普通高中数学学业水平考试试卷 (1)

合集下载

广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)

广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)

一、单选题二、多选题1. 从装有两个红球和两个黑球的口袋内任取两个球,现有如下说法:①至少有一个黑球与都是黑球是互斥事件;②至少有一个黑球与至少有一个红球不是互斥事件;③恰好有一个黑球与恰好有两个黑球是互斥事件;④至少有一个黑球与都是红球是对立事件.在上述说法中正确的个数为( )A .1B .2C .3D .42.已知函数且在上的最大值与最小值之和为,则的值为A.B.C.D.3. 的展开式中,的系数( )A.B .5C .35D .504.已知函数.则关于说法错误的是( )A .的图象向右平移个单位长度后所得的函数为B .的图象与的图象关于y 轴对称C .的单调递减区间为D .在上有3个零点,则实数a的取值范围是5. 已知定义在上的函数满足,且是偶函数,当时,,则( )A.B.C.D .36. 已知,,,则的大小关系为( )A.B.C.D.7. 已知分别是双曲线的两个焦点,双曲线和圆的一个交点为,且,那么双曲线的离心率为( )A.B.C .2D.8. 已知平面向量,且,则( )A .2B .-2C.D.9. 已知函数,则下列结论中正确的是( )A .若ω=2,则将的图象向左平移个单位长度后得到的图象关于原点对称B .若,且 的最小值为,则ω=2C .若在[0, ]上单调递增,则ω的取值范围为(0,3]D .若在[0,π]有且仅有3个零点,则ω的取值范围是广东省普通高中学2024届高三第一次学业水平合格性考试数学试题(一)三、填空题四、解答题10. 已知双曲线(,),则不因改变而变化的是( )A .焦距B .离心率C .顶点坐标D .渐近线方程11.已知函数,,则下列说法不正确的有( )A .若,则B.若,则C.函数的单调递增区间为D.若方程有三个不同的解,则或12.已知数列的前n 项和为,,且(,2,…),则( )A.B.C.D.13.记是公差不为的等差数列的前项和,若,,则________.14.已知双曲线的一条渐近线方程为,则双曲线C 的离心率为__________.15.数列的前项和为,且,,则___________.16.已知三棱柱,是正三角形,四边形是菱形且,是的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.17. 在中,角,,所对的边分别为,,,且.(1)求的值;(2)若,,求的面积.18. 新冠肺炎疫情期间,各地均响应“停课不停学,停课不停教”的号召,开展了网课学习.为了检查网课学习的效果,某机构对2000名学生进行了网上调查,发现有些学生上网课时有家长在旁督促,而有些没有.将这2000名学生网课学习后通过考试分成“成绩上升”和“成绩没有上升”两类,对应的人数如下表所示:成绩上升成绩没有上升合计有家长督促的学生500300800没有家长督促的学生7005001200合计12008002000(1)是否有90%的把握认为家长督促学生上网课与学生的成绩上升有关联?(2)从有家长督促的800名学生中按成绩是否上升,采用分层抽样的方法抽出8人,再从这8人中随机抽取3人做进一步调查,记抽到一名成绩上升的学生得1分,抽到一名成绩没有上升的学生得分,抽取3名学生的总得分用表示,求的分布列和数学期望.附:,其中.0.1000.0500.0100.0012.7063.841 6.63510.82819. 已知数列的前项和为,且.(1)求数列的通项公式;(2)若,求数列的前项和.20. 在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.21. 在平面直角坐标系中,已知点,是一动点,直线,,的斜率分别为,,,且,记点的轨迹为.(1)求曲线的方程;(2)已知直线:,与曲线交于,两点,直线与轴,轴分别交于,两点,直线与轴,轴分别交于,两点.当四边形的面积最小时,求直线的方程.。

