
12
1—CIE1931标准色度学系统
1931CIE-RGB系统的缺陷: 标定光谱的三原色总是有负值出现,计算起来极不方 便、且不易理解。
改进
1931标准色度学系统
1931CIE-XYZ系统(CIE1931标准色度学系统) 在1931CIE-RGB系统的基础上,改用三个假设的三原色 (X),(Y),(Z)建立了一个新的色度图,同时将匹 配等能光谱各种颜色的三原色数值标准化。
莱特
10

630nm红光、 吉尔德 542nm绿光、 460nm蓝光
7

相加匹配NPL白色的条件 下,定三者为等量关系
7
8
接近三原色三角 形的中心
9
1—CIE1931标准色度学系统
1931CIE-RGB色度学系统由二人的结果经过结合、转换 取平均值得到
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色容差是指电脑计算的配方与目标标准的相差,以单一照明光源下计算,数值愈小,准确度则愈高。

但是要注意,它只代表某一光源下的颜色比较,未能检测于不同光源下的偏差。

光源发出的光谱与标准光谱之间的差别。

标准光谱随着色温改变,同一个光源如果标准光谱不同其色容差也不同,但是测量的时候,一般光色电分析系统会自动识别被测光源所在的色温范围,以确定标准光谱的色温取值,色容差的单位是SDCM,一般的节能灯要求的色容差要小于5SDCM。

色容差,是表征光色电检测系统软件计算的X,Y值与标准光源之间差别。

数值越小,准确度越高。

标准光源的光谱随色温改变,则不同色温时,其标准光谱不同(一般检测设备会自动AUTO识别被测LED光源的色温范围,并确定对应的标准光源色温取值),色容差不同。

在相同色温时,参考标准光谱一致,色坐标X,Y不同,则色容差不同。

色容差单位:SDCM。

GB-T17262-2002单端荧光灯性能要求标准中规定一般的节能灯要求的色容差要小于5SDCM。

GB24823-2009(已下载)普通照明用LED模块的性能要求标准中规定LED模块要求的色容差要小于7SDCM。

色容差的意义引(1)在荧光灯中由于红、绿、蓝三种粉的密度不同,生产中很容易造成色温差,一旦出现,需通过调节色容差来调整色温差以保证灯的光色。

能够显示色容差的仪器(2)作为照明光源的白光LED应当参照色容差的标准来要求指导白光LED新照明光源的发展和应用。

色容差和哪些因素有关?[1]参照荧光灯国家标准GB/T10682-2002色容差公式:g11Δx2+2g12ΔxΔy+g22Δy2=K2 (1)式中:Δx和Δy表示相对于目标坐标值x,y的误差,g11,g12, g22表示由各目标值决定的系数,K为色容差。

标准颜色灯的色品坐标目标值应符合表D1的规定(见附录),系数见表D2。

用轴参数计算色容差的算式为:x’/K2a2+y’/K2b2=1 (2)式中:x’=Δxcosθ+Δysinθy’=-Δxsinθ+Δycosθa和b分别是1SDCM的长半轴和短半轴。

附CIE1931图,详细描述见第二章:一、CIE1931RGB 真实三原色表色系统(一)、颜色匹配实验把两个颜色调整到视觉相同的方法叫颜色匹配,颜色匹配实验是利用色光加色来实现的。

图5-24中左方是一块白色屏幕,上方为红R、绿G、蓝B三原色光,下方为待配色光C,三原色光照射白屏幕的上半部,待配色光照射白屏幕的下半部,白屏幕上下两部分用一黑挡屏隔开,由白屏幕反射出来的光通过小孔抵达右方观察者的眼内。

人眼看到的视场如图右下二、 1931CIE-XYZ标准色度系统所谓1931CIE-XYZ系统,就是在RGB系统的基础上,用数学方法,选用三个理想的原色来代替实际的三原色,从而将CIE-RGB系统中的光谱三刺激值和色度坐标r、g、b均变为正值。

(一)、CIE-RGB系统与CIE-XYZ系统的转换关系选择三个理想的原色(三刺激值)X、Y、Z,X代表红原色,Y代表绿原色,Z代表蓝原色,这三个原色不是物理上的真实色,而是虚构的假想色。

它们在图5-27中的色度坐标分别为:r g bX 1.275-0.2780.003Y-1.739 2.767-0.028Z-0.7430.141 1.602从图5-27中可以看到由XYZ形成的虚线三角形将整个光谱轨迹包含在内。

因此整个光谱色变成了以XYZ三角形作为色域的域内色。

在XYZ系统中所得到的光谱三刺激值、、、和色度坐标x、y、z将完全变成正值。

经数学变换,两组颜色空间的三刺激值有以下关系:X=0.490R+0.310G+0.200BY=0.177R+0.812G+0.011B …………………………(5-8)Z= 0.010G+0.990B两组颜色空间色度坐标的相互转换关系为:x=(0.490r+0.310g+0.200b)/(0.667r+1.132g+1.200b)y=(0.117r+0.812g+0.010b)/(0.667r+1.132g+1.200b)………………(5-9)z=(0.000r+0.010g+0.990b)/(0.667r+1.132g+1.200b)这就是我们通常用来进行变换的关系式,所以,只要知道某一颜色的色度坐标r、g、b,即可以求出它们在新设想的三原色XYZ颜色空间的的色度坐标x、y、z。

