新人教版第章轴对称复习导学案

合集下载

人教版八年级数学下导学案教案 轴对称复习教案教学设计含课后补作业同步练习

人教版八年级数学下导学案教案 轴对称复习教案教学设计含课后补作业同步练习

八年级数学导学案 班级 姓名课题:轴对称复习学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质;2.掌握线段的垂直平分线、角的平分线的性质及应用;3.理解等腰三角形的性质并能够简单应用;理解等边三角形的性质并能够简单应用。

【预习案】1. 以下图形有两条对称轴的是( )A 、正六边形B 、 矩形C 、等腰三角形D 、圆2.如图1,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 为( )3.等腰三角形的两边长分别为3cm ,7cm ,则它的周长为 cm4.如图2,在△ABC 中,DE 是边AC 的垂直平分线,若BC =8,AB =10,则△EBC 的周长为 。

5.将一张长方形纸按如图3的方式折叠,BC,BD 为折痕,则∠CBD 为( ) A 、50° B 、90° C 、 100° D 、110°【探究案】探究一如图,一牧民从A 点出发,到草地出发,到草地MN 去喂马,该牧民在傍晚回到营帐B 之前先带马去小河边PQ 给马饮水(MN 、PQ 均为直线),试问牧民应走怎样的路线,才能使整个路程最短?探究二:如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF .求证:∠BAF =∠ACF .探究三:如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB =DE ,BF =CE ,∠B =∠E ,QR ∥BE .求证:△PQR 是等腰三角形.A D CB 图1 B EC AD 图2 图3 AF E D C P Q RFEDC BA探究四:如图,在Rt△ABC中,AB=AC,∠BAC=90°,D为BC的中点.(1)写出点D到△ABC三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△DMN的形状,并证明你的结论【训练案】1.如图4,A、B、C是三个村庄,现要修建一个自来水厂P,使得自来水厂P到三个村庄的距离相等,请你作出自来水厂的位置。

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。

2、会作轴对称图形的对称轴。

3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。

教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。

教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。

(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。

一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。

教师作总结,肯定学生的积极表现。

归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。

看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。

新人教版八年级数学上册:13.1轴对称 导学案

新人教版八年级数学上册:13.1轴对称 导学案

新人教版八年级数学上册:13.1轴对称 导学案教学目标:1通过观察实物图形 及折纸游戏,得到轴对称图形的概念。

2掌握图形轴对称的性质。

3掌握线段垂直平分线的性质。

重点:上面的两条性质。

难点:性质的应用。

教学过程: 一. 知识频道1观察并填空:请同学们欣赏图片4阅读课本并填空:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线。

轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对 ______所连线段的。

轴对称图形的 ,是任何一对对应点所连 的 。

2这些图形有什么共同特点? 请你利用手中的工具制作一个具有轴对称特征的图形 。

轴对称图形:如果 沿一条直线折叠,直线两旁的部分能够互相 ,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴。

练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗? 请大家仔细观察两个图形是否也有这样的特征呢? 你观察到了什么? 3、试一试:标出图中点A 、B 、C 的对称点A 1、B 1、C 1。

NA B CCB二:方法频道:先自学课本例题,再小组讨论疑难问题。

三:习题频道:1.找出下列图形的所有的对称轴,并一一画出来。

2.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:3.如图,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)4复习巩固:课本124页练习,125页1至8题5拓展延伸:课本9至12题6中考链接:⑴如图,△ABC与△A1B1C1关于直线L对称,将△A1B1C1向右平移得到△A2B2C2。

由此得出下列判断:①AB∥A2B2;②∠A=∠A2;③AB=A2B2;其中正确的是()。

A①② B②③ C①③ D①②③⑵如图,已知直线L及同旁的两点A、B,在直线L取一点C,使AC+BC最小。

••••⑶如图,两条公路交汇于点O,公路旁有两个小镇C、D,现修建一个加油站到两条公路的距离相等,到两个小镇C、D的距离也相等,请你找出符合条件的加油站位置。

八年级第13章《轴对称》导学案资料.doc

八年级第13章《轴对称》导学案资料.doc

新人教版八年级数学上册第13 章《轴对称》导学案施甸一中八年级数学导学案(第 13 章轴对称)新人教版八年级数学上册第13 章《轴对称》导学案13.1.1轴对称及其性质导学案【学习目标】1.知识技能(1)通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两(2)在具体的学习过程中加强的观察能力、思维能力、操作能力、归力的培养。