2024年北京市第二次普通高中学业水平合格性考试数学试卷

2024年北京市第二次普通高中学业水平合格性考试数学试卷

2024年北京市第二次普通高中学业水平合格性考试数学试卷一、单选题(★) 1. 已知集合,,则=()A.B.C.D.(★) 2. 函数的定义域为()A.B.C.D.(★) 3. 在复平面内,复数对应的点的坐标为()A.B.C.D.(★★) 4. 如图,在三棱柱中,底面是的中点,则直线()A.与直线相交B.与直线平行C.与直线垂直D.与直线是异面直线(★) 5. 如图,四边形是正方形,则()A.B.C.D.(★★) 6. 已知是定义在上的奇函数,则()A.B. 0C. 1D. 2 (★) 7. 在下列各数中,满足不等式的是()A.B.C.D.(★) 8. 命题“”的否定是()A.B.C.D.(★) 9. ()A.B.C.D.(★) 10. 在下列各数中,与相等的是()A.B.C.D.(★) 11. 在下列函数中,在区间上单调递减的是()A.B.C.D.(★) 12. 已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★) 13. 在平面直角坐标系中,以为顶点,为始边,终边在轴上的角的集合为()A.B.C.D.(★) 14. 在中,,则()A.B.C.D. 3(★) 15. 下图是甲、乙两地10月1日至7日每天最低气温走势图.记这7天甲地每天最低气温的平均数为,标准差为;记这7天乙地每天最低气温的平均数为,标准差为.根据上述信息,下列结论中正确的是()A.B.C.D.(★★) 16. 函数的一个单调递增区间是()A.B.C.D.(★) 17. 已知,则下面不等式一定成立的是()A.B.C.D.(★★) 18. 2023年杭州亚运会的三个吉祥物分别是“琮琮”“莲莲”“宸宸”.“琮琮”代表世界遗产良渚古城遗址;“莲莲”代表世界遗产杭州西湖;“宸宸”代表世界遗产京杭大运河.某中学学生会宣传部有4名学生,其中高一、高二年级各2名.从这4名学生中随机抽取2名负责吉祥物的宣传工作,则这2名学生来自不同年级的概率为()A.B.C.D.(★★) 19. 在区间上,的最大值是其最小值的倍,则实数()A.B.C.D.(★) 20. 小明同学在通用技术课上,制作了一个半正多面体模型.他先将正方体交于同一顶点的三条棱的中点分别记为,如图1所示,然后截去以为底面的正三棱锥,截后几何体如图2所示,按照这种方法共截去八个正三棱锥后得到如图3所示的半正多面体模型.若原正方体的棱长为6,则此半正多面体模型的体积为()A. 108B. 162C. 180D. 189二、填空题(★) 21. _________ .(★★) 22. 已知则 _________ ;的最大值为_________ .(★★)23. 已知向量在正方形网格中的位置如图所示.若网格中每个小正方形的边长均为1,则 _________ ; _________ .(★★) 24. 某公司三个部门共有100名员工,为调查他们的体育锻炼情况,通过随机抽样获得了20名员工一周的锻炼时间,数据如下表(单位:小时):A部门 4.5 5 6 7.5 9 11 12 13从三个部门抽出的员工中,各随机抽取一人,分别记为甲、乙、丙、假设所有员工的锻炼时间相互独立,给出下列三个结论:①甲该周的锻炼时间超过8小时的概率为;②甲、乙该周的锻炼时间一样长的概率为;③乙该周的锻炼时间一定比丙该周的锻炼时间长.其中所有正确结论的序号是 _________ .三、解答题(★★) 25. 已知函数的部分图象如图所示.(1)求的值;(2)求函数的零点.(★★) 26. 已知电流(单位: A)关于时间(单位: s)的函数解析式为.(1)当时,求电流;(2)当时,电流取得最大值,写出的一个值.(★★) 27. 如图,在三棱锥中,分别是的中点.(1)求证:平面;(2)求证:.请先写出第(1)问的解答过程,然后阅读下面第(2)问的解答过程.证明:(2)因为是的中点,所以①_________.因为,由(1)知,,所以②_________所以③_________.所以.在第(2)问的解答过程中,设置了①~③三个空格,如下的表格中为每个空格给出了两个选项,其中只有一个符合逻辑推理.请选出符合逻辑推理的选项,并填写在横线上(只需填写“A”或“B”).(A)(B)(A)(B)平面(A)平面(B)平面(★★★★) 28. 已知是定义在上的函数.如果对任意的,当时,都有,则称缓慢递增.如果对任意的,当时,都有,则称缓慢递减.(1)已知函数缓慢递增,写出一组的值;(2)若缓慢递增且,直接写出的取值范围;(3)设,再从条件①、条件②中选择一个作为条件,从结论①、结论②中选择一个作为结论,构成一个真命题,并说明理由.条件①:缓慢递增;条件②:单调递增.结论①:缓慢递减;结论②:单调递减.。

2024年湖北省普通高中学业水平合格性考试数学含答案

2024年湖北省普通高中学业水平合格性考试数学含答案

2024年湖北省普通高中学业水平合格性考试数学本试卷共6页25题。

全卷满分100分。

考试用时90分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号、座位号填写在试卷和答题卡上,并将准考证条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂匀、涂实,未涂、错涂、多涂或填涂不规范均不得分。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.非选择题的作答:用黑色签字笔将答案写在答题卡上对应的答题区域内,超出答题区域书写的答案无效。

在试卷、草稿纸上答题无效。

4.考试结束后,请将本试卷、答题卡和草稿纸一并上交.一、选择题(本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)。

1.已知U={2,4,6,8},A={6,8},则∁U A= A .{2,4} B .{2}C .{2,4,6,8}D .{2,4,6} 2.cos(π2-θ)= A .-sin θ B .sin θ C .-cos θ D .cos θ3.欧拉恒等式e i π+1=0(其中i 为虚数单位,e 为欧拉常数)被誉为数学中最奇妙的公式之一,它是欧拉公式e ix =cosx+isinx 的特例,即当x=π时,e i π=cos π+isin π=-1,得e i π+1=0.根据欧拉公式,e (i π4)表示的复数是 A .-√22+√22iC.√22-√22iD.-√22-√22i4.已知向量a⃗=(1,0),b⃗=(0,1),则2a⃗+3b⃗=A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)5.命题∀x∈R,x2-x+1>0的否定是A.∀x∈R,x2-x+1<0B.∀x∈R,x2-x+1≤0C.∃x0∈R,x02-x0+1<0D.∃x0∈R,x02-x0+1≤06.从某自动包装机包装的奶粉中,随机抽取20袋,测得各袋的质量分别为(单位:g):用频率估计概率,该包装机包装的袋装奶粉质量在497.5g∼501.5g之间的概率约为A.0.15B.0.1C.0.5D.0.257.已知tanα=3,则2sinα+cosαsinα-2cosα=A.3B.1C.7D.58.已知b克糖水中含有a克糖(b>a>0),再添加m克糖(m>0)(假设全部溶解),糖水变甜了。

普通高中学业水平考试数学试题(含答案)

普通高中学业水平考试数学试题(含答案)

