2014-2015学年人教版八上第十三章轴对称复习导学案

合集下载

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。

2、会作轴对称图形的对称轴。

3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。

教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。

教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。

(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。

一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。

教师作总结,肯定学生的积极表现。

归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。

看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。

【整合】数学人教版八年级上册第13章轴对称复习导学案

【整合】数学人教版八年级上册第13章轴对称复习导学案

第13章轴对称复习导学案学习目标:1、加深认识本单元基础知识,并整理归纳出知识框架便于整体把握;2、能熟练运用轴对称图形或成轴对称的图形的性质、等腰三角形的性质和判定、等边三角形的性质和判定解决相关的问题;3、及时发现存在的问题,查漏补缺,体验学习的成败。

重点:轴对称图形或成轴对称的图形的性质、等腰三角形的性质和判定、等边三角形的性质和判定;难点:运用基础知识解决相关问题。

【课前预习】:一、分析本章的知识结构,完成下面的问题:等腰三角形的性质等腰三角形的判定轴对称二、1. 欣赏下面几幅图片,并完成问题。

如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。

折痕所在的这条直线叫做。

图形上能够重合的点叫。

分别在上面图形中画出它们的对称轴。

2. 欣赏下面几幅图片,并完成问题。

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。

两个图形中的对应点叫。

如图,写出一对对称点是。

3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN,图中相等的线段有:,相等的角有:。

可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。

4.欣赏下面的图片,完成对镜面对称的回顾。

一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?在照镜子时,镜子外的物体和镜子内的成像不变,发生相反变化。

5.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。

6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。

等边三角形的各条边都,各角都是,有条对称轴。

【课堂学习】:【合作探究·释疑】:一、动手做一做,小组合作解决以下问题:1.哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称性。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z2.如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形3.画出△ABC关于直线l的轴对称图形△A`B`C`4.数的运算中会有一些有趣的对称形式,如12×231=132×21,仿照这一形式,写出下列等式,并演算:12×462=,18×891=。

人教版八年级上册 第十三章 131 轴对称 导学案

人教版八年级上册 第十三章 131 轴对称 导学案

《轴对称》学案2一、课前预习新知(一)预习目标:通过观察生活与初步自学课本,感知轴对称概念及线段垂直平分线的意义,知道线段垂直平分线的概念.(二)预习内容:1.什么叫轴对称图形?2.线段的垂直平分线的概念是什么?3.生活中有哪些轴对称的实例?请举出。

〖答案〗1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.2.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

3.比如:窗户、蝴蝶、篮球等二、课内探究新知(一)学习目标1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.3.理解线段的垂直平分线的概念;理解成轴对称的两个图形全等.4.探索轴对称的基本性质;线段垂直平分线的性质.5.经历探究轴对称图形的对称轴的作法的过程,体会利用操作、归纳获得数学结论的过程.6.掌握轴对称图形对称轴的作法.7.在探索的过程中,培养学生分析、归纳的能力.学习重点:轴对称图形与轴对称的概念、探索轴对称的性质,线段垂直平分线的概念和性质、作出轴对称图形的对称轴;学习难点:理解轴对称与轴对称图形之间的区别与联系、探索并总结出线段垂直平分线的性质,能运用其性质解答简单的几何问题和探索轴对称图形对称轴的作法.(二)学习过程核对预习学案中的答案,并收集自学中疑问及困惑,掌握学生的学习情况。

课堂探究1(分组讨论,合作探究)观察下列图形,并思考回答问题(1)把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?(2)日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?(3)下列每对图形有什么不同?思考讨论:(1)轴对称图形的定义是什么?(轴对称图形轴对称区别联系〖答案〗(1)如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称;表格:轴对称图形——一个图形;轴对称——两个图形的关系;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形;课堂探究2(分组讨论,合作探究)观察图形,思考下列问题如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C 的对称点,1.△ABC和△A′B′C′全等吗?它们的面积有何关系?2.线段AA′,BB′,CC′与直线MN有什么关系?思考讨论:(1)线段垂直平分线的定义是什么?(2)轴对称图形的对称轴与线段的垂直平分线有何关系?〖答案〗它们全等,面积相等;三条线段被直线MN垂直平分;(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;课堂探究3(分组讨论,合作探究)思考下列问题(1)你会证明线段垂直平分线的性质吗?(2)你会画一个图形的对称轴吗?(上课老师会认真解答)感悟与收获本节课学了哪些知识?有什么体会?(三)当堂检测1.在26个英文字母中,请你说出几个成轴对称图形的字母,并且指出有几条对称轴2.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是右图中的()3.下列说法中,正确的有()(1)两个关于某直线对称的图形是全等形;(2)两个图形关于某直线对称,对称点一定在直线两旁;(3)两个对称图形对应点连线的垂直平分线就是它们的对称轴;(4)平面上两个完全相同的图形一定关于某直线对称。

