人教版八年级数学上册第十三章 轴对称知识要点复习及考点专题练习
八年级数学上册第十三章轴对称考点专题训练(带答案)

八年级数学上册第十三章轴对称考点专题训练单选题1、如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1= 140°,则∠2的度数是()A.80°B.100°C.120°D.140°答案:B分析:根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.解:∵△ABC是等边三角形,∴∠A=60°,∵∠1=140°,∴∠AEF=∠1-∠A=80°,∴∠BEF=180°-∠AEF=100°,∵m∥n,∴∠2=∠BEF=100°.故选:B小提示:本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.2、山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A.B.C.D.答案:D分析:根据轴对称图形的概念,对各选项分析判断即可得解;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.小提示:本题考查了轴对称图形,正确掌握相关定义是解题关键.3、下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形答案:B分析:分别求出各个图形的对称轴的条数,再进行比较即可.解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.小提示:此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.4、如图,在△ABC中,分别以点B和点C为圆心,大于1BC长为半径画弧,两弧相交于点M,N.作直线MN,2交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.18答案:C分析:由垂直平分线的性质可得BD=CD,由△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC得到答案.解:由作图的过程可知,DE是BC的垂直平分线,∴BD=CD,∵AB=7,AC=12,∴△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC=19.故选:C小提示:此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.5、下列说法正确的是()A.已知点M(2,﹣5),则点M到x轴的距离是2B.若点A(a﹣1,0)在x轴上,则a=0C.点A(﹣1,2)关于x轴对称的点坐标为(﹣1,﹣2)D.点C(﹣3,2)在第一象限内答案:C分析:分别根据坐标系中点的坐标到坐标轴的距离;在x轴上的点的纵坐标为零;关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;各个象限上的点的坐标符号逐一判断即可.解:A.已知点M(2,-5),则点M到x轴的距离是|-5|=5,故本选项不合题意;B.若点A(a-1,0)在x轴上,则a可以是全体实数,故本选项不合题意;C.点A(-1,2)关于x轴对称的点坐标为(-1,-2),故本选项符合题意;D.C(-3,2)在第二象限内,故本选项不合题意;故选:C.小提示:本题考查了关于x轴对称的点的坐标以及点的坐标,掌握平面直角坐标系中的点的坐标特点是解答本题的关键.6、如图所示,有三条道路围成RtΔABC,其中BC=1000m,一个人从B处出发沿着BC行走了700m,到达D 处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.700m C.300m D.1700m答案:C分析:据角平分线上一点到角两边的距离相等,知此人此时到AB的最短距离即D到AB的距离,而D到AB的距离等于CD,而CD=BC-BD即得答案.解:如下图,过D作DE⊥AB于E,则此时此人到AB的最短距离即是DE的长.∵AD平分∠CAB,AC⊥BC∴DE=CD=BC-BD=1000-700=300(米).故选:C.小提示:本题考查角平分线性质定理和“垂线段最短”.其关键是运用角平分线上一点到角两边的距离相等得出CD等于D到AB的距离.7、图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点答案:B分析:根据光反射定律可知,反射光线、入射光线分居法线两侧,反射角等于入射角并且关于法线对称,由此推断出结果.连接EF,延长入射光线交EF于一点N,过点N作EF的垂线NM,如图所示:由图可得MN是法线,∠PNM为入射角因为入射角等于反射角,且关于MN对称由此可得反射角为∠MNB所以光线自点P射入,经镜面EF反射后经过的点是B故选:B.小提示:本题考查了轴对称中光线反射的问题,根据反射角等于入射角,在图中找出反射角是解题的关键.8、如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B的度数为()A.57°B.60°C.63°D.70°答案:C分析:根据折叠的性质可知:∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,根据三角形外角性质可得:∠DBA=∠BDC﹣∠A=82°﹣40°=42°,进一步可求出∠ABE=∠A'BE=21°,∠ABC=3×21°=63°,即原三角形的∠B=63°.解:由折叠性质可得,∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC,∵∠BDC是△BDA的外角,∴∠DBA=∠BDC﹣∠A=82°﹣40°=42°,∴∠ABE=∠A'BE=21°,∴∠ABC=3×21°=63°,即原三角形的∠B=63°,故选:C.小提示:此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现∠BDG=∠BDC=82°,∠ABE=∠A'BE=∠A'BG=∠A'BC是解答此题的关键.9、下列体现中国传统文化的图片中,是轴对称图形的是()A.B.C.D.答案:B分析:根据轴对称图形的定义分析即可求解,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.解:A.不是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项符合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意.故选:B.小提示:本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.10、如图,在平面直角坐标系中,线段AC所在直线的解析式为y=−x+4,E是AB的中点,P是AC上一动点,则PB+PE的最小值是( )A.4√2B.2√2C.2√5D.√5答案:C分析:作点B关于AC的对称点B′,连接B′E,与AC的交点,即符和条件的P点,再求出B′,E的坐标,根据勾股定理求出B′E的值,即为P′B+P′E的最小值.