2.解决问题按要求做出简单的平面图形的轴对称图形,初步体会从对称的对称图案掌握线段的垂直平分线、角的平分线的性质及应用能够简单应用.【学习重难点】1.重点:由具体情境抽象出轴对称与轴对称图形的概念.2.难点:理解轴对称与轴对称图形之间的区别与联系.【知识回顾】一、基础知识填空欣赏下面几张美丽的图片,【探究 1】1. 轴对称图形:如果一个图形沿着一条直线称图形。

折痕所在的这条直线叫做__ 分别在上面图形中画出它们的对称轴。

,两侧的图形能够___。

图形上能够重合的2.轴对称:欣赏下面几幅图片,并完成问题。

新人教版八年级数学上册第13 章《轴对称》导学案2、下列图形中不是轴对称图形的有()A1个B2个C3个D4个3、以下汽车标志中,和其他三个不同的是()A B C D4、哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们 ABCDEFGHIJKLMNOPQRSTUVWXYZ5、观察下列各种图形,判断是不是轴对称图形.新人教版八年级数学上册第13 章《轴对称》导学案13.1.2线段垂直平分线的性质导学案【学习目标】1.知识技能(1)了解两个图形成轴对称性的性质,了解轴对称图(2)探究线段垂直平分线的性质.2.解决问题(1)理解轴对称的性质.(2)会利用线段垂直平分线的定理和逆定理解决相关问【学习重难点】1.重点:( 1)轴对称的性质.( 2)线段垂直平分线的性质.2.难点:体验轴对称的特征【知识回顾】1 、轴对称图形的对称轴是一条_____________ 。

2、写出五个成轴对称的汉字:______3、写出 3 个是轴对称图形的英文字母:________________4、如图,△ABCA′ B′ C′关于直线MN 和△对称,点 A′、 B′、 C′分别是点 A、 B、 C 的对称点,猜想一下线段 AA′、 BB′、 CC′与直线 MN有什么关系?MN垂直平分_____.MN垂直平分___.MN垂直平分_ ____.探究一:如下图.木条是 L 上的点,有什么发现?思考方法L 与 AB 钉在一起, L 垂直平分 AB, P1, P2, P3,?分别量一量点 P1, P2, P3,到 A 与 B 的距离,你1 .用平面图将上述问题进行转化,先作出线段AB,过 AB 中点作上取 P、P、P,连结AP、 AP、BP 、BP、CP、 CP1 2 3 1 2 1 2 1 22 .作好图后,用直尺量出AP1、 AP2、 BP1、 BP2、 CP1、 CP2讨论发现用我们已有的知识来证明这个结论吗?讨论给出证明.新人教版八年级数学上册第13 章《轴对称》导学案操作:1.用平面图形将上述问题进行转化.作线段AB ,取其中点 P ,过连结 AP 、 AP 、 BP 、 BP . 会有以下两种可能.1 2 1 22 .讨论:要使 L 与 AB 垂直, AP 1、 AP 2 、 BP 1 、BP 2 应满足什么条件?【巩固练习】1. 在 AE 的垂直平分线上, AB 、 AC 、 CE 的长度有什么关系?AB+BD 与 DE 有什么关系?2.如下图,AB=AC , MB=MC .直线 AM 是线段 BC 的垂直平分线吗?3、已知: MN AB 的垂直平分线,下列说法中,正确的是(是线段A. 与 AB 距离相等的点在 MN 上B.与点 A 和 B 距离 C MNAB 上 D AB 垂直平分 MN .与 距离相等的点在. 4、如图1 , PA=PB , QA=QB ,则直线 PQ 是线段 AB 的____________证明:因为 PA=PB (已知)所以P点在线段AB的中垂线上( ___________________因为QA=QB(已知)所以 Q 点在线段 AB 的中垂线上( ___________________所以 _____________________________( 两点确定一条直线新人教版八年级数学上册第13 章《轴对称》导学案13.2.1作轴对称图形导学案【学习目标】1.通过具体实例学做轴对称图形,认识轴对称变形,探索它的基本性2.能按要求作出简单平面图形经过一次或两次轴对称后的图形。

