预应力混凝土简支小箱梁桥设计
30m简支箱梁计算书

30m预应力混凝土简支小箱梁计算书一、主要设计标准1、公路等级:城市支路,双向四车道2、桥面宽度:3m人行道+0.25m路缘带+2x3.5m车行道+0.5m双黄线+2x3.5m 车行道+0.25m路缘带+3m人行道=21m3、荷载等级:汽车-80级4、设计时速:30Km/h5、地震动峰值加速度0.2g6、设计基准期:100年二、计算依据、标准和规1、《厂矿道路设计规》(GBJ22-87)2、《公路桥涵设计通用规》(JTG D60-2004)3、《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG D62-2004)三、计算理论、荷载及方法1、计算理论桥梁纵向计算按照空间杆系理论,采用Midas Civil2012软件计算。
2、计算荷载(1)自重:26KN/ m3(2)桥面铺装:10cm沥青铺装层+8cm钢筋混凝土铺装(3)人行道恒载:20KN/ m(4)预应力荷载:采用4束5φs15.2和6束4φs15.2 fpk=1860MPa钢绞线,控应力1395MPa。
(5)汽车荷载:本桥由于是物流园区部道路,通行的重车较多,本次设计考虑《厂矿道路设计规》(GBJ22-87)汽车-80级,计算图示如下:根据图示,汽车荷载全桥横桥向布置三辆车。
冲击系数按照《公路桥涵设计通用规》(JTG D60-2004)4.3.2条考虑。
(6)人群荷载:3.5 KN/ m2(7)桥面梯度温度:正温差:T1=14°,T2=5.5°负温差:正温差效应乘以-0.53、计算方法(1)将桥梁在纵横梁位置建立梁单元,然后采用虚拟梁考虑横向刚度,以此来建立模型。
(2)根据桥梁施工方法划分为四个施工阶段:架梁阶段、现浇横向湿接缝阶段、二期恒载阶段、收缩徐变阶段。
(3)进行荷载组合,求得构件在施工阶段和使用阶段时的应力、力和位移。
(4)根据规规定的各项容许指标。
按照A类构件验算是否满足规的各项规定。
四、计算模型全桥采用空间梁单元建立模型,共划分为273节点和448个单元。
预应力简支箱梁施工方案

预应力简支箱梁施工方案(一)、简支箱梁概述:1、本桥梁是进出污水处理厂的道路桥梁,为预应力混凝土简支箱梁,跨径为20m,样梁全长为34m,桥梁完度为变宽,标准桥宽为0.5m(防撞护栏)+3.95m(车行道)+0.5m(防撞护栏)=4.95m;道路为特殊道路,单行道,设计车速20Km/h,荷载等级为城-B,桥面横坡为2%,平曲线最小半径为153m,纵坡为-3.6%,地震基本烈度为6度,抗震设防烈度为7度,设计使用年限为50年,设计安全等级为二级,防撞护栏为A级,百年一遇洪水位,197.59m,抗洪水频率为100年一遇;2、进厂桥梁起点里程K0+015,止点里程为K0+049,采用(0.5+3.95+0.5)m预应力钢筋混凝土箱梁;3、结构特征:预应力混凝土简支箱梁长34m,宽4.95m,厚1.2m;桥台搭板长8m,宽3.849m和3.95m,厚度0.3m,与预应力混凝土箱梁连接;(二)、重力式U型桥台、台帽施工工艺:本工程A0桥台扩大基础嵌入中风化砂岩1m,台身高8.72m,A1桥台扩大基础嵌入中风化砂岩0.5m,台身高7.17m,台后设置500mm厚级配碎石反滤层,并设置封水层及排水盲沟。
(1)、明挖扩大基础施工定位放样,施工前对各部分的尺寸、标高、坐标等进行复核,复核准确后才能对基坑进行开挖,根据地质情况严格按设计要求及施工规范定出放坡率,再按照基础尺寸、深度确定基坑开挖尺寸。
(2)、基坑采用人工开挖成型,基坑开挖过程中应加强坑壁的支护,避免坑壁的坍塌,基底清底后应立即浇筑基础混凝土垫层,勿使基坑暴露过久或受地表水的浸泡而影响地基承载力;(3)、基坑周边设置排水沟,及时排除坑内积水和地表水,基坑开挖至距基底设计标高时,按照设计地质资料核实基底地质岩性,如基底岩性与设计不符或承载力达不到设计要求时,立即报请监理工程师及设计单位提出处理意见。
在处理方法确定后再进行开挖至设计地质岩性,合格的基坑基底,在报请监理工程师复检批准后,迅速进行基础垫层施工。
桥梁工程毕业设计——预应力混凝土简支T型梁桥

1 方案拟订与比选1.1 设计资料(1)技术指标:汽车荷载:公路—I级桥面宽度:26m采用双幅(12+2×0.5)m(2)设计洪水频率:百年一遇;(3)通航等级:无;(4)地震动参数:地震动峰值加速度0.05g,地震动反应谱特征周期0。
35s,相当于原地震基本烈度VI度。
1.2 设计方案鉴于展架桥地质地形情况。