作点B关于AC的对称点B′,连接B′E交AC于P′,此时,PB+PE=P′B+P′E的值最小,最小值为B′E的长,∵线段AC所在直线的解析式为y=−x+4,∴A(0,4),C(4,0),∴AB=4,BC=4,∵E是AB的中点,∴E(0,2),∵B′是点B关于AC的对称点,∴BB′⊥AC,OB=OB′=1AC,AO=CO,2∴四边形ABCB′是正方形,∴B′(4,4),∴PB+PE的最小值是B′E=√42+(4−2)2=2√5.故选:C.小提示:本题考查一次函数求点的坐标和性质,轴对称−最短路径问题,勾股定理,掌握轴对称−最短路径的确定方法是解题的关键.填空题11、如图,AB=AC,AD=AE,∠BAD=20°,则∠CDE度数是_______度.答案:10分析:根据三角形外角定理得出∠EDC+∠C=∠AED,进而求出∠C+∠EDC=∠ADE,再利用∠B+∠BAD=∠ADC,进而利用已知求出即可.解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠EDC+∠C=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+20°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=20°,∴∠EDC=10°.所以答案是:10.小提示:本题主要考查了三角形外角定理以及角之间等量代换,利用外角定理得出∠C+∠EDC=∠ADE是解决问题的关键.12、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.答案:(0,34),(0,−34)或(0,12)分析:设AE=m ,根据勾股定理求出m 的值,得到点E (1,54),设点P 坐标为(0,y ),根据勾股定理列出方程,即可得到答案.∵对角线 AC 的垂直平分线交AB 于点E ,∴AE=CE ,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m ,则BE=2-m ,CE=m ,∴在Rt∆BCE 中,BE 2+ BC 2=CE 2,即:(2-m )2+12=m 2, 解得:m=54,∴E (1,54), 设点P 坐标为(0,y ),∵△AEP 是以为 AE 为腰的等腰三角形,当AP=AE ,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=±34,当EP=AE ,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12, ∴点 P 的坐标为(0,34),(0,−34),(0,12),故答案是:(0,34),(0,−34),(0,12). 小提示:本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.13、把一张长方形纸条ABCD 沿EF 折叠成图①,再沿HF 折叠成图②,若∠DEF =β(0°<β<90°),用β表示∠C ''FE ,则∠C ''FE =_______.答案:180°−3β分析:先利用平行线的性质得到∠EFH =∠DEF =β,∠EFC =180°−β,再根据折叠的性质得到∠EFC′=180°−β,所以∠HFC′=180°−2β,接着再利用折叠的性质得到∠C′′FH =∠C′FH =180°−2β,然后计算∠C ″FH −∠EFH 即可.∵四边形ABCD 为长方形,∴AD//BC ,∴∠EFH =∠DEF =β,∠EFC =180°−β,∵方形纸条ABCD 沿EF 折叠成图①,∴∠EFC′=∠EFC =180°−β,∴∠HFC′=∠EFC′−∠EFH =180°−β−β=180°−2β,∵长方形ABCD 沿HF 折叠成图②,∴∠C′′FH =∠C′FH =180°−2β,∴∠C ″FE =∠C ″FH −∠EFH =180°−2β−β=180°−3β.所以答案是:180°−3β. 小提示:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14、如图,Rt△ABC中,∠C=90°,AC=3,BC=4,EF垂直平分AB,点P为直线EF上一动点,则△APC周长的最小值为_____.答案:7分析:△APC周长=AC+AP+CP,因为AC=3,所以求出AP+CP的最小值即可求出△APC周长的最小值,根据题意知点A关于直线EF的对称点为点B,故当点P与点E重合时,AP+CP的值最小,即可得到结论.∵直线EF垂直平分AB,∴A,B关于直线EF对称,设直线EF交BC于E,∴当P和E重合时,AP+CP的值最小,最小值等于BC的长,∴△APC周长的最小值=AC+AP+CP=3+4=7,所以答案是:7.小提示:本题考查了轴对称-最短路线问题的应用、垂直平分线的性质、三角形周长,解答本题的关键是准确找出P的位置.15、小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.答案:∠A=60°(答案不唯一)分析:利用等边三角形的判定定理即可求解.解:添加∠A=60°,理由如下:∵△ABC为等腰三角形,=60°,∴∠B=∠C=180°−∠A2∴△ABC为等边三角形,所以答案是:∠A=60°(答案不唯一).小提示:本题考查了等边三角形的判断,解题的关键是掌握三角形的判断定理.解答题16、如图,已知在等腰直角三角形△DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,延长BF交AC于E.(1)求证:△FBD≌△ACD;(2)求证:△ABC是等腰三角形;BF.(3)求证:CE=12答案:(1)见解析(2)见解析(3)见解析分析:(1)根据等腰直角三角形的直角边相等可得BD=CD,再利用“边角边”证明△FBD和△ACD全等即可;(2)根据全等三角形对应角相等可得∠DBF=∠DCA,再根据∠DCA+∠A=90°推出∠DBF+∠A=90°,然后求出∠AEB=90°,再利用“角边角”证明△ABE和△CBE全等,根据全等三角形对应边相等可得AB=CB,从而得证;BF.(3)根据全等三角形对应边相等可得BF=AC,AE=CE,然后求出CE=12(1)在等腰Rt △DBC 中,BD =CD ,∵∠BDC =90°,∴∠BDC =∠ADC =90°,∵在△FBD 和△ACD 中,{DA =DF∠BDC =∠ADC BD =CD,∴△FBD ≌△ACD (SAS );(2)∵△FBD ≌△ACD ,∴∠DBF =∠DCA ,∵∠ADC =90°,∴∠DCA +∠A =90°,∴∠DBF +∠A =90°,∴∠AEB =180°-(∠DBF +∠A )=90°,∵BF 平分∠DBC ,∴∠ABF =∠CBF ,∵在△ABE 和△CBE 中,{∠AEB =∠CEB =90°BE =BE∠ABF =∠CBF, ∴△ABE ≌△CBE (ASA ),∴AB =CB ,∴△ABC 是等腰三角形;(3)∵△FBD ≌△ACD ,∴BF =AC ,∵△ABE ≌△CBE ,∴AE =CE =12AC ,∴CE =12BF .