第十三章 轴对称 章节复习(导学案)-八年级数学上册同步备课系列(人教版)

第十三章 轴对称 章节复习(导学案)-八年级数学上册同步备课系列(人教版)
【2-3】平面直角坐标系中,△ABC 的三个顶点坐标分别为 A(0,4),B(2,4),C (3,-1). (1)试在平面直角坐标系中,标出 A、B、C 三点; (2)若△ABC 与△A'B'C'关于 x 轴对称,画出△A'B'C',并写出 A'、B'、C'的坐标.
9
考点 3:线段垂直平分线的性质和判定 例 6.如图,在四边形 ABCD 中,AD∥BC,E 为 CD 的中点,连接 AE、BE,BE ⊥AE,延长 AE 交 BC 的延长线于点 F. 求证:(1)FC=AD;(2)AB=BC+AD.
3
性 质 2:_______________________________________________________( 简 写 成
“______________”) 几何符号语言:
几何符号语言:
∵______________________
∵______________________
∴______________________
∴______________________
等腰三角形判定定理: _____________________________________________________________ ( 简 写 成 “_______________”). 几何符号语言: ∵______________________ ∴______________________
如果一个平面图形沿一条直线折叠,直线两旁的部分能够_________,这个 图形就叫做____________,这条直线就是它的________.这时,我们也说这个图 形关于这条直线(成轴)对称.

新人教版第十三章《轴对称》全章导学案复习进程

新人教版第十三章《轴对称》全章导学案复习进程

第十三章轴对称13.1《轴对称(1)》导学案一、学习目标:1.理解轴对称图形及轴对称的定义,认识轴对称与全等的关系,了解轴对称图形与轴对称的联系与区别。

2.通过独立思考、小组合作、展示质疑,发展学生的观察、归纳、想象能力。

3.激情投入,快乐学习,感受对称美。

二、重点难点重点:对轴对称图形与轴对称概念的理解难点:轴对称图形与轴对称的联系与区别三、课时:第1课时四、导学过程:(一)合作探究(同学合作,教师引导)1、在一张半透明的纸上画△ABC,使AB=AC,作BC上的高AD,沿直线AD折叠,直线两旁的部分重合吗?轴对称图形的定义:叫做轴对称图形,这条直线..叫做它的2、在一张半透明的纸上建立一个平面直角坐标系,并描出点A(-1,3)、B(-2,-4)、C (-3,-1)、A1(1,3)、B1(2,-4)、C1(3,-1),画出△ABC和△A1B1C1,沿y轴折叠,这两个三角形重合吗?轴对称的定义:那么就说这两个图形关于这条直线对称,这条直线..叫做,折叠后重合的点是对应点,叫做。

3、第2中的△ABC和△A1B1C1全等吗?把其中的△A1B1C1向下平移一个单位,得到△A2B2C2,△ABC和△A2B2C2全等吗?折一折,△ABC和△A2B2C2成轴对称吗?轴对称与全等的关系:两个图形成轴对称,则它们一定;两个图形全等,成轴对称。

4、你能说说轴对称图形与轴对称的区别和联系吗?区别:联系:(A) (B)(C) (D)(二)、精讲精练例1下列图案中,不是轴对称图形的是( )例2、下面四组图形中,右边与左边成轴对称的是()A. B. C. D.例3、仔细观察下列图案,并按规律在横线上画出合适的图形_________例4、在镜中看到的一串数字是“309087”,则这串数字是。

例5、下列图形中对称轴最多的是 ( )A、圆B、正方形C、等腰三角形D、线段(三)课堂练习1、在实际生活中,轴对称无处不在,请你用给定的图形“○○,△△,————”(两个圆,两个三角形,两条线段)为构件,尽可能多地构思独特且有实际生活意义的成轴对称的一对图形,并写出一两句诙谐、贴切的解说词。

新人教版八年级数学上册导学案(全-有答案)

省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的局部能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合〞是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状一样,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两局部,那么必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜测归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