该处地势平缓,故比选方案主要采用简支梁桥和连续梁桥形式。
根据安全、适用、经济、美观的设计原则,我初步拟定了三个方案。
1。
2。
1 方案一:(8×40)m预应力混凝土简支T型梁桥本桥的横截面采用T型截面(如图1—1).防收缩钢筋采用下密上疏的要求布置所有钢筋的焊缝均为双面焊,因为该桥的跨度较大,预应力钢筋采用特殊的形式(如图1—2)布置,这样不仅有利于抗剪,而且在拼装完成后,在桥面上进行张拉,可防止梁上缘开裂。
优点:制造简单,整体性好,接头也方便,而且能有效的利用现代高强材料,减少构件截面,与钢筋混凝土相比,能节省钢材,在使用荷载下不出现裂缝等。
缺点:预应力张拉后上拱偏大,影响桥面线形,使桥面铺装加厚等。
施工方法:采用预制拼装法(后张法)施工,即先预制T型梁,然后用大型机械吊装的一种施工方法。
其中后张法的施工流程为:先浇筑构件混凝土,并在其中预留孔道,待混凝土达到要求强度后,将预应力钢筋穿入预留的孔道内,将千斤顶支承与混凝土构件端部,张拉预应力钢筋,使构件也同时受到反力压缩.待张拉到控制拉力后,即用夹片锚具将预应力钢筋锚固于混凝土构件上,使混凝土获得并保持其预压应力.最后,在预留孔道内压注水泥浆。
,使预应力钢筋与混凝土粘结成为整体.桥中心桩号1:1000立 面卵石卵石卵石亚粘土亚粘土亚粘土淤泥质土淤泥质土淤泥质土细砂细砂亚砂土亚砂土亚砂土 立面图(尺寸单位:cm )图2图1图1—1 (尺寸单位:cm ) 图1—21。
2。
2 方案二:(86+148+86)m 预应力混凝土连续箱形梁桥本桥采用单箱单室(如图1—3)的截面形式及立面图(如图1-4),因为跨度很大(对连续梁桥),在外载和自重作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩大于跨中截面的正弯矩,因此,采用变截面梁能符合梁的内力分布规律,变截面梁的变化规律采用二次抛物线。
预应力砼简支小箱梁

预应力砼简支小箱梁在现代桥梁建设中,预应力砼简支小箱梁是一种被广泛应用的结构形式。
它以其独特的优势,在跨越江河、山谷等地形时发挥着重要作用。
预应力砼简支小箱梁,顾名思义,是由混凝土制成,并通过预应力技术增强其性能的一种箱梁结构。
这种结构的“简支”特点意味着它在两端支撑,受力较为简单明确。
先来说说混凝土。
混凝土是这种箱梁结构的主要材料之一,它由水泥、骨料(如砂、石子)、水以及外加剂等按一定比例混合而成。
优质的混凝土具有良好的抗压性能,能够承受巨大的压力。
但混凝土的抗拉性能相对较弱,这就需要预应力技术来弥补。
预应力技术是预应力砼简支小箱梁的核心所在。
通过在混凝土构件中预先施加一定的压力,可以有效地提高构件的抗裂性能和承载能力。
在施工过程中,通常会使用高强度的钢绞线或钢丝作为预应力筋。
这些预应力筋在箱梁预制时就被张拉到一定的应力水平,然后锚固在梁的两端。
当箱梁承受荷载时,预先施加的压力会抵消一部分拉应力,从而延缓裂缝的出现,提高箱梁的耐久性和安全性。
预应力砼简支小箱梁的制作通常在预制厂进行。
预制的好处在于可以更好地控制质量和施工进度。
在预制厂,工人会先制作箱梁的模板,然后将钢筋骨架布置在模板内,接着浇筑混凝土。
待混凝土达到一定强度后,进行预应力筋的张拉和锚固。
箱梁的设计也是至关重要的一环。
设计人员需要根据桥梁的跨度、荷载要求、使用环境等因素,确定箱梁的尺寸、配筋数量和预应力的大小。
例如,跨度较大的箱梁需要更厚的腹板和顶板,以承受更大的弯矩;而在重载交通的情况下,配筋和预应力都需要相应增加。
在施工安装阶段,预应力砼简支小箱梁一般通过吊车或架桥机进行架设。
将预制好的箱梁准确地放置在桥墩上,并做好连接和固定工作。
连接部位的处理要确保箱梁之间的整体性和受力传递的顺畅。
与其他桥梁结构形式相比,预应力砼简支小箱梁具有诸多优点。
首先,它的预制生产方式可以大大缩短施工周期,减少现场施工对交通和环境的影响。
其次,由于采用了预应力技术,箱梁的跨度可以较大,能够满足不同桥梁跨径的需求。
「预应力混凝土简支小箱梁桥设计」

「预应力混凝土简支小箱梁桥设计」预应力混凝土简支小箱梁桥是一种常见的桥梁结构,具有结构简单、施工方便、经济高效等优点。
本文将详细介绍预应力混凝土简支小箱梁桥的设计内容,包括桥梁的布置、荷载计算、截面设计等方面的内容。
首先,预应力混凝土简支小箱梁桥的设计需要根据具体的工程条件和要求进行桥梁布置的确定。
一般而言,桥梁的位置应选择在河流或道路的垂直线上,且保证桥梁两端的主跨与辅跨的比值在1.5~2之间。
