最新八年级数学上15.2分式的乘除计算题精选(含答案)

合集下载

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时

八年级数学人教版上册第15章分式15.2.2分式的加减(图文详解)第1课时
ab2
= 5a2b 3 3a2b 5 8 a2b ab2
= a2b ab2
=
a b
把分子看作一 个整体,先用 括号括起来!
注意:结果要化 为最简分式!
八年级上册第15章分式
1.直接说出运算结果
(1) m x

y x

c x

m y x
c
(2)
m 2abc

n 2bca

d 2cab
八年级上册第15章分式
3.猜一猜, 同分母的分式应该如何加减? 【同分母的分数加减法的法则】 同分母的分数相加减,
分母不变,把分子相加 减. 【同分母的分式加减法的法则】 同分母的分式相加减, 分母不变,把分子相加减. 即: a b a b cc c
八年级上册第15章分式
例1 计算:
xy
八年级上册第15章分式
( 2)
1 2 a 1 1 a2
解:原式

1 2 a 1 a2 1
1
2
a 1 (a 1)(a 1)
a 1
2
(a 1)(a 1) (a 1)(a 1)
a 1 (a 1)(a 1)
1 a1
八年级上册第15章分式
例2 计算 (1) 解:原式
八年级上册第15章分式
(2)a22a
4

a
1
2
a2 -4 能分解 :
解:原式

(a

2a 2)(a

2)

(a

a2 2)(a
2)

2a (a 2) (a 2)(a 2)

2a a 2 (a 2)(a 2)

人教版八年级数学上册能力15.2分式的运算(含答案)

人教版八年级数学上册能力15.2分式的运算(含答案)

15.2分式的运算专题一 分式的混合运算1.化简221111x x ⎛⎫-÷ ⎪+-⎝⎭的结果是( ) A . ()21x 1+ B .()21x 1- C .()21x + D .()21x - 2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x+3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( ) A .23B .3C .6D . 35.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222()1121x x x x x x x x --÷---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记 【知识要点】 1.分式的乘除乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 上述法则用式子表示为d b c a d c b a ⋅⋅=⋅,c b d a c d b a d c b a ⋅⋅=⋅=÷. 2.分式的乘方分式乘方要把分子、分母分别乘方.用式子表示为()nn n a a b b=. 3.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则用式子表示为a b a b c c c ±±=,a c ad bc ad bc b d bd bd bd ±±=±=. 4.负整数指数幂1n n a a-=(a ≠0),即a -n (a ≠0)是a n 的倒数. 5.用科学记数法表示小于1的正数小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【温馨提示】1.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a b c c++=这样的错误. 3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x .故选D . 2.原式221(1)(1)11111x x x x x x x x +-+-=-==---. 3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x +3 =x -x +3 =3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵224m n mn += ∴2226m n mn mn ++=,2222m n mn mn +-=, ∴()22()()()6223m n m n m n m n mn mn mn +-+⋅-⋅===,选择A . 5.解:原式=b a b b a b a b a ++-+-))(()(2=ba b b a b a +++-=b a b b a ++-=b a a +, 当a =2-,1=b 时,原式=2122=+--. 6.解:原式=22221()11x x x x x x x x-+-⋅--- =22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+ =1x x +. ∵x ≠-1,0,1∴当x =2时,原式=22213=+.。

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案

人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。

广东省汕头市龙湖区八年级数学上册 第十五章 分式 15.2 分式的运算 15.2.1 分式的乘除课件 (新版)新人教

广东省汕头市龙湖区八年级数学上册 第十五章 分式 15.2 分式的运算 15.2.1 分式的乘除课件 (新版)新人教

学习目标 1、类比分数的乘除,理解分式的乘除法法则。 2、熟练运用分式乘除法法则,将分式乘除法全部化归为 分式乘法计算。
自学指导 阅读P135-136例1、2
1、掌握分式的乘除法法则? 2、在进行分式乘法时,你认为是先约分再乘好,还是先 乘再约分好? 3、如果分子分母为多项式,乘法应按怎样的顺序计算? 4、计算结果要达到什么要求? 完成课后P138练习2、3
④计算结果一定是最简分式或整式。
另:整式与分式运算时,可以把整式看作分母 是 1 的式子。
效果检测
P138【练习3】
(1) 3a 3b 10ab

25a 2b3 a2 b2
(2) 4 y2 x2 x 2 y x2 2xy y2 2x2 2xy
效果检测
计算:
(1) x2 4y 2 2y - x x2 2xy y 2 2xy 2x2