小提示:本题考查了等腰直角三角形的性质,全等三角形的判定与性质,等角对等边的性质,等边对等角的性质,综合题但难度不大,熟记各性质是解题的关键.17、已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.答案:(1)见解析(2)见解析分析:(1)结合题干的∠BAC=∠EDF=60°,推导出两个三角形为等边三角形,再由全等三角形的判定和性质即可求解;(2)由第(1)小问的解题思路和∠BAC=∠EDF、ED=DF这两个条件想到:在FA上截取FM=AE,求证△AED≌△MFD,再由全等的性质可得DA=DM=AB=AC,即可证△ABC≌△DAM,最后由全等的性质得AM=BC即可求解.(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,AB=AF∴∠BCE=∠DCA∵BC=AC、CE=CD∴△BCE≌△ACD(SAS),∴AD=BE,∵AB=AE+BE∴AF=AE+AD;(2)在FA上截取FM=AE,连接DM;AF,DE相交于点G∵∠BAC=∠EDF,∠AGE=∠DGF∴∠AED=∠MFD,∵AE=MF,ED=DF∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,∵AC=DM∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.小提示:本题主要考查三角形全等的判定、全等三角形的性质、等边三角形和等腰三角形的性质等知识点,属于中难档的几何综合题.其中解题的关键是结合题干信息正确的作出辅助线.18、如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH∠BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM交线段A延长线于N点,则S△BDM-S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.答案:(1)1;(2)见解析;(3)不改变,94分析:(1)证△OAP≌△OBC(ASA),即可得出OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,证△COM≌△PON(AAS),得出OM=ON.得出HO平分∠CHA,即可得出结论;(3)连接OD,由等腰直角三角形的性质得出OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,则∠OAD=45°,证出∠DAN=∠MO D.证△ODM≌△ADN(ASA),得S△ODM=S△ADN,进而得出答案.解:(1)∵BO⊥AC,AH⊥BC,∴∠AOP=∠BOC=∠AHC=90°,∴∠OAP+∠C=∠OBC+∠C=90°,∴∠OAP=∠OBC,在△OAP和△OBC中,{∠AOP=∠BOCAO=BO∠OAP=∠OBC,∴△OAP≌△OBC(ASA),∴OP=OC=1;(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图1所示:在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,{∠COM=∠PON∠OMC=∠ONPOC=OP,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=12∠AHC=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于94.理由如下:连接OD,如图2所示:∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD∴∠OAD =45°,∠MOD =90°+45°=135°,∴∠DAN =135°=∠DOM .∵MD ⊥ND ,即∠MDN =90°,∴∠MDO =∠NDA =90°﹣∠MD A .在△ODM 和△ADN 中,{∠MDO =∠NDAOD =AD ∠DOM =∠DAN,∴△ODM ≌△ADN (ASA ),∴S △ODM =S △ADN ,∴S △BDM ﹣S △ADN =S △BDM ﹣S △ODM =S △BOD =12S △AOB=12×12AO •BO =12×12×3×3=94.小提示:本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质以及三角形面积等知识;本题综合性强,证明三角形全等是解题的关键.。
人教版初中八年级数学上册第十三章《轴对称》知识点(含答案解析)(1)

一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A 13B 32C 40D 20解析:A【分析】 根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D 是AC 的中点,ED AC ⊥交AB 于点E ,∴ED 垂直平分AC ,∴AE=CE ,∴∠ECD=∠A ,∵∠A=36°,∴∠ECD=36°,∵AB=AC ,∠A=36°,∴∠B=12(180°-36°)=72°, ∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC ,∴BC=CE ,∵AE=CE ,ED ⊥AC ,∴CD=12AC =3, 在Rt △CED 中, 22222313DE CD ++∴13故选A .【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.2.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③B解析:B【分析】 由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .【点睛】本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.3.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆= D解析:D【分析】 根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =,∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D .【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.4.若a ,b 为等腰ABC 的两边,且满足350a b --=,则ABC 的周长为( )A .11B .13C .11或13D .9或15C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.5.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C 解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 6.