通过式(5-9)的变换,对光谱色或一切自然界的色彩而言,变换后的色度坐标均为正值,而且等能白光的色度坐标仍然是(0.33,0.33),没有改变。

表5-3是由CIE-RGB系统按表5-2中的数据,由式(5-9)计算的结果。

从表5-3中可以看到所有光谱色度坐标x(l),y(l),z(l)的数值均为正值。

l (毫微米)光谱色度坐标光谱三刺激值x y z3800.17410.00500.82090.001450.00000.0065 3850.17400.00500.82100.00220.00010.0105 3900.17380.00490.82130.00420.00010.0201 3950.17360.00490.82150.00760.00020.0362 4000.17330.00480.82190.01430.00040.0679 4050.17300.00480.82220.02320.00060.1102 4100.17260.00480.82260.04350.00120.2074 4150.17210.00480.82310.07760.00220.3713 4200.17140.00510.82350.13440.00400.6456 4250.17030.00580.82390.21480.0073 1.0391 4300.16890.00690.82420.28390.0116 1.3856 4350.16690.00860.82450.32850.0168 1.6230 4400.16440.01090.82470.34830.0230 1.7471 4450.16110.01380.82510.34810.0298 1.7826 4500.15660.01770.82570.33620.0380 1.7721 4550.15100.02270.82630.31870.0480 1.7441 4600.14400.02970.82630.29080.0600 1.6692 4650.13550.03990.82460.25110.0739 1.5281按5毫微米间隔求和:=21.3714;=21.3711;=21.3715为了使用方便,图5-27中的XYZ三角形,经转换变为直角三角形(图5-28),其色度坐标为x、y。

用表5-3中各波长光谱色度坐标在图中的描点,然后将各点连接,即成为CIE1931xy色度图的光谱轨迹。

由图看出该光谱轨迹曲线落在第一象限之内,所以肯定为正值,这就是目前国际通用的CIE1931xy色度图。

图5-28 CIE xy色度图(二)、 CIE-XYZ光谱三刺激值CIE-XYZ 光谱三刺激值是由CIE-RGB光谱三刺激值经过式(5-9)光谱色度坐标之间的转换得到的,记为、、。

CIE-RGB光谱三刺激值、、虽然通过式(5-2)能间接反映等能光谱色色光的相对亮度,然而很不直观。

从图5-25可以看出,由、、分别乘以单位量得到的相对亮度与人眼的明视觉光谱光视效率函数相同,为了直观的表示颜色的亮度,CIE规定=,因此不仅表达待配色(等能光谱色)中绿原色的数量,而且还表示待配色色光的亮度,用于计算颜色的亮度特性。

由于符合明视光谱光视效率函数,所以CIE-XYZ 光谱三刺激值、、又称为"CIE 1931标准色度观察者光谱三刺激值",简称"CIE标准色度观察者",在物体色色度值的计算中代表人眼的颜色视觉特征参数。

由色度坐标的定义知:……………………(5-10)且+ + =1又因为规定=所以光谱三刺激值的计算公式为:……………………(5-11)计算结果如图5-29所示,其数值见表5-3。

图5-29光谱三刺激值图中、、各曲线所包含的总面积,分别表示X、Y、Z。

表5-3中CIE1931标准观察者等能光谱各波长的总量、总量和总量是相等的,都是21.371,即X=Y=Z=21.371。

这个数是个相对数,没有绝对意义,它仅仅表明:一个等能白光(E光源)是由相同数量的X、Y、Z组成的。

但是,由于刺激值=,符合明视觉光谱效率函数,所以,用曲线可以计算一个颜色的亮度特性。

例:波长λ =500nm光谱色的色度坐标为:x(λ)=0.0082,y(λ)=0.5384,明视觉光谱光视效率函数=0.323,则其光谱三刺激值为:(三)、物体色三刺激值匹配物体反射色光所需要红、绿、蓝三原色的数量为物体色三刺激值,即X、Y、Z,也是物体色的色度值。

物体色彩感觉形成了四大要素是光源、颜色物体、眼睛和大脑,物体色三刺激值的计算涉及到光源能量分布、物体表面反射性能和人眼的颜色视觉、、三方面的特征参数,即:X=KY=K………………………………(5-12)Z=K式中K为调整因数,Y刺激值既表示绿原色的相对数量,又代表物体色的亮度因数。

上式表明当光源或者物体发生变化时,物体的颜色X、Y、Z随即也发生变化,因此上式是一种最基本、最精确的颜色测量及描述方法,是现代设计软件进行色彩描述的基础。

对于照明光源而言,光源三刺激值(、Y0、Z0)的计算仅涉及到光源的相对光谱能量分布和人眼的颜色视觉特征参数,因此光源的三刺激值可以表示为:……………………(5-13)式中Y0表示光源的绿原色对人眼的刺激值量,同时又表示光源的亮度,为了便于比较不同光源的色度,将Y0调整到100,即Y0=100。

从而调整因数K=100/将上式代入(5-12)即可得到物体色的色度值。

所以知道了照射光源(通常使用标准光源)的相对光谱能量分布及物体的光谱反射率,物体的颜色就可以用色度值X、Y、Z来精确地定量描述了。

(四)、 CIE1931 Yxy表色方法在图5-28所示的xy色度图中,x色度坐标相当于红原色的比例,y 色度坐标相当于绿原色的比例。

由图中的马蹄形的光谱轨迹各波长的位置,可以看到:光谱的红色波段集中在图的右下部,绿色波段集中在图的上部,蓝色波段集中在轨迹图的左下部。

中心的白光点E的饱和度最低,光源轨迹线上饱和度最高。

如果将光谱轨迹上表示不同色光波长点与色度图中心的白光点E相连,则可以将色度图画分为各种不同的颜色区域,如图5-30所示。

因此,如果能计算出某颜色的色度坐标x、y,就可以在色度中明确地定出它的颜色特征。

例如青色样品的表面色色度坐标为x=0.1902、y=0.2302,它在色度图中的位置为A点,落在蓝绿色的区域内。

相关文档
最新文档