桥墩的高度和位置应根据地形条件和水流情况进行确定,同时要考虑桥墩的航道通行能力和洪水的安全要求。
接下来是荷载计算。
荷载计算是预应力混凝土简支小箱梁桥设计的基础,需要综合考虑标准荷载和特殊荷载的作用。
标准荷载包括活载和恒载,例如交通载荷、行人载荷、道路维护车辆等;特殊荷载包括温度荷载、风荷载、地震荷载等。
在荷载计算中,应根据桥梁规范的要求进行动力系数和荷载车型的选取,并合理考虑各种荷载的组合。
在桥梁的截面设计中,需要确定箱梁的净高、净宽、壁厚等。
净高的确定应满足桥梁的承载力、挠曲和剪切等要求,一般可根据经验公式进行初步估算,再根据受拉区钢筋的计算结果进行优化。
净宽的确定应考虑横向强度、波动弯曲、回弹和带宽等要求,需要进行横向强度的校核。
壁厚的确定应满足截面剪切抗力、抗弯抗剪计算要求,一般采用经验公式进行初步估算,再根据具体的计算结果进行调整。
此外,预应力混凝土简支小箱梁桥的设计还需要进行施工过程中的内力、挠度和碰撞等检查。
在施工过程中,应进行各个构件的施工序列和施工方法的确定,考虑各个工况的组合。
钢筋的预应力力值和拉杆的布置应满足受拉区的强度和刚度要求。
在完成施工过程的检查后,还需要进行验收,确保桥梁满足设计要求。
总之,预应力混凝土简支小箱梁桥的设计包括桥梁的布置、荷载计算、截面设计和构件施工等方面的内容。
设计过程中需要综合考虑结构的安全、经济和实用性要求,并按照相关规范和规程进行设计和验收。
通过科学合理的设计,可以保证预应力混凝土简支小箱梁桥的安全稳定和使用寿命。
(参考资料)预应力混凝土简支小箱梁计算(2011级)

截面位置
支点 变截面
L/4 跨中
距支点距离 (mm) 0 5480 9750 19500
预制梁
M(kN.m) V(kN)
0
498.7
2074 350.5
3519 226.3
4603
0
现浇
M(kN.m) V(kN)
0
79.8
347
59.2
592
38.8
777
0
二期
M(kN.m) V(kN)
0
195
849
2.3.2 等效工字形截面示意图
根据上述计算结果,绘制出等效工字型截面如下:
图 2-5 等效工字形截面(单位:mm)
第 7 页 共 48 页
预应力钢筋混凝土课程设计
第三章 主梁全截面几何性质
选择跨中截面,计算截面几何特性。 在工程设计中,主梁几何特性多采用分块数值求和法进行,其计算式为:
全截面面积: A Ai
381.11
3666345.12
12045996
2455265.33
1666.67
13862804.02
19406.83
39158241.62
12163233.5
51321475.12
第 8 页 共 48 页
预应力钢筋混凝土课程设计
第四章 主梁作用效应计算
05 预应力混凝土简支变连续小箱梁示例

05 预应力混凝土简支变连续小箱梁示例1.本文目的本文的目的是,通过一个预应力混凝土简支变连续小箱梁示例的演示,使大家掌握在“桥梁设计师”中简支变连续小箱梁的设计过程。
2.系统支持设计师1.0.2版本预应力混凝土简支变连续小箱梁的依据:2005年出版的由中交第一公路勘察设计研究院编制的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图、2007年由交通部出版的《装配式部分预应力混凝土箱形连续梁桥》公路桥涵通用图;交通部《公路桥涵设计通用规范》(JTG D60-2004)、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)只支持直桥,支持斜交,且只支持各标准跨径相同的简支变连续小箱梁。
斜交时小箱梁两端的斜交角度需相等。
3.流程介绍按如下流程可从无到有建立一个简支变连续小箱梁。
图3-14.工程示例4.1工程概况为使大家比较直观的了解桥梁设计师中简支变连续小箱梁的设计过程,下面我们以一个4跨斜交的预应力混凝土简支变连续小箱梁为例来进行介绍。
(图4-1-1)图4-1-14.2布孔信息双击打开路线下的路线总体,打开布孔信息标签进行编辑。
(图4-2-1)图4-2-1●布孔线里程这列,第一行数字表示里程桩号,其后各行数字表示跨径。
●布孔线序号这列的数字,和构件名中的“##”后的数字需对应起来。
对上部构件,如果构件名是“新跨1##n”(n为阿拉伯数字),则布孔线序号的第n行是这个构件的起始位置,n+1行的跨径为该构件的第一孔跨径。