(×)
效果检测
计算:
a2 ab
1
(1) a2 ab (a b) b2 a2
(25)
xy x2
x2 2xy y2 x y

xy
x2
(3) 2x 5x
3

3 25x2
9

x 5x
3
当堂检测
《报纸》第17期
作业布置
1、完成《全品》P82-83; 2、预习课本P138-139,完成P139练习
心思在如何在课件中贯彻案例的设计意图上、如何增强课件的实效性上,既是技术上的进步,也是理论上的深化,通过几个相关案例的制作,课件的概 念就会入心入脑了。 折叠多媒体课件 多媒体教学课件是指根据教师的教案,把需要讲述的教学内容通过计算机多媒体(视频、音频、动画)图片、文字来表述并构成的课堂要件。它可以生动、 形象地描述各种教学问题,增加课堂教学气氛,提高学生的学习兴趣,拓宽学生的知识视野,10年来被广泛应用于中小学教学中的手段,是现代教学发 展的必然趋势。

八年级数学上册15-2-1分式的乘除第2课时分式的乘方及乘除混合运算习题新版新人教版

八年级数学上册15-2-1分式的乘除第2课时分式的乘方及乘除混合运算习题新版新人教版

正确.
【解】明明的说法正确.



理由:
÷
· =
++
+ + +
(+)(−) ( ++)

·
·
=1,

(−)
+
++
当 x ≠0且 x ≠±2时,分式的值都是1,
所以明明的说法是正确的.
14. 通常购买同一种西瓜时,西瓜的质量越大,花费越高,

·−




倍.

=3,那么 a12 b4等于


÷ M3=1,则 M 的值为
81 .




.
【点拨】


·−




3
1,∴ M =-


÷ M3 =

·




,则 M =- .




÷ M3=-
3=
÷
M


12.



(1)若 A =
·
÷
,化简 A ;
( a -1) 2 ≠0, a -1≠0.∴ a ≠-2且 a ≠1.
∴ a =0.将 a =0代入 a -2,得 A = a -2=0-2
=-2.
【点方法】
(1)理解法则,若是除法运算,先转化成乘法运
算.(2)分子、分母能分解因式的先分解因式,然后再
约分.(3)运算的结果要化为最简分式或整式.(4)自选数