第一卷(选择题 共45分)一.选择题(15'×3=45')1.已知角的终边经过点(3,4-),则tan x 等于( ) A.34 B.34- C.43D.43- 2.已知lg 2,lg3a b ==,则3lg 2等于( )A.a b -B.b a -C.b aD.a b 3.设集合{}(1,2)M =,则下列关系成立的是( )∈M ∈M C.(1,2)∈M D.(2,1)∈M4.直线30x y -+=的倾斜角是( ).450 C5.底面半径为2,高为4的圆柱,它的侧面积是( )π π π π6.若b<0<a(a,b ∈R),则下列不等式中正确的是( )<a 2 B.11b a> C.b a -<- D.a b a b ->+ 7.已知4,0,cos 25x x π⎛⎫∈-= ⎪⎝⎭,则tan x 等于( ) A.34 B.34- C.43D.43- 8.已知数列{}n a 的前n 项和12n n S n +=+,则3a 等于( ) A.120 B.124 C.128D.132 9.在ΔABC 中,sin sin cos cos 0A B A B -<则这个三角形一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形10.若函数1()(2)2f x x x =≠-,则()f x ( ) A.在(2,)-+∞内单调递增 B.在(2,)-+∞内单调递减 C.在(2,)+∞内单调递增 D.在(2,)+∞内单调递减11.在空间中,,,a b c 是两两不重合的三条直线,,,αβγ是两两不重合的三个平面,下列命题正确是( )A.若两直线,a b 分别与平面α平行,则//a b .B.若直线a 与平面β内的一条直线b 平行,则//a β.C.若直线a 与平面β内的两条直线b 、c 都垂直,则a ⊥β.D.若平面β内的一条直线a 垂直平面γ,则γ⊥β.12.不等式(1)(2)0x x ++<的解集是( )A.{}21x x -<<-B.{}21x x x <->-或C.{}12x x <<D.{}12x x x <>或13.正四棱柱ABCD-A 1B 1C 1D 1中,A 1 C 1与BD 所在直线所成角的大小是( ) .450 C14.某数学兴趣小组共有张云等10名实力相当的组员,现用简单随机抽样的方法从中抽取3人参加比赛,则张云被选中的概率是( )% % 如图所示的程序框图,如果输入三个实数a,b,c ,要求输出这三个数中最大的数,那么在空白处的判断框中,应该填入下面四个选项中的( )(注:框图中的赋值符号“=”也可以写成“←”或“:=”)A.c x >B.x c >C.c b >D.b c >第二卷(非选择题共55分)二.填空题(5'×4=20')16.已知0,0,1a b a b >>+=则ab 的最大值是____.17.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于____.18.已知函数2,(4)()(1),(4)x x f x f x x ⎧<=⎨-≥⎩,那么(5)f 的值为_____. 19.在[],ππ-内,函数sin()3y x π=-为增函数的区间是______. 20.设12,9,542a b a b ==⋅=-则a 和b 的夹角θ为____.三.解答题(共5小题,共35分)21.已知(2,1),(,2),a b λ==-⑴若a b ⊥求λ的值;⑵若//a b 求λ的值.22.(本题6分)已知一个圆的圆心坐标为(1,2)-,且过点(2,2)P -,求这个圆的标准方程.23.(本题7分)已知{}n a 是各项为正数的等比数列,且1231,6a a a =+=,求该数列前10项的和n S .24.(本题8分)已知函数31()cos ,2f x x x x R =-∈,求()f x 的最大值,并求使()f x 取得最大值时x 的集合. 25.(本题8分)已知函数()f x 满足()(),0,(2)1,xf x b cf x b f =+≠-=-且(1)(1)f x f x -=-+对两边都有意义的任意 x 都成立.⑴求()f x 的解析式及定义域;⑵写出()f x 的单调区间,并用定义证明在各单调区间上是增函数还是减函数参考答案一、二、16、41 17、31 18、8 19、 [6π-,65π] 20、43π 三、21、解:∵a ⊥b ,∴a •b=0,又∵a=(2,1),b =(λ,-2),∴a •b=2λ-2=0,∴λ=1 22、解:依题意可设所求圆的方程为(x+1)2+(y-2)2=r 2。

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题

一、单选题二、多选题1.已知函数,则( )A .14B .5C .1D.2. 函数在区间内的零点个数是( )A .2B .3C .4D .53.已知定义在上的奇函数恒有,当时,,已知,则函数在上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个4.在等比数列中,,若,,成等差数列,则的公比为( ).A .2B .3C .4D .55. 已知空间向量两两相互垂直,且,若则的取值范围是( )A.B.C.D.6.已知函数,现将的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则的解析式为( )A.B.C.D.7. 甲、乙、丙、丁、戊共5名同学参加劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军,”对乙说:“你不是最差的.”从这两个回答分析,5人的名次排列可能有( )不同的排列A .36B .54C .60D .728.已知,则( )A .1B .2C .3D .49. 已知函数,.若实数a ,b (a ,b 均大于1)满足,则下列说法正确的是( )A .函数在R 上单调递增B.函数的图象关于中心对称C.D.10. 已知空间中三条不同的直线a 、b 、c,三个不同的平面,则下列说法中正确的是( )A .若,,则B.若,,,则C .若,,,则D .若,,则11. 已知点P 在:上,点,则( )A .点P 到直线AB的距离最大值是B.满足的点P 有2个2023年河北省普通高中学业水平合格性考试数学试题2023年河北省普通高中学业水平合格性考试数学试题三、填空题四、解答题C .过直线AB 上任意一点作的两条切线,切点分别为M ,N ,则直线MN过定点D.的最小值为12. 已知函数,则下列说法正确的是( )A.若函数的最小值为,则B .若),则使得成立C .若,都有成立,则D .若函数在上存在最大值,则正实数的取值范围是13. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则该抛物线的焦点到准线的距离为______cm.14. 等差数列的公差,其前n项和为,若,则中不同的数值有________个.15. 某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本.进行5次试验,收集到的数据如表:产品数个1020304050产品总成本(元)62a758189由最小二乘法得到回归方程,则______.16. 2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有发子弹,甲每次打靶的命中率均为,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量,求的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行次射击后,记弹巢中空包弹的发数为,①当时,请直接写出数学期望与的关系;②求出关于的表达式.17. 中,角A ,B ,C 的对边分别为a ,b ,c,且满足.(1)求证:;(2)若为锐角三角形,求的取值范围.18.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.19. 在①函数的图像关于直线对称;②函数的图像关于点对称;③函数的图像经过点;这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数最小正周期为,(1)求函数的解析式;(2)函数在上的最大值和最小值.注:如果选择多个条件分别解答,按第一个解答计分.20. 如图,在中,,D为AC边上一点且,.(1)若,求的面积;(2)求的取值范围.21. 求函数的最小值.。

2024年7月贵州省普通高中学业水平考试-数学试卷

2024年7月贵州省普通高中学业水平考试-数学试卷

2024年7月贵州省一般中学学业水平考试 数 学 试 卷留意事项: 1.本试卷分为选择题和非选择题两部分,本试卷共43小题,满分150分。

考试用时120分钟。

2.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号填写在答题卡 上,将条形码横贴在答题卡“考生条码区”。