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒C解析:C【分析】 根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤D解析:D【分析】 ①由等腰直角三角形的性质可得出结论;②证明△ADE ≌△BCE ,可得∠AEC=∠DEB ,即可求得∠AED=∠BEG ,即可解题; ③证明△AEF ≌△BED 即可;④AE≠DE ,故④不正确;⑤易证△FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①∵AD 为△ABC 的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.8.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 9.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒C解析:C【分析】 根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE , ∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.10.如图,在Rt ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是( )A .125B .95C .85D .75A 解析:A【分析】根据作图过程可得AP 是BD 的垂直平分线,根据勾股定理可得BC 的长,再根据等面积法求出AE 的长即可.【详解】解:∵∠BAC =90°,AB =3,AC =4,∴BC 225AB AC +=,根据作图过程可知:AP 是BD 的垂直平分线,∴BE =DE ,AE ⊥BD ,∴△ABC 的面积:12AB•AC =12BC•AE , ∴5AE =12,∴AE =125.故选:A.【点睛】本题考查垂直平分线和勾股定理,需要有一定的数形结合能力,熟练掌握垂直平分线的定义,结合题意进行解题是解决本题的关键.二、填空题11.如图,点CD在线段AB的同侧,CA=6,AB=14,BD=12,M为AB中点,∠CMD=120°.则CD的最大值为____.25【分析】作点A关于CM的对称点A作点B关于DM的对称点B证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A关于CM的对称点A作点B关于DM的对称点B如下图所示:∴∠1=解析:25【分析】作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.12.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.13.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.【分析】根据是等边三角形得进而得可得以此类推即可求解【详解】解:∵是等边三角形∴∴∴∴同理:…均为等边三角形…则的边长为故答案是:【点睛】本题考查了规律型-图形的变化类解决本题的关键是观察图形的变化解析:20202.【分析】根据30MON ∠=︒,11OA =,112A B A △是等边三角形,得11260∠=︒B A A ,进而得1130∠=︒OB A ,1111AO B A ,可得22OA =,以此类推即可求解.【详解】 解:∵30MON ∠=︒,11OA =,112A B A △是等边三角形,∴11260∠=︒B A A∴1130∠=︒OB A∴1111AO B A∴22OA =同理:223A B A △,334A B A △,…均为等边三角形,2222B A OA ==,233342B A OA…则202120212022A B A △的边长为20202.故答案是:20202.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是观察图形的变化寻找规律. 14.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,, 以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.15.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,∵△ABC 是等边三角形,∴BE=12AB a = ∵等边△ABC 中,BD=CD ,∴AD ⊥BC ,∴AD 是BC 的垂直平分线(三线合一),∴C 和B 关于直线AD 对称,∴CF=BF ,即BF+EF=CF+EF=CE ,∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CEB=90°,在△ADB 和△CEB 中,∵ADB CEB ABD CBE AB CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB ≌△CEB (AAS ),∴CE=AD=b ,即BF+EF=b ,∴BEF 的周长的最小值为BE+CF=a+b ,故答案为:a+b .【点睛】 本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.16.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.1【分析】过A 作AC ⊥OB 首先证明△AOB 是等边三角形再求出OC 的长即可【详解】解过A 作AC ⊥OB 于点C ∵AB=OB ∠A=60°∴∠AOB=60°且△AOB 是等边三角形∵点B 的坐标为(20)∴OB=解析:1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB ∴112122OC OB ==⨯=故答案为:1.【点睛】此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键.17.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为___________.25【分析】分腰长为10和腰长为5两种情况讨论不合题意的舍去据此即可求解【详解】解:当腰长为10时三边分别为10105构成三角形周长为10+10+5=25;当腰长为5时三边分别为5510∵5+5=1解析:25【分析】分腰长为10和腰长为5两种情况讨论,不合题意的舍去,据此即可求解.【详解】解:当腰长为10时,三边分别为10、10、5,构成三角形,周长为10+10+5=25;当腰长为5时,三边分别为5、5、10,∵5+5=10,无法构成三角形,不合题意.故答案为:25【点睛】本题考查了等腰三角形的定义和三角形的三边关系,熟知相关定理是解题关键.=,DE是AB的垂直平分线,垂足为D,交AC于E.若18.如图,ABC中,AB AC=,BCE的周长为17cm,则BC=________cm.11AB cm6【分析】根据垂直平分线的性质可得AE=BE即可得出AC=BE+CE根据△BCE的周长即可得答案【详解】∵DE是AB的垂直平分线∴AE=BE∵AB=ACAC=AE+CEAB=11∴BE+CE=AC=解析:6【分析】根据垂直平分线的性质可得AE=BE,即可得出AC=BE+CE,根据△BCE的周长即可得答案.