本例我们的构件名是“简支变连续小箱梁##1”,那么布孔线序号的第1行桩号10是当前连续小箱梁的起始绝对里程,此示例共有4跨,那我们在第2行到第5行的布孔线里程列都输入30表示第一孔到第四孔跨径都为30m(实际里程在表格的最后一列中由程序自动计算)。
●桥墩中心线距离布孔线L:桥墩中心线在布孔线大桩号侧为正,小桩号侧为负。
本例中L为0。
●斜交角A(度):水平面内,由道路设计线法线旋转至布孔线的角度。
30米预应力简支箱形梁桥结构设计(迈达斯计算)

本科毕业设计题目: 30m预应力简支箱形梁桥结构设计学院: 土木工程学院专业: 土木工程(交通土建工程)班级: 1111班学号: 1vnvn学生姓名:hgjfgfh指导教师: 李建vn 职称:讲师二○一四年四月三十日30m预应力混凝土简支箱梁计算书摘要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。
预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。
简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。
本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。
设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。
梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。
设计主要进行了桥梁总体布置及结构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。
利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。
关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantages such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. The bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the height of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress and stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant t ime’s factors.Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目录第一章绪论 (1)1.1概述 (1)1.2预应力梁桥受力特点 (1)1.3预应力混凝土梁桥发展综述 (2)1.3.1国外预应力混凝土梁桥的发展 (2)1.3.2国内预应力混凝土梁桥的发展 (3)1.4我国高速公路桥梁的发展 (4)1.4.1公路桥梁发展现状 (5)1.4.2我国高速公路桥梁建设特点 (5)1.5桥梁设计的基本原则 (6)1.6预应力混凝土简支梁桥的特点 (7)1.7预应力混凝土梁桥施工技术 (8)1.8毕业设计主要内容 (8)1.9毕业设计的目的和意义 (9)第二章设计要点及构造、材料、尺寸的拟定 (10)2.1桥梁选取的基本原则 (10)2.2设计的基本资料 (10)2.3箱形截面桥梁的特点 (10)2.4主要技术标准 (11)2.5主要材料及材料性能 (11)2.6设计参数取值 (11)2.7结构概述 (13)2.7.1截面形式及截面尺寸拟定 (13)2.8计算原则及控制标准 (15)第三章结构有限元模型的建造过程 (16)3.1 Midas Civil软件介绍 (16)3.2模型建立过程 (17)3.2.1设定建模环境 (17)3.2.2设置结构类型 (18)3.2.3定义材料和截面特性值 (19)3.2.4建立结构有限元模型 (21)3.2.5定义边界条件 (23)3.2.6定义荷载 (23)3.2.7定义施工阶段 (29)3.2.8汽车荷载 (29)每四章主梁作用效应计算 (32)4.1作用分类 (32)4.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容 (34)4.2.1施工阶段法向压应力验算 (34)4.2.2受拉区钢筋的接应力验算 (41)4.2.3使用阶段正截面抗裂验算 (43)4.2.4使用阶段斜截面抗裂验算 (50)4.2.5使用阶段正截面压应力验算 (55)4.2.6使用阶段斜截面主压应力验算 (60)4.2.7使用阶段正截面抗弯验算 (65)4.2.8使用阶段斜截面抗剪验算 (71)4.2.9使用阶段抗扭验算 (78)结论 (89)致谢 (90)参考文献 (91)第一章绪论1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1/4跨处 M=2028.96 kN.m Q=215.18kN