3.选择题选出答案后,用2B 铅笔把答题卡上对应题目选项在答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。

全部题目不能答在试卷上。

4.考生必需保持答题卡的整齐。

考试结束后,将试卷和答题卡一并交回。

选择题本题包括35小题,每小题3分,共计105分,每小题给出的四个先项中,只有一项是符合题意的。

一、 选择题1.设集合A={1,2,3,4,5},B={3,5},则A ∩B= ( )A.{1,2,4}B.{3,5}C.{5}D. {1,2,3,4,5} 2.已知角α的终边经过点(-3,4),则tanα= ( )A.43 B.-43C.34 D.-343.不等式x(x-1)>0的解集是 ( )A.{x|x>1}B.{x|x<1}C.{x|0<x<1D.{x|x<0或x>1} 4.函数y=cos2x 的最小正周期是 ( ) A.4πB.2πC.πD.π25.已知向量a =(1,2),b =(1,-1)则a+b = ( ) A.-1 B.3 C.(2,1) D.(3,0)6.函数()[]3,0,2∈=x x f x ,则()x f 的值域是 ( ) A.[0,8] B.[0,6] C.[1,6] D.[1,8]7.若a>b>0,则下列不等式中肯定成立的是 ( ) A.a-c<b-c B.a 2>b 2 C.ac>bc D.|a|<|b|8.直线a 经过坐标原点,且斜率为-2,则下列各点中在直线a 上的是( )A.(1,-2)B.(2,-1)C.⎪⎭⎫⎝⎛211 D.(-2,-4)9.下列程序运行后的结果是 ( ) A=5A=A+10 PRINT A ENDA.5B.10C.15D.A+1010.棱长为2的正方体的内切球的表面积为 ( )A. π2B. π4C. π8D. π1611.下列四个函数中,在区间(0,+∞)上为减函数的是 ( ) A.xy 1=B.21x y = C.2x y = D.y=x12.函数()x f 是实数集R 上的奇函数,若()22=f ,则()2-f = ( )A.2B.-2C.0D.2或-213.不等式|x|>-1的解集是 ( )A.()+∞,0B.()0,∞-C.空集D.实数集R14.在程序框图中,图形“ ”可用于 ( )A. 输出B.赋值C.推断D.结束算法 15.已知点A (2,1),B (2,3),则直线AB 的倾斜角为 ( ) A.0° B.30° C.60° D.90°16.下列函数中,在区间(1,2)内有零点的函数是 ( ) A.y=2x+3 B.y=x 2-3 C.y=2x D. y=lgx17.右图是某职业篮球运动员在连续11场竞赛中得分的茎叶统计图,1 2 5 则该组数据的中位数是 ( ) 2 4 5A. 31B.32C.35D.36 3 1 5 6 7 9 4 7 5 118.某班有男同学20人,女同学30人,用分层抽样的方法从全班同学中抽一个容量为10的样本,则应分别抽取 ( ) A.男同学4人,女同学6人 B.男同学5人,女同学5人 C.男同学2人,女同学8人 D.男同学2人,女同学3人 19.若x>0,则11++xx 有 ( ) A.最小值4 B.最小值3 C.最大值 4 D.最大值320.已知⎪⎭⎫⎝⎛∈=2,0,135sin πx x ,则cosx= ( )A.135B.1312C.135- D.1312- 21.已知cos75°cos15°-sin75°sin15°的值为 ( )A.0B.21C.23D.122.函数y=lgx 的值域是 ( )A.()+∞,0B.()+∞,1C.()0,- ∞D. R23.把二进制1011(2)化为十进制数,则此数为 ( ) A.8 B.10 C.11 D.1624.在等比数列{an}中,已知a 1=9,q=-3.则S 3= ( )A.5B.6C.7D.6325.已知向量a ,b ,|a |=2,|b |=4,且a ,b 的夹角为60°,则b a •= ( )A.4B. 24C. 34D.8 26.在等差数列{a n }中,a 3+a 5=10,则a 4= ( )A.4B.5C.10D.2027.抛掷两面枚质地无匀称的硬币,出现“两次都是反面”的概率是 ( )A. 61B. 31C. 41D. 2128.已知3213223log ,2,2===Q R P ,则P 、Q 、R 的大小关系是 ( )A.P<Q<RB.Q<R<PC.Q<P<RD.R<Q<P29.不等式组002≥≥≤+y x y x 表示的平面区域的面积是 ( )A.1B.2C.4D.530.△ABC 中,已知AB=3,BC=5,53cos =B ,这个三角形的面积等于 ( )A.12B.6C.3D. 2931.正方体ABCD-A 1B 1C 1D 1中,A 1C 1与BD 所在直线所成角的大小是 ( ) A.30° B.45° C.60° D.90°32.下表显示出函数值y 随自变量x 改变的一组数据,由此推断它最可能的函数模型是( )x 4 5 6 7 8 9 10 y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型C. 指数函数模型D.对数函数模型33.某人午觉醒来,发觉表停了,他打开收音机,想听电台整点报时,则他等待的时间少于20分钟的概率为 ( )A.61B.31C.21D.3234.如图所示,一个空间几何体的正视图和侧视图都是边长为 2 的正方形,俯视图是一个圆,那么这个几何体的体积为( )A.2πB.πC.π2D.π4 35.过点(2,3)且到原点的距离最大的直线的方程是 ( ) A.3x+2y-12=0 B.2x+3y-13=0 C.x=2 D.x+y-5=0非选择题 (本题共8小题,共45分)二、 填空题:本题共5小题,每小题3分,共15分。

2023年12月广西普通高中学业水平合格性考试数学含答案

2023年12月广西普通高中学业水平合格性考试数学含答案

2023年12月广西普通高中学业水平合格性考试数学(全卷满分100分,考试时间90分钟)一、单项选择题(本大题共26小题,每小题2分,共52分,在每小题所列的4个备选项中,只有1个符合题目要求,错选、多选或来选均不得分。