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AB=AC,AC=AE+CE,AB=11,∴BE+CE=AC=11,∵BCE的周长为17cm,∴BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.19.如图,一棵大树在一次强台风中于距地面5米处倒下,则这棵树在折断前的高度为________米.15【分析】如图在Rt△ABC中∠ABC=30°由此即可得到AB=2AC而根据题意找到CA=5米由此即可求出AB也就可以求出大树在折断前的高度【详解】如图在Rt△ABC中∵∠ABC=30°∴AB=2 解析:15【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就可以求出大树在折断前的高度.【详解】如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故答案为:15.【点睛】本题主要利用定理−−在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.20.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题21.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动.(1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.22.如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.①求EDG ∠的度数(用含α的式子表示);②请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.解析:(1)补图见解析;(2)①90EDG α∠=︒-;②以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) ①根据轴对称的性质解答即可;②根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)①∵ADF α∠=,∴180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,∵DF DE ⊥,∴90EDF ∠=︒,∴1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,②以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,∵D 是AB 的中点,∴AD BD =,∵GD BD =,∴AD GD =,∵90,GDE EDA DE DE α∠=∠=︒-=,∴GDE ADE ≌,∴,EGD EAD AE GE ∠=∠=,∵90EAD B ∠=︒+∠,∴90EGD B ∠=︒+∠,∴9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒, ∴以线段,,GE GF EF 为边的三角形是直角三角形,∴以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.23.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)求FAE ∠的度数.解析:(1)见解析;(2)135FAE ∠=︒.【分析】(1)根据题意和题目中的条件可以找出△ABC ≌△ADE 的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE 的度数.【详解】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°.【点睛】本题考查全等三角形的判定与性质及等腰三角形的性质,解答本题的关键是明确题意,找出全等所需要的条件.24.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.解析:(1)54;(2)见详解 【分析】 (1)先求出∠DCE=30°,根据直角三角形的性质,可得CD=12AD ,DE =12CD ,进而即可求解;(2)连接CG ,先证明∆BFC ≅∆CEA ,从而得BF=CE ,结合等腰直角三角形的性质,得CG=BG ,CG ⊥AB ,进而证明∆GCE ≅∆GBF ,即可得到结论.【详解】(1)∵CE AD ⊥,30CAD ∠=︒,∴∠ACE=90°-30°=60°,∵90ACB ∠=︒,∴∠DCE=30°,∵5AD =,∴CD=12AD=52,DE =12CD=54; (2)连接CG ,∵CE AD ⊥,∴∠ACE+∠CAE=90°,∵90ACB ∠=︒,∴∠ACE+∠BCF=90°,∴∠CAE=∠BCF ,∵BF CE ⊥,∴∠BFC=∠CEA=90°,又∵AC BC =,∴∆BFC ≅∆CEA (AAS ),∴BF=CE ,∵点G 是AB 的中点,∴CG=BG ,CG ⊥AB ,∴∠CGB=∠BFC=90°,∴∠GCE=∠GBF ,∴∆GCE ≅∆GBF ,∴GE GF =.【点睛】本题主要考查全等三角形的判定和性质以及等腰直角三角形的性质,熟练掌握AAS 证明全等三角形以及等腰直角三角形的性质,是解题的关键.25.如图,(1)在网格中画出ABC ∆关于y 轴对称的111A B C ∆;(2)写出ABC ∆关于x 轴对称的222A B C ∆的各顶点坐标;(3)在y 轴上确定一点P ,使PAB ∆周长最短.只需作图,保留作图痕迹. 解析:(1)如图所示,见解析;(2)222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示,见解析.【分析】(1)直接利用关于y 轴对称点的性质得出答案;(2)直接利用关于x 轴对称点的性质得出答案;(3)利用轴对称求最短路线的方法得出P 点位置即可.【详解】解:(1)如图所示:(2)∵A (-3,2),B (4-,3-),C (1-,1),∴关于x 轴对称的点分别为:222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示:【点睛】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键. 26.如图,在ABC 中,AB AC =,D 为AC 的中点,DE AB ⊥于点E ,DF BC ⊥于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =. (1)求证:ABC 是等边三角形;(2)若2CG =,求BC 的长.解析:(1)见解析 (2)4【分析】(1)只要证明Rt △ADE ≌Rt △CDF ,推出∠A=∠C ,推出BA=BC ,又AB=AC ,即可推出AB=BC=AC ;(2)证明BD 是等边三角形的∠ABC 的平分线,得∠DBC =30゜,再利用直角三角形的性质求解即可.