人教版八年级数学上册《第十三章 轴对称》导学案

人教版八年级数学上册《第十三章 轴对称》导学案
针对训练 1.如图,△ABC 中,AC 的垂直平分线交 AB 于点 D,∠A=50°,则∠BDC=( )
6.当堂检测
7
(见幻灯片
24-28)
教学备注 配套 PPT 讲授
4.课堂小结
第 1 题图
第 2 题图
2.如图,△ABC 中,AB=AC=18cm,BC=10cm,AB 的垂直平分线 ED 交 AC 于 D 点,
探究点 2:轴对称的性质
1.填一填:如图,四边形 ABCD 与四边形 EFGH 关于 MN
对称.,A、B、C、D 的对称点分别是

线段 AD、AB 的对应线段分别是

CD=
, ∠CBA= ,∠ADC=

2.量一量:连接 BF、AE 交 MN 于点 P、Q,BP____FP,
AQ____EQ(填“>”“<”或“=”),∠BPM=_____°,
则△BCD 的周长为_________.
3.如图,在△ABC 中,∠ACB=90゜,BE 平分∠ABC,交 AC 于
E,DE 垂直平分 AB,交 AB 于 D,求证:BE+DE=AC.
探究点 2:线段垂直平分线的判定
1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射
出去.
A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM
第 1 题图
第 2 题图
第 3 题图
2.如图,△ABC 与△ADC 关于直线 AC 对称,∠BCA=35°,∠B=80°,则∠DAC 的度数
为A.(55° )
B.65°
C.75°
D.85°
3.如图,AD 是三角形 ABC 的对称轴,点 E、F 是 AD 上的两点,若 BD=2,AD=3,则图

新人教版八年级数学上册第十三章《轴对称》导学案

新人教版八年级数学上册第十三章《轴对称》导学案

第十三章轴对称13.1.1 轴对称学习目标1、初步认识轴对称图形;判掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。

3、能够判别两个图形是否成轴对称。

通过试验,归纳出轴对称图形概念,能用概念;培养良好的动手试验能力、归纳能力和语言表述能力。

重点:理解轴对称图形的概念;轴对称图形的对应线段相等、对应角相等难点:判断图形是否是轴对称图形;两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、预习新知P581、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.5、观察课本P59图13.1-3中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?6、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.7、在课本中的图13.1-3的第三个图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?8、成轴对称的两个图形全等吗?为什么?9、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)10、课本P60练习题做下面的题,检验你预习的结果1、轴对称图形的对称轴是一条___________(A ) (B ) (C )(D )(A ) (B ) (C ) (D ) A 直线 B 射线 C 线段1、 右面的图形是轴对称图形吗?如果是,指出对称轴。

人教版八年级上册数学 13.1.1轴对称《轴对称》优秀导学案

人教版八年级上册数学   13.1.1轴对称《轴对称》优秀导学案
《轴对称》导学案
学 习
目标
1.在生活实例 中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
3 .掌握轴对称图形和关于直线成轴对称这两个概念
重难点
分析
1.准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
2.轴对称图形和关于直线成轴对称的区别和联系。




阅读课本,完成下面填空题
1、如果图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做。这条直线就是它的 。
2、把图形沿一条直线折叠,如果它 能够与另一个图形重合,那么 就说这0图形关于 。
学法指导




探究一:下面的图形是轴对称图形吗?如果是,画出它们的对称轴
探究二:下面给出的两个图形是轴对称的吗?如果是找出它们的对称轴,并找出一对对称点.
赏识重 点形关于一条直线对称
轴对称 图形
区别
(1)对个图形而言
(2)指图形的相互关系
(1)对个图 形而言
(2)指 图 形的特殊形状
联系
(1)沿某条直线对折后都能够重合
(2)把关于一条直线对称的两个图形看做一个整 体,也就是一个图形;
反过来一个轴对称图形也可以分为关于对称的两个图形。
探究三:




1、找出下列图形的对称轴
知识整理
反思提升

八年级第13章《轴对称》导学案资料

八年级第13章《轴对称》导学案资料

(1)线段 ( 2)角 (3)等腰三角形 ( 4)直角三角形( 5)等腰梯形 (6)平行四
边形
A.1
B.2
C.3
D.4
-2-
新人教版八年级数学上册第 13章《轴对称》导学案
13.1.2 线段垂直平分线的性质导学案
【学习目标】 1.知识技能 ( 1)了解两个图形成轴对称性的性质,了解轴对称图形的性质. ( 2)探究线段垂直平分线的性质. 2.解决问题 ( 1)理解轴对称的性质. ( 2)会利用线段垂直平分线的定理和逆定理解决相关问题。
【知识回顾】 1.画出点 A 关于 l 的对称点 A’ : 2.画简单平面图形的对称图形: ( 1) 如何画线段 AB关于直线 l 的对称线段 A’B’? 3.如图,已知△ ABC和直线 l ,作出与△ ABC 关于直线 l 对称的图形
A.
A
A
B
B
C
【探究】
动手画图 1
( 1) . 取一张长方形纸;(2). 将纸对折,中间夹上复写纸;
【巩固练习】 1.探究:要在燃气管道 L 上修建一个泵站,分别向 A, B 两镇供气,泵站修在管道的什么地方, 可使所用的 输气管线最短?
2.把下列图形补成关于 L 对称的图形。
3.如图, A 为马厩, B 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧草, 再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。
【知识回顾】
一、基础知识填空
欣赏下面几张美丽的图片,
【探究 1】
1. 轴对称图形:
如果一个图形沿着一条直线
,两侧的图形能够
,这个图形就是轴对
称图形。折痕所在的这条直线叫做 __ ___ 。图形上能够重合的点叫