新人教版八年级数学上册导学案第十三章 轴对称复习导学案

第十三章轴对称复习导学案学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。

2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。

重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用导学过程:欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。

折痕所在的这条直线叫做______。

图形上能够重合的点叫。

分别在上面图形中画出它们的对称轴。

2.轴对称:欣赏下面几幅图片,并完成问题。

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。

两个图形中的对应点叫。

如图,写出一对对称点是。

3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。

可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。

4.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。

5.角的平分线的性质角的平分线的性质上的点到的距离相等。

6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。

等边三角形的各角都是,有条对称轴。

一、独立完成发现问题(自主学习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。

而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。

联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。

如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。

最新人教版第十三章轴对称导学案

13.1.1轴对称班级小组姓名【学习目标】1.理解轴对称图形及轴对称的定义;2.了解轴对称图形与轴对称的联系与区别;3.了解线段垂直平分线的概念,理解轴对称图形和轴对称的性质.【重点难点】对轴对称图形与轴对称概念的理解;轴对称图形与轴对称的联系与区别.预习案【预习导学】预习课本58-60页内容,完成下列问题.1.轴对称图形的定义:.2.轴对称的定义:.3.线段垂直平分线的定义是:.4.轴对称图形和轴对称的性质:探究案探究1:准备一张纸;对折纸;用圆规在纸上扎出如图所示的图案(或者发挥你的想象扎出其它你认为美丽的图案);把纸打开铺平,观察所得的图案,位于折痕两侧的部分有什么关系?练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?图(1)有条对称轴;图(2)有条对称轴;图(3)有条对称轴;图(4)有条对称轴;图(5)有条对称轴.探究2:观察下列图形,有什么共同特点?思考:两图形关于直线a成轴对称,它们全等吗?已知两图形全等,它们成轴对称吗?探究3:参照下图说明轴对称图形与两个图形成轴对称有什么区别与联系?区别:。

联系:。

.(A)(B)(C)(D)(A )(B )(C )(D )探究4:如图,ABC ∆和C B A '''∆关于直线MN 对称, 点A '、B '、C '分别是点A 、B 、C 的对称点, 线段A A '、B B '、C C '与直线MN 有什么关系? 由此你能得到什么结论?训练案1.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )2.下列图案中,不是轴对称图形的是( )3.下列图形中对称轴最多的是 ( )A 、圆B 、正方形C 、等腰三角形D 、线段4.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( )5.下面哪些选项的右边图形与左边图形成轴对称?( )6.下面四组图形中,右边与左边成轴对称的是( )A. B. C. D.7.下列说法不正确的是 ( ) A.两个关于某直线对称的图形一定全等 B. 对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称8.试想想“角的对称轴就是它的角平线”这句话对吗?判断正误,说明理由。

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

轴对称一、新课导入1、轴对称图形是我们经常见到的图形,你能列举出日常生活中见到过的轴对称图形吗?2、对于轴对称图形,你了解了哪些方面的知识?你能画一个轴对称图形吗?二、学习目标1、掌握关于轴对称的概念;2、掌握掌握轴对称的性质,利用轴对称的性质解决问题。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道轴对称的定义;能说出关于某直线轴对称的两个图形的对应点、对应边、对应角。

一边阅读一边完成检测一。

检测练习一、1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的两点叫对应点也叫对称点,重合的两个角叫对应角,重合的两条边叫对应边。

2、如图,把△ABC沿直线MN折叠后,可以与△A′B′C′重合,则△ABC与△A′B′C′关于直线MN轴对称,直线MN是对称轴,点A′、B′、C′分别是点A、B、C 的对称点,线段AB、AC、BC分别是线段A′B′、A′C′、B′C′的对应边,∠A、∠B、∠C分别是∠A′、∠B′、∠C′的对应角。

3、轴对称是两个图形的位置关系,对称轴是一条直线。

4、如下图所示,把左边的五边形沿虚线折叠后可以与右边的五边形重合,这两个五边形关于这条直线轴对称,这条直线是这两个五边形的对称轴,点A的对称点是点B,点C的对称点是点D。

研读二、认真阅读课本要求:理解轴对称与轴对称图形的联系与区别;下图中蝴蝶左边的翅膀与右边的翅膀关于直线轴对称,这个蝴蝶是轴对称图形;6、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于对称轴轴对称。