)1.图中阴影区域所表示的集合为A.{2}B.{1}C.{5,6}D.{1,2}2.若复数z满足z=(1+i)i(i是虚数单位),则在复平面内z对应的点在A.第二象限B.第一象限C.第四象限D.第三象限3.已知函数f(x)=1,则f(4)=xA.13B.14C.1D.124.某学校高一年级女生定制校服规格的数据如图所示,则这组数据的众数为A.160B.55C.170D.1654=5.√24A.13B.0C.2D.16.如图、以矩形ABCD的边AB所在直线为轴,其余三边旋转一周形成的面所围成的几何体是A.圆台B.圆锥C.球D.圆柱7.函数y=x(1≤x≤5)的最大值为A.3B.2C.5D.48.若实数a,b满足,则A.2a<2bB.2a>2bC.a-b<0D.a+1<b+1弧度化为角度是9.将π3A.60°B.45°C.90°D.75°10.若sinα=1,则sin(-α)=2A.-13B .-12C .1D .1511.一支羽毛球队有男运动员20人,女运动员15人,按性别进行分层.用分层随机抽样的方法从全体运动员中抽出一个容量为7的样本.如果样本按比例分配,那么女运动员应抽取的人数为A .3B .2C .6D .512.log 33=A .2B .3C .13D .113.如图,在正方形ABCD 中,AB ⃗⃗⃗⃗⃗ 与AD ⃗⃗⃗⃗⃗ 的夹角为A .90°B .30°C .180°D .120°14.已知圆柱的底面积为1,高为2,则该圆柱的体积为A .2B .1C .6D .4。