【详解】解:(1)证明:∵DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,∴∠AED=∠CFD=90°,∵D 为AC 的中点,∴AD=DC ,在Rt △ADE 和Rt △CDF 中,AD DC DE DF ⎧⎨⎩==, ∴Rt △ADE ≌Rt △CDF ,∴∠A=∠C ,∴BA=BC ,∵AB=AC ,∴AB=BC=AC ,∴△ABC 是等边三角形.(2)∵DE ⊥AB ,DF ⊥BC ,且DE DF =,∴BD 平分ABC ∠,∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,∴BD AC ⊥,30CBD ∠=︒, ∴2BC CD =,∵CD CG =,2CG =∴24BC CG ==.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.27.如图,在ABC 中,AB AC =,120BAC ∠=︒,AD BC ⊥,垂足为G ,且AD AB =,60EDF ∠=︒,其两边分别交AB ,AC 于点E ,F .(1)求证:ABD △是等边三角形;(2)若2DG =,求AC 的长;(3)求证:AB AE AF =+.解析:(1)见解析;(2)4AC =;(3)见解析 【分析】(1)连接BD 由等腰三角形的性质和已知条件得出∠BAD =∠DAC =12×120°=60°,再由AD =AB ,即可得出结论;(2)由等边三角形三线合一可得,122DG AG AD ===,可得4AD AB AC ===,即可求解;(3)由△ABD 是等边三角形,得出BD =AD ,∠ABD =∠ADB =60°,证出∠BDE =∠ADF ,由ASA 证明△BDE ≌△ADF ,得出AF =BE ,即可求解.【详解】证明:(1)AB AC =,AD BC ⊥,12BAD DAC BAC ∴∠=∠=∠, 120BAC ∠=︒,1120602BAD DAC ∴∠=∠=⨯︒=︒, =AD AB ,ABD ∴是等边三角形.(2)ABD 是等边三角形,AD AB BD ∴==,AD BC ⊥,122DG AG AD ∴===, 4AD AB AC ∴===,即4AC =;(3)ABD 是等三角形,60ABD ADB ∴∠=∠=︒,BD AD =,60EDF ∠=︒,ADB ADE EDF ADE ∴∠-∠=∠-∠,即BDE ADF ∠=∠.在BDE 和ADF 中,60ABD DAC ∠=∠=︒,BD AD =,BDE ADF ∠=∠, (ASA)BDE ADF ∴△≌△,BE AF ∴=,AB AE BE =+,AB AE AF ∴=+.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.28.如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .(1)求证:ABC ADE △≌△;(2)若10AC =,求四边形ABCD 的面积;(3)求FAE ∠的度数.解析:(1)见解析;(2)50;(3)135°【分析】(1)由题意先求出∠BAC=∠EAD ,然后根据SAS 推出△ABC ≌△ADE ;(2)根据题意即可推出四边形ABCD 的面积=△ACE 的面积,进而分析计算即可得出答案;(3)根据题意可推出∠CAF=45°,再根据∠EAF =∠FAC +∠CAE 即可求出∠FAE 的度数.【详解】(1)证明:90BAD CAE ∠=∠=︒,90BAC CAD ∴∠+∠=︒,90CAD DAE ∠+∠=︒,BAC DAE ∴∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABC ADE ∴△≌△.解:(2)ABC ADE △≌△,ABC ADE S S ∴=△△,ABC ACD ADE ACD ACE ABCD S SS S S S ∴=+=+=四边形,10AC =, 1010250ACE ABCD S S∴==⨯÷=四边形. (3)90CAE ∠=︒,AC AE =,45E ∴∠=︒,BAC DAE △≌△,45BCA E ∴∠=∠=︒,AF BC ⊥,45CAF ∴∠=︒,4590135FAE FAC CAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形的性质,直角三角形的性质,解题的关键是学会利用等腰直角三角形的性质解决问题,属于中考常考题型.。
新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
人教八年级数学上册第十三章轴对称知识点常见考点例析

第十三章轴对称知识点常见考点例析一.知识框架图二.轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。
4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
连接任意一对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应角相等。
5.画一图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
三.轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合 2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。
线段的垂直平分线经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.四.用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y)2、点(x,y)关于y轴对称的点的坐标为(x,-y);五.关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)六.关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);。
人教版八年级数学上册第13章 轴对称 小结与复习

则 1=2= 1 BAC. 2
∵ AB = AC,∴ AE⊥BC.
∴∠2 +∠C = 90°.
A
∵ BD⊥AC,∴∠DBC +∠C = 90°. ∴∠2 =∠DBC.
12 D
∴∠BAC = 2∠DBC.
B
E
C
方法总结
在涉及等腰三角形的有关计算和证明中,常见 的辅助线的作法是作顶角的平分线(或底边上的高、 中线),然后利用等腰三角形“三线合一”的性质,实 现线段或角之间的相互转化.
A D
6. 如图,已知等边△ABC 中,点 D、E B
分别在边 AB、BC 上,把△BDE 沿直线
DE 翻折,使点 B 落在 B1 处,DB1,EB1 D
分别交边 AC 于 M、H 点. 若∠ADM =
50°,则∠HEC 的度数为 70° .
B
AC M B1 H
EC
7. 如图,在△ABC 中,AD 是角平分线,AC = AB + BD.
一、轴对称的相关定义和性质 1.定义 (1) 如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做_轴__对__称__图__形___, 这条直线就是它的__对__称__轴___.