7、轴对称图形是具有特殊性质的一个图形;轴对称是两个图形的位置关系。

结论:轴对称图形只涉及到一个图形,轴对称涉及到两个图形.检测练习二、8、等腰三角形是轴对称图形,等腰三角形有1条对称轴,等腰三角形的对称轴是底边上的高所在的直线;9、圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版第章轴对称复
习导学案
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-
第十三章《轴对称》的复习
一、【学习目标】
1、回顾本章知识,形成本章知识结构.
2、经历总结本章解题规律,进行跟踪训练.
二、【知识回顾】
(一)基本概念
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做.折叠后重合的点是对应点,叫做.
2.轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线
经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.
4.等腰三角形
有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做.
5.等边三角形
三条边都的三角形叫做等边三角形.
(二)主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点
所连线段的.或者说轴对称图形的对称轴,是任何一对对应点所连线段的.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离.
3.通过画出坐标系上的两点观察得出:
(1)点P(x,y)关于x轴对称的点的坐标为P′(,).
(2)点P(x,y)关于y轴对称的点的坐标为P″(,).
4.等腰三角形的性质
(1)等腰三角形的两个底角(简称“等边对等角”).
(2)等腰三角形的顶角、底边上的、底边上的相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的.
5.等边三角形的性质
(1)等边三角形的三个内角都,并且每一个角都等于0.
(2)等边三角形是轴对称图形,共有条对称轴.
(3)等边三角形每边上的、和该边所对内角的互相重合.
6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.(三)相关判定
1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).
3.三个角都相等的是等边三角形.
4.有一个角是60°的是等边三角形.
三、【课堂学习】
探究点一:等腰三角形边与角计算中的分类讨论思想与方程思想
1、已知等腰三角形的一个内角是800,则它的另外两个内角是
2、已知等腰三角形的周长为24,一边长为6,则另外两边的长是
3、已知等腰三角形的周长为24,一边长为10,则另外两边的长是
4、等腰三角形的周长是16,其中两边之差为2,则它的三边的长分别为
5、等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角度数为
6、一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这
个等腰三角形的底边长是
8、如图,∠DEF=36°,AB=BC=CD=DE=EF ,求∠A 的度数
探究点二:线段垂直平分线性质的运用 9.如图所示,在△ABC 中,AB=AC ,∠A=120°,AB•的垂直平分线MN 分别交BC 、
AB 于点M 、N ,求证:CM=2BM . 10.如图,△ABC 中,∠BAC 的平分线与边BC 的垂直平分线交于点D ,DE ⊥
AB 于
E ,D
F ⊥AC 于F ,试猜想线段AB ,AE ,CF 之间的数量关系,并证明. 探究点三:等腰三角形证明题
11.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列三个条件:①∠EBO=∠DCO ;
②BE=CD ;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.
12.如图所示,锐角三角形ABC 中,∠A=60°,它的两条高BD ,CE 相交于点O ,且OB=OC ,
求证:△ABC 是等边三角形.
探究点四:根据轴对称及线段垂直平分线性质作图
13.如图所示,一牧人带马群从A 点出发,先到草地边
缘MN 放牧,再带马群到河边缘PQ 去给马饮水,问:牧
人应走哪条路线才能使总路程最短?请在图中画出最短
路线;
F E D C
A N M
C B A 13题图 14题图
14.如图,在△ABC 中,AB=AC,AD 平分∠CAB,N 点是AB 上的一定点,M 是AD 上一动点,要使MB+MN 最小,请找点M 的位置.
四、【自我检测】
1、如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中
点,连接DE ,则△CDE 的周长为( )
A .20
B .12
C .14
D .13
2、如图,△ABC 中,AB=AC ,以AB 、AC 为边在△ABC 的外侧作两个等边三角形△ABE 和△ACD,且∠EDC=40°,则∠ABC 的度数为( )
A .75°
B .80°
C .70°
D .85°
3
、如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )
、如图,已知△ABC ,画出△ABC 关于直线的对称图形.点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,
(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ 是直角三角形?
(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC AQ 、CP 交点为M ,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.。

相关文档
最新文档