2024年北京市第二次普通高中学业水平合格性考试数学试卷含答案

2024年北京市第二次普通高中学业水平合格性考试数学试卷含答案

2024年北京市第二次普通高中学业水平合格性考试(一)(答案在最后)第一部分(选择题共60分)一、选择题:共20小题,每小题3分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,1,0A =--,{}1,1,2=-B ,则A B =()A.{}1- B.{}2,2- C.{}2,1,0,2-- D.{}2,1,0,1,2--【答案】D 【解析】【分析】由集合并集的定义即可得到答案.【详解】{}1,2,0,1,2A B =-- 故选:D2.函数()()ln 6f x x =+的定义域为()A.()6,-+∞ B.()6,+∞ C.(),6-∞- D.(),6-∞【答案】A 【解析】【分析】由60x +>即可求解.【详解】由解析式可知,60x +>,及6x >-,所以定义域为()6,-+∞,故选:A3.在复平面内,复数23i z =-对应的点的坐标为()A.()2,3 B.()2,3- C.()2,3-- D.()2,3-【答案】D 【解析】【分析】复数i z a b =+对应的点为(),a b 即可求解.【详解】因为23i z =-,所以对应的点的坐标为()2,3-,故选:D4.如图,在三棱柱111ABC A B C -中,1AA ⊥底面,ABC D 是BC 的中点,则直线1DC ()A.与直线AC 相交B.与直线AC 平行C.与直线1AA 垂直D.与直线1AA 是异面直线【答案】D 【解析】【分析】由直三棱柱的特征逐项判断即可.【详解】易知三棱柱111ABC A B C -为直三棱柱,由图易判断1DC 与AC 异面,AB 错误;因为11AA CC ∥,1DC 与1CC 相交但不垂直,所以1DC 与直线1AA 不垂直,C 错误;由图可判断1DC 与直线1AA 是异面直线,D 正确.故选:D5.如图,四边形ABCD 是正方形,则AC AB -=()A.ABB.BCC.CDD.DA【答案】B 【解析】【分析】由三角形法则即可求解.【详解】AC AB -= BC.故选:B6.已知()f x 是定义在R 上的奇函数,则()()11f f +-=()A.1-B.0C.1D.2【答案】B 【解析】【分析】根据奇函数的性质求解即可.【详解】因为()f x 是定义在R 上的奇函数,所以()()11f f -=-,即()()011f f +-=.故选:B.7.在下列各数中,满足不等式()()120x x -+<的是()A.2-B.1-C.1D.2【答案】B 【解析】【分析】解二次不等式,判断数是否在解集内即可得到答案.【详解】解不等式()()120x x -+<得2<<1x -.故选:B.8.命题“2,10x x ∀∈+≥R ”的否定是()A.2,10x x ∃∈+≥RB.2,10x x ∀∈+>RC.2,10x x ∃∈+<RD.2,10x x ∀∈+<R 【答案】C 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】2,10x x ∀∈+≥R 的否定为:2,10x x ∃∈+<R .故选:C 9.22ππcos sin 66-=()A.12B.33C.22D.2【答案】A【分析】根据条件,利用二倍角公式及特殊角的三角函数值,即可求解.【详解】因为22πππ1cos sin cos 6632-==,故选:A.10.在下列各数中,与cos10︒相等的是()A.sin80︒B.cos80︒C.sin170︒D.cos170︒【答案】A 【解析】【分析】由半角和全角诱导公式逐项化简即可;【详解】对于A ,()sin80sin 9010cos10°=°-°=°,故A 正确;对于B ,()cos80cos 9010sin10°=°-°=°,故B 错误;对于C ,()sin170sin 18010sin10︒=︒-︒=︒,故C 错误;对于D ,()0c cos 1810co os170s10°=°-=-°,故D 错误;故选:A.11.在下列函数中,在区间()0,∞+上单调递减的是()A.()3xf x = B.()2log f x x = C.()2f x x= D.()13log f xx =【答案】D 【解析】【分析】由指数函数、对数函数以及幂函数的单调性逐项判断即可得.【详解】对A :()3xf x =在R 上单调递增,故A 错误;对B :()2log f x x =在()0,∞+上单调递增,故B 错误;对C :()2f x x =在(),0-∞上单调递减,在()0,∞+上单调递增,故C 错误;对D :()13log f x x =在()0,∞+上单调递减,故D 正确.故选:D.12.已知x ∈R ,则“4x >”是1>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】【分析】判断两个命题的关系,当p q ⇒时,p 是q 充分条件;当p q ⇒/时,p 是q 不充分条件;当q p ⇒时,p 是q 必要条件;当q p ⇒/时,p 是q 不必要条件.【详解】当4x >21>=>,∴“4x >”是1>”充分条件;1>时,1x >,此时3x =满足要求,而34<,故4x >不一定成立,∴“4x >”是1>”不必要条件.故选:A.13.在平面直角坐标系xOy 中,以O 为顶点,Ox 为始边,终边在y 轴上的角的集合为()A.{}2π,k k αα=∈Z B.{}π,a k k α=∈Z C.ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z D.π,2k k αα⎧⎫=∈⎨⎬⎩⎭Z 【答案】C 【解析】【分析】结合角的定义即可得解.【详解】当终边在y 轴非负半轴上时,有π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ,当终边在y 轴非正半轴上时,有3π2π,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z ,故终边在y 轴上的角的集合为ππ,2k k αα⎧⎫=+∈⎨⎬⎩⎭Z .故选:C.14.在ABC V 中,1,2,60a b C ==∠=︒,则c =()A.B.C.D.3【答案】A 【解析】【分析】由余弦定理即可求解.【详解】由22212cos 1421232c a b ab C =+-=+-⨯⨯⨯=,所以c =.故选:A15.下图是甲、乙两地10月1日至7日每天最低气温走势图.记这7天甲地每天最低气温的平均数为1x ,标准差为1s ;记这7天乙地每天最低气温的平均数为2x ,标准差为2s .根据上述信息,下列结论中正确的是()A.1212,x x s s <<B.1212,x x s s <> C.1212,x x s s >< D.1212,x x s s >>【答案】B 【解析】【分析】分析统计图中对应信息得出对应量的结果即可.【详解】甲地1至7日最低气温均低于乙地,则甲地最低气温平均值也会小于乙地,即12x x <;标准差时反应一组数据的波动强弱的量,由图可知甲地最低气温明显波动性较大,则标准差值要大,即12s s >.故选:B16.函数()π2sin 2f x x ⎛⎫=+ ⎪⎝⎭的一个单调递增区间是()A.[]π,0- B.[]π,π- C.[]0,π D.[]0,2π【答案】A 【解析】【分析】利用诱导公式化简()f x ,再结合cos x 的图象性质可得结果.【详解】()π2sin 2cos 2f x x x ⎛⎫=+= ⎪⎝⎭,由cos x 的图象可知()f x 在[]π,0-,[]π,2π上单调递增,[]0,π上单调递减,故A 正确,BCD 均错误.故选:A.17.已知,a b c d >>,则下面不等式一定成立的是()A.a d b c +>+B.a d b c +<+C.a d b c ->-D.a d b c-<-【答案】C 【解析】【分析】由不等式的性质及特例逐项判断即可.【详解】对于ABD:取4,3,2,1a b c d ====,满足,a b c d >>,显然a d b c +>+和a d b c +<+,a dbc -<-都不成立;对于C :由c d >可得d c ->-,故a d b c ->-成立.