3/8跨处 M=2536.35 kN.m
Q=170.06kN 跨中处
M=2705.54 kN.m Q=128.64kN 3号梁 弯矩横向分布系数 图2-23
剪力横向分布系数
支座处 M=0 Q=392.29kN
388.35
1/8 跨处
M kN.m
2479 1094 3573
Q kN
497.08 219.37 716.45
1216.64
跨 M(kN.m)
2780 2705 2561 2705 2780
3.3内力组合
表3-6
1号梁内力组合
序 号 荷载类别
1 自重
2 二期恒载
3 恒载
4 活载 承载力极限状态
5 组合 正常使用短期组
6合 正常使用长期组
7合 正常使用标准组
8合
支座处 Q
kN 662.7774 292.4973 955.2748
1号梁
f
π 2l 2
EI c 3.14 3.45 *1010 * 0.548 2.45HZ
mc 2 * 34.19
5697
0.1767 ln f 0.0157 0.143
弯矩横向分布系数
图2-10
剪力横向分布系数 图2-11
支座处 弯矩
M=0 剪力 图2-12
Q=1.143*1.0789*300*0.67+1.143*(0.5*(1.0789*1+0.8859*0.8571)*34.19/7+0.
kN.m
kN
kN.m
kN
kN.m
kN
自重
662.7774 2479 497.08
4248.38
331.392
5310.8
188.888
5665.05
0
二期恒载
292.4973 1094 219.37
1874.9
146.25
2343.77
83.3602
2500.1
0
恒载
955.2748 3573 716.45
3/8跨处 弯矩 图2-17
M=1.143*0.8859*8.013*300*0.67+1.143*0.8859*0.5*8.013*34.19*10.5*0.67=260 6.67 kN.m
剪力 图2-18
Q=1.143*0.625*300*0.8859*0.67+1.143*0.8859*0.5*0.625 *0.625*34.19*10.5*0.67=174.77kN
跨中处 弯矩 图2-19
M=1.143*300*8.5475*0.8859*0.67+1.143*0.5*34.19*8.5475 *10.5*0.8859*0.67=2780.55 kN.m
剪力 图2-20
Q=129.37kN 2号梁 弯矩横向分布系数 图2-21
剪力横向分布系数 图2-22
支座处 M=0 Q=398.45kN
二期恒载
防撞栏杆 :
q2 7.8 * 2 / 5 3.12kN / m 铺装层:
q3 (15.9 * 24 * 0.1 25 * 0.08 *15.9) 13.99kN / m q2 q3 17.11kN / m 总恒载: q q1 q2 q3 55.88kN / m 2号梁
防撞栏杆 :
y=1.17m。
第三章 内力计算
序号 1 2 3
3.1 恒载计算
1号梁
一期恒载
梁体自重及横隔板:
q1
26 *
1.401 1.628
2
* 3 1.401* (17.095
3)
1 17.095
3.56 * 0.2 * 2 * 26 1.64 * 0.2 * 3* 26 34.19
38.77kN / m
3605.95 723.118 6180.25 482.089
3/8 跨处
M
Q
kN.m
kN
5382.04 191.418
2343.77 83.3587
7725.81 274.777
跨中处
M
Q
kN.m
kN
5741.04
0
2500.1
0
8241.14
0
3.2 活载计算
3.2.1 横向分布系数计算 3.2.1.1 跨中处用刚接板法
1121.06 296.35 1923.91 203.75
1183.82 311.84 2028.96 215.18
1216.64 317.26 2885.21 221.05