第13章《轴对称》总复习-导学案(人教版)

第13章《轴对称》总复习-导学案(人教版)

第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称复习导学案
课型:学习复习课编写:李经龙审核:初二数学备课组
班级组别姓名
一、复习目标
1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。

2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。

3、理解线段的垂直平分线的概念并掌握其性质;理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。

二、自主复习,盘点知识
(一)基本概念
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做。

折叠后重合的点是对应点,叫做。

2.轴对称:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做。

(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。

3.线段的垂直平分线
经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。

4.等腰三角形
有的三角形,叫做等腰三角形。

相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做。

5.等边三角形
三条边都的三角形叫做等边三角形。

(二)主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。

或者说轴对称图形的对称轴,是任何一对对应点所连线段的。

2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离。

3.通过画出坐标系上的两点观察得出:
(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。

(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。

4.等腰三角形的性质
(1)等腰三角形的两个底角(简称“等边对等角”)。

(2)等腰三角形的顶角、底边上的、底边上的相互重合。

(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的。

(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。

5.等边三角形的性质
(1)等边三角形的三个内角都,并且每一个角都等于。

(2)等边三角形是轴对称图形,共有条对称轴。

(3)等边三角形每边上的、和该边所对内角的互相重合。

6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的。

(三)有关判定
1.与一条线段两个端点距离 的点,在这条线段的垂直平分线上。

2.如果一个三角形有两个角 ,那么这两个角所对的边也 (简写成“等角对等边”)。

3.三个角都相等的 是等边三角形。

4.有一个角是60°的 是等边三角形。

三、基础训练
1.下列各时刻是轴对称图形的为( ).
A 、
B 、
C 、
D 、
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).
A 、21:10
B 、10:21
C 、10:51
D 、12:01
3.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ).
A 、8 m
B 、4 m
C 、2 m
D 、6 m
4.等腰三角形是轴对称图形,其对称轴是_______________________________.
5.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.
6.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .
7.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积是 ___ cm 2.
8、(1)请画出ABC △关于y 轴对称的A B C '''△
(其中A B C ''',,分别是A B C ,,的对应点,不写画法);
(2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.
(3)求△ABC 的面积是多少?
轴对称专题训练
课型:学习复习课 编写:李经龙 审核:初二数学备课组
班级 组别 姓名 专题一:根据轴对称及线段垂直平分线性质的作图题
1、如图所示,EFGH 是一矩形的弹子球台面,有黑、白两球分别位于A 、B 两点的位置上,试问:怎样撞击白球,使白球先撞击边EF•反弹后再击中黑球?
2、如图,一牧民从A 点出发,到草地出发,到草地MN 去喂马,该牧民在傍晚回到营帐B 之前先带马去小河边
PQ 给马饮水(MN 、PQ 均为直线),试问牧民应走怎样的路线,才能使整个路程最短?(简要说明作图步骤,并在图上画出)
专题二:线段垂直平分线性质的运用
1.如图所示,在△ABC 中,AB=AC ,∠A=120°,AB•的垂直平分线MN•分别交BC 、AB 于点M 、N ,求证:CM=2BM .
2.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF .求证:∠BAF=∠ACF .
B A
E
D C
N M C B A
专题三:等腰三角形边与角计算中的分类讨论思想与方程思想
1、已知等腰三角形的一个内角是800,则它的另外两个内角是
2、已知等腰三角形的一个内角是1000,则它的另外两个内角是
3、已知等腰三角形有两边的长分别为6,3,则这个等腰三角形的周长是
4、已知等腰三角形的周长为24,一边长为6,则另外两边的长是
5、已知等腰三角形的周长为24,一边长为10,则另外两边的长是
6、等腰三角形的周长是16,其中两边之差为2,则它的三边的长分别为
7、等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角度数为
8、一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是
9、如图, ∠DEF =36°,AB=BC=CD=DE=EF ,求∠A
专题四.关于等腰三角形证明题
1、如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.
2、如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.
(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)
(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论
F E D C
A P
Q R F E D C B A N
M D
C B A。

相关文档
最新文档