故选:C18.2023年杭州亚运会的三个吉祥物分别是“琮琮”“莲莲”“宸宸”.“琮琮”代表世界遗产良渚古城遗址;“莲莲”代表世界遗产杭州西湖;“宸宸”代表世界遗产京杭大运河.某中学学生会宣传部有4名学生,其中高一、高二年级各2名.从这4名学生中随机抽取2名负责吉祥物的宣传工作,则这2名学生来自不同年级的概率为()A.19 B.29C.13D.23【答案】D 【解析】【分析】算出基本事件的总数、随机事件中的基本事件的个数后可求概率.【详解】设A 为“2名学生来自不同年级”,则总的基本事件的个数为24C 6=,A 中基本事件的个数为224⨯=,故()4263P A ==,故选:D.19.在区间[],5a 上,()2x f x =的最大值是其最小值的4倍,则实数a =()A.1 B.2 C.3D.4【答案】C 【解析】【分析】根据条件,利用()2xf x =的单调性,得到3242a =⨯,即可求解.【详解】()2xf x =区间[],5a 上单调递增,又()2af a =,()55232f ==,所以3242a =⨯,即3282a ==,解得3a =,故选:C.20.小明同学在通用技术课上,制作了一个半正多面体模型.他先将正方体交于同一顶点的三条棱的中点分别记为,,A B C ,如图1所示,然后截去以ABC V 为底面的正三棱锥,截后几何体如图2所示,按照这种方法共截去八个正三棱锥后得到如图3所示的半正多面体模型.若原正方体的棱长为6,则此半正多面体模型的体积为()A.108B.162C.180D.189【答案】C 【解析】【分析】正方体的体积减掉8个以ABC V 为底面的正三棱锥的体积即得此半正多面体模型的体积.【详解】设此半正多面体模型的体积为V ,则3311868318032V V V =-=-⨯⨯⨯=正方体正三棱锥.故选:C.第二部分(非选择题共40分)二、填空题:共4小题,每小题3分,共12分.21.66log 4log 9+=_________.【答案】2【解析】【分析】由同底数的对数计算公式化简,即可得出结果.【详解】66662log 4log log 949log 36⨯+===.故答案为:2.22.已知()22,0,2,0,x x f x x x +<⎧=⎨-+≥⎩则()1f -=_________;()f x 的最大值为_________.【答案】①.1②.2【解析】【分析】第一空直接代入即可,第二空分别计算两段的最大值,比较即可求解.【详解】由解析式可知:()11f -=,当0x <,易知()2f x <,当0x ≥,()222f x x =-+≤,当0x =时,取最大值2,所以()f x 的最大值为2,故答案为:1,223.已知向量,a b在正方形网格中的位置如图所示.若网格中每个小正方形的边长均为1,则a =_________;⋅=a b _________.【答案】①.2②.2-【解析】【分析】向量的模长即向量起点至终点的距离,由图可知结果;向量的数量积等于向量的模乘以另一个向量在这个向量上的投影,由图可知结果.【详解】由图可知2a =,cos ,a b a b a b ⋅=⋅ ,其中cos ,b a b 为b 在a上的投影,由图可知投影长度为1,且方向与a相反,故()cos ,212a b a b a b ⋅=⋅=⨯-=-.故答案为:2;2-.24.某公司,,A B C 三个部门共有100名员工,为调查他们的体育锻炼情况,通过随机抽样获得了20名员工一周的锻炼时间,数据如下表(单位:小时):A 部门 4.5567.59111213B 部门 3.54 5.579.510.511C 部门566.578.5从,,A B C 三个部门抽出的员工中,各随机抽取一人,分别记为甲、乙、丙、假设所有员工的锻炼时间相互独立,给出下列三个结论:①甲该周的锻炼时间超过8小时的概率为12;②甲、乙该周的锻炼时间一样长的概率为156;③乙该周的锻炼时间一定比丙该周的锻炼时间长.其中所有正确结论的序号是_________.【答案】①②【解析】【分析】本意通过古典概型即可判断出①②,B 部门员工运动时间存在比C 部门员工运动时间多的,也存在少的,所以无法的结论③,从而得出答案.【详解】①A 部门共有8名员工,运动时间超过8小时的有4名员工,∴由古典概型可得甲该周的锻炼时间超过8小时的概率为12,故①正确;②A 、B 两部门各有员工8和7名,随机各抽取一名员工共有8756⨯=种情况,其中运动时间相同的情况只有1种,∴甲、乙该周的锻炼时间一样长的概率为156,故②正确;③当抽取出来的乙运动时间为4小时,抽取出来的丙运动时间为7小时,此时不满足乙该周的锻炼时间一定比丙该周的锻炼时间长,故③不正确.故答案为:①②三、解答题:共4小题,共28分.解答应写出文字说明,演算步聚或证明过程.25.已知函数()22f x x x b =-+的部分图象如图所示.(1)求()1f 的值;(2)求函数()()3g x f x =-的零点.【答案】(1)()11f =-(2)1-,3【解析】【分析】(1)根据图象可知()00f =,即可求解函数解析式,再代入求值;(2)根据零点的定义,解方程,即可求解.【小问1详解】因为()()22,00f x x x b f =-+=,所以0b =.所以()22f x x x =-.所以()11f =-.【小问2详解】因为()22f x x x =-,所以()()()()232331g x f x x x x x =-=--=-+.令()0g x =,得121,3x x =-=.所以()g x 的零点为1-,3.26.已知电流i (单位:A )关于时间t (单位:s )的函数解析式为π5sin(100π),[0,)3i t t =+∈+∞.(1)当2t =时,求电流i ;(2)当t m =时,电流i 取得最大值,写出m 的一个值.【答案】(1)A 2;(2)1600(答案不唯一,1,N 60050k m k =+∈).【解析】【分析】(1)把2t =代入,结合诱导公式及特殊角的三角函数值计算即得.(2)利用正弦函数的性质求出m 的表达式即可得解.【小问1详解】函数π5sin(100π[0,)3i t t =+∈+∞,当2t =时,ππ5sin(200π)5sin A 332i =+==.【小问2详解】当t m =时,电流i 取得最大值,则ππ100π2π,N 32m k k +=+∈,解得1,N 60050k m k =+∈,所以m 的一个值为1600.27.如图,在三棱锥P ABC -中,,,,AC BC AB PA D E =⊥分别是,AB PB 的中点.(1)求证://PA 平面CDE ;(2)求证:AB CE ^.请先写出第(1)问的解答过程,然后阅读下面第(2)问的解答过程.证明:(2)因为,AC BC D =是AB 的中点,所以①_________.因为AB PA ⊥,由(1)知,//PA DE ,所以②_________所以③_________.所以AB CE ^.在第(2)问的解答过程中,设置了①~③三个空格,如下的表格中为每个空格给出了两个选项,其中只有一个符合逻辑推理.请选出符合逻辑推理的选项,并填写在横线上(只需填写“A”或“B”).空格序号选项①(A )AB CD ⊥(B )AB CD =②(A )AB DE ⊥(B )//PA 平面CDE ③(A )AB ⊥平面PBC (B )AB ⊥平面CDE【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)由中位线得到线线平行,然后得到线面平行,即得证;(2)等腰三角形三线合一得到线线垂直,由(1)的结论和条件得到另一组垂线,从的证明面面垂直.【小问1详解】在PAB 中,因为D ,E 分别是AB ,PB 的中点,所以//PA DE ,因为PA ⊄平面CDE ,DE ⊂平面CDE ,所以//PA 平面CDE .【小问2详解】①A ,②A ,③B.28.已知()f x 是定义在R 上的函数.如果对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-,则称()f x 缓慢递增.如果对任意的12,x x ,当12x x ≠时,都有()()212110f x f x x x --<<-,则称()f x 缓慢递减.