3/8 跨处 M(kN.m) Q(kN)
2606.67 174.77 2536.35 170.06 2401.88 161.04 2536.35 170.06 2606.67 174.77
m0q1 0.5 * (1.2054 0.6697 0.2827) 1.0789 2号梁 图2-8
m0q2 0.5 * (0.0882 0.6176 1 0.4706 0.0882) 1.1323 3号梁 图2-9
m0q3 0.5 * (0.0882 0.6176 1 0.4706 0.0882) 1.1323
3号梁 mcq3 0.5 * (0.1862 0.1944 0.2005 0.2085 0.2128 0.2150 0.2114 0.2038) 0.8163 按照2车道加载 mcq1 0.5 * (0.1862 0.1944 0.2005 0.2085) 0.3948 0.67*0.8163=0.5469>0.3948 根据对称性关系 mcq4 mcq2 0.8620 mcq5 mcq1 0.8859 3.2.2 支座处用杠杆原理法 1号梁 图2-7
q1 7.8 * 2 / 5 3.12kN / m 铺装层:
q2 (15.9 * 24 * 0.1 25 * 0.08 *15.9) / 5 13.99kN / m q q1 q2 17.11kN / m 梁体自重及横隔板:
q3
26
*
1.38
1.628 2
* 3 1.38 * (17.095
2 号梁
1/4 跨处
M
Q
kN.m
kN
4305.36 335.838
1874.9 146.251
6180.25 482.089
3/8 跨处
M
Q
kN.m
kN
5382.04 191.418
2343.77 83.3587
7725.81 274.777
跨中处
M
Q
kN.m
kN
5741.04
0
2500.1
0
8241.14
2号梁 图2-6
mcq2 0.5 * (0.2438 0.241 0.2369 0.227 0.2168 0.1998 0.1876 0.1711) 0.8620 按照2车道加载 mcq1 0.5 * (0.2438 0.241 0.2369 0.227) 0.4744 0.67*0.862=0.5775>0.4744
0
序号 1 2 3
表3-3
荷载类别 自重 二期恒载 恒载
支座处 Q
kN 671.66 292.5 964.16
3号梁恒载表
3 号梁
1/8 跨处
1/4 跨处
M
Q
M
Q
kN.m
kN
kN.m
kN
2512.02 503.746 4305.36 335.838
1093.93 219.371
1874.9 146.251
根据对称性关系 m0q4 m0q2 1.1323 m0q5 m0q1 1.0789
表3-4 梁号
各梁横向分布系数 跨中 支座
1 0.8859 1.0789 2 0.862 1.1323 3 0.8163 1.1323 4 0.862 1.1323 5 0.8859 0789
3.2.2 活载计算 荷载值 qk 10.5kN / m Pk 300kN 折减系数 0.67
第二章 设计资料及上部结构主要尺寸 2.1 设计资料
1. 桥梁跨径及桥宽 标准跨径:35 m; 主梁全长:34.94 m; 计算跨径:34.19 m; 桥面宽度:0.5 m (防撞栏杆)+15.9(净行车道宽度)m + 0.5 m(防
撞栏杆) = 16.9 m。 分幅:单幅 行车方向:单向行车
2. 设计荷载 公路-I级,无人群荷载,单侧防撞护栏重7.8 kN/m。
1/8跨处 M=1121.06 kN.m Q=296.35kN
1/4跨处 M=1923.91 kN.m Q=203.75kN
3/8跨处 M=2401.88 kN.m Q=161.04kN
跨中处 M=2561.79 kN.m Q=121.82kN
4,5号梁活载内力分别于2,1号梁相同
梁号 1 2 3 4 5
6123.27
477.642
7654.57
272.248
8165.15
0
表3-2
2号梁恒载表
序号 1 2 3
荷载类别 自重 二期恒载 恒载
支座处 Q
kN 671.66 292.5 964.16
1/8 跨处
M
Q
kN.m
kN
2512.02 503.746
1093.93 219.371
3605.95 723.118
8859*0.5*6*34.19/7)*10.5*0.67=388.35kN 1/8跨处
弯矩 图2-13