(2) 将一个平面图形沿一条直线折叠,如果它能够与另 一个图形重合,那么就说这两个图形关于这条直线对
2. 如图,∠3 = 30°,为了使白球反弹后能将黑球直接
撞入袋中,那么击打白球时,必须保证∠1 的度数为
__6_0_°__.
考点二 关于坐标轴对称的点的坐标
例2 按要求完成作图:
y
(1) 作△ABC 关于 y 轴对称的
△A1B1C1; (2) 在 x 轴上找出点 P,使 PA
人教版初中八年级数学上册第十三章《轴对称》知识点总结(含答案解析)(1)

一、选择题1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个2.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.下列四个结论中:①DE DF =;②DB DC =;③AD BC ⊥;④3AB BF =.其中正确的结论共有( )A .4个B .3个C .2个D .1个3.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 4.如图,在ABC 中,34B ∠=︒,BCA ∠的平分线CD 交AB 于点D ,若DE 垂直平分BC 交BC 于点E ,则A ∠的度数为( )A .90°B .68°C .78°D .88° 5.等腰三角形两边长为2和4,则其周长为( )A .8B .10C .8或10D .12 6.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 7.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:3 8.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 9.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1210.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 11.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个12.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm13.下列图案中,是轴对称图形的是( )A .B .C .D .14.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒ 15.如图,在Rt ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是( )A .125B .95C .85D .75二、填空题16.如图,在ABC ∆中,90,BAC ∠=︒点D 在BC 上,BD BA =,点E 在BC 的延长线上,CA CE =,连接AE ,则DAE ∠的度数为_____________.17.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.18.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________. 19.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .20.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.21.如图所示的网格是正方形网格,点A ,B ,C ,D ,O 是网格线交点,那么AOB ∠___________COD ∠(填“>”,“<”或“=”).22.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).23.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=20°,且AE=AD,则∠CDE的度数是______.⨯的正方形网格,每个小正方形的顶点称为格点,且边长为1,点,A B均在24.右图是44⨯的正方形网格的格点上,且格点上,在网格中建立平面直角坐标系.如果点C也在此44∆是等腰三角形,请写出一个满足条件的点C的坐标_______;满足条件的点C一共ABC有_______个.25.如图①,点D为一等腰直角三角形纸片的斜边AB的中点,E是BC边上的一点,将这张纸片沿DE翻折成如图②,使BE与AC边相交于点F,若图①中AB=2,则图②中△CEF的周长为______________.26.如图,在△ABC中,AB=AC,∠BAC=36°,AD、CE是△ABC的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.三、解答题27.如图,在ABC ∆中,已知D 是BC 的中点,过点D 作BC 的垂线交∠BAC 的平分线于点E ,EF ⊥AB 于点F ,EG ⊥AC 于点G .(1)求证:BF=CG ;(2)若AB=12,AC=8,求线段CG 的长.28.如图,在Rt ABC △中,90ACB ∠=︒,CAP 和CBQ △都是等边三角形,BQ 和CP 交于点H ,求证:BQ CP ⊥.29.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.30.如图,在ABC 中,90C ∠=︒.(1)用尺规作出BAC ∠的平分线,并标出它与边BC 的交点D (保留作图痕迹,不写作法);(2)若30B ∠=︒,1CD =,求BD 的长.。
初二数学上册(人教版)第十三章轴对称13.3知识点总结含同步练习及答案

描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.3 等腰三角形一、学习任务1. 了解等腰三角形和等边三角形的概念.2. 掌握等腰三角形和等边三角形的性质定理和判定定理,掌握 角的直角三角形的性质.二、知识清单等腰三角形 等边三角形三、知识讲解1.等腰三角形等腰三角形有两条边相等的三角形叫做等腰三角形(isosceles triangle ).等腰三角形的性质① 等腰三角形的两个底角相等;② 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).三角形的边角对应关系在同一个三角形内,大边对大角,大角对大边.构造等腰三角形的方法30∘都填上)∠ADE=∠AED=2∠BAD34DE△BDE接 ,试判断 的形状,并说明理由.∠DBC描述:例题:2.等边三角形等边三角形三边都相等的三角形叫做等边三角形(equilateral triangle ),也属于等腰三角形.等边三角形的性质三个内角都相等,并且每一个角都等于 .等边三角形性质的推论在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.等边三角形的判定① 三个角都相等的三角形是等边三角形;② 有一个角是 的等腰三角形是等边三角形.构造等边三角形的方法,.即 是等腰三角形.2∴∠DBC =∠E ∴BD =DE △BDE 60∘30∘60∘如图所示,在等边三角形 中, 和 的平分线相交于点 ,, 的垂直平分线分别交 于点 ,,求证: 是等边三角形.分析:根据垂直平分线的性质可知,,,由于 , 是角平分线,所以 ,再由于外角和定理,,所以 是等边三角形.证明: , 分别是 , 垂直平分线上的点,ABC ∠ABC ∠ACB O BO OC BC E F △OEF OE =BE OF =F C OB OC ∠OBC =∠OCB =30∘∠OEF =∠OF E =60∘△OEF ∵EF BO OC值为( )32A△ABC。
人教版八年级数学上册第十三章轴对称知识点归纳及典例练习(pdf,无答案)

轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。
(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
lA B二、举例:例1:判断题:① 角是轴对称图形,对称轴是角的平分线; ( ) ②等腰三角形至少有1条对称轴,至多有3条对称轴; ( ) ③关于某直线对称的两个三角形一定是全等三角形; ( ) ④两图形关于某直线对称,对称点一定在直线的两旁。