(1)已知函数()f x kx b =+缓慢递增,写出一组,k b 的值;(2)若()f x 缓慢递增且()12f =,直接写出()2024f 的取值范围;(3)设()()g x f x x =-,再从条件①、条件②中选择一个作为条件,从结论①、结论②中选择一个作为结论,构成一个真命题,并说明理由.条件①:()f x 缓慢递增;条件②:()f x 单调递增.结论①:()g x 缓慢递减;结论②:()g x 单调递减.【答案】(1)1,02k b ==(2)()2,2025(3)条件①和结论①为真命题,条件①和结论②为真命题,答案见解析【解析】【分析】(1)根据缓慢递增函数定义,代入可求得01,k b <<为任意值,即可求解;(2)根据缓慢递增函数定义,代入可求得()2024f 的取值范围;(3)先确定条件条件①:()f x 缓慢递增;根据缓慢递增函数定义可确定结论①:()g x 缓慢递减,根据条件条件①:()f x 缓慢递增,根据缓慢递增函数定义可确定结论①:()g x 单调递减.若()f x 单调递增不妨设()3f x x =,代入()()212120f x f x x x -=>-,可得两结论都不满足.【小问1详解】已知()f x kx b =+是定义在R 上的缓慢递增,如果对任意的12,x x ,当12x x ≠时,都有()()2121212101f x f x kx b kx b x x x x ---+<=<--,则可得01,k b <<为任意值,所以可得1,02k b ==;【小问2详解】若()f x 缓慢递增且()12f =,根据定义可得()()120241020241f f -<-<,将已知代入化简可得()520242202f <<,所以()2024f 的取值范围为()2,2025【小问3详解】若选择条件①和结论①,构成的真命题为如果()f x 缓慢递增,那么()g x 缓慢递减.理由如下:因为()f x 在R 上缓慢递增,所以对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-.因为()()g x f x x =-,所以()()()()()()212211212121311g x g x f x x f x x f x f x x x x x x x ---+-==----.所以()()212110g x g x x x --<<-.所以()g x 在R 上缓慢递减.若选择条件①和结论②,构成的真命题为如果()f x 缓慢递增,那么()g x 单调递减.理由如下:因为()f x 在R 上缓慢递增,所以对任意的12,x x ,当12x x ≠时,都有()()212101f x f x x x -<<-.因为()()g x f x x =-,所以()()()()()()212211212121211g x g x f x x f x x f x f x x x x x x x ---+-==----.所以()()21210g x g x x x -<-.所以()g x 在R 上单调递减.而条件②:()f x 为单调递增函数,不妨设()3f x x =,则()()2g x f x x x =-=,根据题意代入()()212121212221g x g x x x x x x x --==>--,不满足新的定义,所以()f x 为单调递增函数不能推出()g x 缓慢递减;也不能推出()g x 单调递减.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中学业水平考试数学模拟试卷 一、选择题. 1.已知集合{1,2,3,4}M =,集合{1,3,5}N =,则M N 等于( )
.{2}A .{2,3}B .{1,3}C .{1,2,3,4,5}D
2.如图所示,一个空间几何体的正视图和侧图都是边长为2的
等边三角形,俯视图是一个圆,那么这个几何体的体积..
为( )
3.A π 3.B π 3.C π .3D π 3.在平行四边形ABCD 中,AB AD +等于( )
.A AC .B BD .C DB .D AC
4.已知向量a 、b ,2a =,(3,4)b =,a 与b 夹角等于30︒,则a b ⋅等于( )
.5A 10.
33
B .52
C .53
D 5.为了得到函数1cos 3
y x =,只需要把cos y x =图象上所有的点的( ) .A 横坐标伸长到原来的3倍,纵坐标不变.B 横坐标缩小到原来的13
倍,纵坐标不变 .C 纵坐标伸长到原来的3倍,横坐标不变.D 纵坐标缩小到原来的13倍,横坐标不变 6.已知一个算法,其流程图如右图所示,则输出的结果
( )
.3A .9B
.27C .81D
7.两条直线210x y ++=与210x y -+=的位置关系是( )
.A 平行 .B 垂直 .C 相交且不垂直 .D 重合
8.若AD 为ABC ∆的中线,现有质地均匀的粒子散落在ABC ∆内,则粒子在ABD ∆内的概率等于( )
4.5A 3.4B 1.2C 2.3
D 9.计算sin 240︒的值为( )
3.2A - 1.2
B - 1.2
C 3.2
D 10.在ABC ∆中,A ∠、B ∠、C ∠所对的边长分别是2、
3、4,则cos B ∠的值为( ) 7.8A 11.16B 1.4C 1.4
D - ⒒同时掷两个骰子,则向上的点数之积是3的概率是( ) 1.
36A 1.21B 2.21C 1.18D ⒓已知直线的点斜式方程是23(1)y x -=--,那么此直线的倾斜角为( )
.6A π
.
3B π 2.3C π 5.6D π ⒔函数3()2f x x =-的零点所在的区间是( )
.(2,0)A - .(0,1)B .(1,2)C .(2,3)D
⒕已知实数x 、y 满足04x y x y ⎧⎪⎨⎪+⎩
≥≥0≥4,则z x y =+的最小值等于( )
.0A .1B .4C .5D
⒖已知函数()f x 是奇函数,且在区间[1,2]单调递减,则()f x 在区间[2,1]--上是( )
.A 单调递减函数,且有最小值(2)f - .B 单调递减函数,且有最大值(2)f -
.C 单调递增函数,且有最小值(2)f .D 单调递增函数,且有最大值(2)f ⒗已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( )
.8A .10B .12C .14D
⒘当输入a 的值为2,b 的值为3-时,右边程序运行的结果是
.2A - .1B - .1C .2D
⒙ 若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于2,且与直线
20x y -+=相切,则这个圆的方程可能..
是 22.20A x y x y +--= 22.240B x y x y +++=
22.20C x y +-= 22.10D x y +-=
二、填空题.
⒚ 某校有老师200名,男生1200,女生1000名,现用分层抽样的方法从所有师生中抽取
一个容量为240的样本,则从女生中抽取的人数为 .
⒛如图是某中学高二年级举办的演讲比赛上,七位评委为某选手打出的分数的茎叶统计图,
去掉一个最高分和一个最低分后,所剩数据的中位数为 .
21.计算1
222log 8log +的值是 .
22.已知2
()(1)(1)f x x m x m =++++的图象与x 轴没有..
公共点,则m 的取值范是 . 三、解答题.
23.已知函数2(sin cos )y x x =+
⑴求它的最小正周期和最大值;
⑵求它的递增区间.
24.在正方体1111ABCD A B C D -中
⑴求证:1AC BD ⊥
⑵求异面直线AC 与1BC 所成角的大小.
25.已知函数1()lg 1x f x x
-=+ ⑴求函数()f x 的定义域; ⑵证明()f x 是奇函数.
26. 已知数列{}n a 中,11a =,23a =,1232(3)n n n a a a n --=-≥.
⑴ 求3a 的值;
⑵ 证明:数列1{}(2)n n a a n --≥是等比数列; ⑶ 求数列{}n a 的通项公式.。

相关文档
最新文档