( ) 例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC 和直线l ,请作出ΔABC 关于直线l 的对称三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章轴对称【轴对称知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.【等腰三角形知识要点】1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等,并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【温馨提示】1.“等边对等角”和“等角对等边”只限于在同一个三角形中,在两个三角形中时,上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:(1)必须是在直角三角形中;(2)必须有一个锐角等于30°.【方法技巧】1.等腰三角形的性质是证明两个角相等的重要方法,当要证明同一个三角形的两个内角相等时,可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题,本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE 交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b 的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D 图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC 与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB =2.故选B.8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF 都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.(填序号)2.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.3.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.专题二等边三角形的性质和判定4.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是__________.5.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.6.如图,△ABC中,AB=BC=AC=12 cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.专题三最短路径问题7.如图,A、B两点分别表示两幢大楼所在的位置,直线a表示输水总管道,直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A、B两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中,点A′是点A关于直线b的对称点,A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点,B′A分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是()A.F和 C B.F和 E C.D和 C D.D和E8.如图,现准备在一条公路旁修建一个仓储基地,分别给A、B两个超市配货,那么这个基地建在什么位置,能使它到两个超市的距离之和最小? (保留作图痕迹及简要说明)参考答案:1.①②③解析:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB.∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DBF,∠FCE=∠FCB.∴∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC.∴△ADE的周长=AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.2.解:(1)证明:∵AD+EC=AB,∴BD=CE.∵AB=AC,∴∠B=∠C.∵BE=CF,∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)∵∠A=40°,∴∠B=∠C=12(180°-∠A)=12(180°-40°)=70°.∵△BDE≌△CEF,∴∠BDE=∠CEF.∴∠DEF=180°-∠BED-∠CEF=180°-∠BED-∠BDE=∠B=70°.(3)不能.∵∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形.(4)60°.理由:当∠A=60°时,∠B=∠C=60°,由(2)可得∠DEF=60°.∴∠EDF+∠EFD=120°.3.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:∵BE 为∠ABC 的平分线,∴∠ABE=∠DBE. 又∵∠BAE=∠BDE=90°,BE=BE , ∴△ABE 沿BE 折叠,一定与△DBE 重合.∴A 、D 是对称点.∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB , ∴AE=DE .在Rt △ABE 和Rt △DBE 中,AE =DE BE =BE ⎧⎨⎩,, ∴Rt △ABE ≌Rt △DBE (HL ).∴AB=BD .又△ABC 是等腰直角三角形,∠BAC=90°,∴∠C=45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形.∴DE=DC .即AB+AE=BD+DC=BC=10.4. 6 解析:连接OD,∵PO=PD,∴OP=DP=OD.∴∠DPO=60°.∵△ABC是等边三角形,∴∠A=∠B=60°,AC=AB=9.∵∠OPA=∠PDB=∠DPA-60°.∴△OPA≌△PDB.∵AO=3,∴AO=PB=3,∴AP=6.5.解:(1)△ODE是等边三角形,其理由是:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.∴△ODE是等边三角形.(2)BD=DE=EC.其理由是:∵OB平分∠ABC,且∠ABC=60°,∴∠ABO=∠OBD=30°.∵OD∥AB,∴∠BOD=∠ABO=30°.∴∠DBO=∠DOB.∴DB=DO.同理,EC=EO.∵DE=OD=OE,∴BD=DE=EC.6.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12.(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t.解得t=4.∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM.∴∠AMN=∠ANM.∴∠AMC=∠ANB.∵AB=BC=AC,∴△ACB是等边三角形.∴∠C=∠B.在△ACM和△ABN中,AC AB C B AMC ANB =⎧⎪=⎨⎪=⎩,∠∠,∠∠, ∴△ACM ≌△ABN .∴CM=BN .设当点M 、N 在BC 边上运动时,M 、N 运动的时间y 秒时,△AMN 是等腰三角形,∴CM=y -12,NB=36-2y ,CM=NB .y -12=36-2y ,解得:y=16.故假设成立.∴当点M 、N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M 、N 运动的时间为16秒.7.A 解析:由轴对称--最短路线的要求可知:输水分管道的连接点是点B 关于a 的对称点B′与A 的连线的交点F ,煤气分管道的连接点是点A 关于b 的对称点A′与B 的连线的交点C .故选A .8.解:如图,作点B 关于公路的对称点B′,连接AB′,交公路于点C,则这个基地建在C处,才能使它到这两个超市的距离之和最小.。