7. 计算

冀教版八年级上册15.2二次根式的乘除运算练习题

冀教版八年级上册15.2二次根式的乘除运算练习题

初中数学冀教版八年级上册第十五章15.2二次根式的乘除运算练习题一、选择题1. (√3)2化简结果正确的是( )A. −3B. 3C. ±3D. 92. 计算√8÷√2的结果为( )A. √6B. √2C. 2D. √3 3. 估计(3√2+√30)×√12的值应在( ) A. 7和8之间 B. 4和5之间 C. 5和6之间 D. 6和7之间4. 化简√0.1×√0.04的结果为( )A. 0.2B. 0.02C. √1050D. 以上都错5. 下列运算结果正确的是( )A. √(−9)2=−9B. √6÷√2=3C. (−√2)2=2D. √25=−56. 下列各式计算结果正确的是( )A. √−9−16=√−9√−16=−3−4=34 B. 4÷4√2=√2 C. 3×√13=√3 D. √52−32=5−3=2 7. 下列等式成立的是( )A. −5√(−25)2=−2 B. (−7√27)2=2 C. √24÷√6=4 D. 4√5×2√5=8√58. 矩形的面积为18,一边长为2√3,则另一边长为( )A. 5√3B. 10√3C. 3√3D. 249.当x≤2时,下列等式一定成立的是()A. √(x−2)2=x−2B. √(x−3)2=x−3C. √(x−2)(x−3)=√2−x⋅√3−xD. √3−x2−x =√3−x√2−x10.下列等式一定成立的是()A. (−√a)2=aB. √a2+b2=a+bC. √ab=√a√bD. √ba =√b√a二、填空题11.计算√2×2√2=______.12.化简:√18×√12=______.13.计算3√2÷√6的结果是______.14.等式√7−xx+2=√7−x√x+2成立的条件是______.三、计算题15.计算:(1)计算:√6×√33−(12)−2+|1−√2|(2)解方程:3xx+2−2x−2=3(3)化简:1x ÷(x2+1x2−x−2x−1)+1x+1.四、解答题16.【计算下列各式】(1)√4×√9=______,√4×9=______.√16×√25=______,√16×25=______.【归纳发现】(2)观察以上计算结果,尝试用含有字母a、b(其中,a≥0,b≥0)的式子表示发现的规律;【实践应用】(3)运用发现的规律进行计算:①√3×√5.②√13×√27.17.当x在什么范围内取值时,√2x+11−x =√2x+1√1−x?18.(1)用“>”“=”或“<”填空:;√1×2______1+22;√3×5______3+52;√6×8______6+82.√9×9______9+92(2)观察上式,请用含a,b(a>0,b>0)的式子,把你发现的结论写出来,并证明结论的正确性.答案和解析1.【答案】B【解析】解:原式=3,故选:B .原式利用二次根式的化简公式化简,计算即可得到结果.此题考查了算术平方根的计算,熟练掌握运算法则是解本题的关键.2.【答案】C【解析】解:√8÷√2=√4=2.故选:C .直接利用二次根式的除法运算法则计算得出答案.此题主要考查了二次根式的除法运算,正确掌握运算法则是解题关键.3.【答案】D【解析】【分析】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.先根据二次根式的乘法进行计算,再进行估算即可.【解答】解:(3√2+√30)×√12, =3√2×√12+√30×√12=3+√30×12, =3+√15,∵3<√15<4,∴6<3+√15<7,故选D .4.【答案】C【解析】解:√0.1×√0.04=0.2×√1010=15×√1010=√1050.故选:C.直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.5.【答案】C【解析】解:A、√(−9)2=√81=9,本选项计算错误;B、√6÷√2=√3,本选项计算错误;C、(−√2)2=2,本选项计算正确;D、√25=5,本选项计算错误;故选:C.根据算术平方根的概念、二次根式的除法法则、二次根式的性质计算,判断即可.本题考查的是二次根式的化简、计算,掌握二次根式的性质、二次根式的除法法则、算术平方根的概念是解题的关键.6.【答案】C【解析】【分析】本题主要考查了二次根式的除法,二次根式的乘法运算,要注意被开方数大于等于0的性质.根据二次根式的性质对各选项分析判断后利用排除法求解.【解答】解:A、√−9−16=√916=34,故本选项错误;B、4÷4√2=√22,故本选项错误;C、3×√13=3×√33=√3,故本选项正确;D、√52−32=√16=4,故本选项错误.故选:C.7.【答案】A【解析】解:A 、−5√(−25)2=−5×25=−2,正确; B 、(−7√27)2=49×27=14,故此选项错误; C 、√24÷√6=2,故此选项错误;D 、4√5×2√5=40,故此选项错误;故选:A .直接利用二次根式的乘除运算法则计算得出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.8.【答案】C【解析】解:∵矩形的面积为18,一边长为2√3,∴另一边长为2√3=3√3,故选:C . 根据矩形的面积得出另一边为2√3,再根据二次根式的运算法则进行化简即可.本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键. 9.【答案】C【解析】【分析】此题主要考查了二次根式的乘除和二次根式的化简,正确掌握二次根式的性质是解题关键.直接利用二次根式的性质分别化简判断得出答案.【解答】解:∵x ≤2,∴A .√(x −2)2=2−x ,故此选项错误; B .√(x −3)2=3−x ,故此选项错误;C .∴x −2<0,x −3<0,∴√(x −2)(x −3)=√2−x ⋅√3−x ,故此选项正确; D .√3−x 2−x,2−x ≠0,则x ≠2,故此选项错误;故选C.10.【答案】A【解析】【分析】本题主要考查了二次根式的运算,二次根式的乘法法则是√a·√b=√ab(a≥0,b≥0),二次根式的除法法则:√ab =√ab(a≥0,b>0),解答此题根据二次根式的运算法则进行判断即可.【解答】解:A.(−√a)2=a,故此选项正确;B.√a2+b2,无法化简,故此选项错误;C.√ab=√a·√b(a≥0,b≥0),故此选项错误;D.√ba =√b√a>0,b≥0),故此选项错误;故选A.11.【答案】4【解析】解:√2×2√2=2×2=4.故答案为:4.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.12.【答案】3【解析】解:原式=√18×12=√9=3.故答案为:3.直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法,正确化简二次根式是解题关键.13.【答案】√3【解析】解:3√2÷√6=√2√6=√2⋅√6√6⋅√6=6√36=√3,故答案为:√3. 根据二次根式的除法法则解答即可.本题考查的是二次根式的乘除法,掌握二次根式的除法法则是解题的关键. 14.【答案】−2<x ≤7【解析】解:由题意得:{7−x ≥0x +2>0, 解得:−2<x ≤7,故答案为:−2<x ≤7.根据二次根式的除法可得不等式组:{7−x ≥0x +2>0,再解即可. 此题主要考查了二次根式的除法,关键是掌握√a b =√a√b≥0,b >0). 15.【答案】解:(1)原式=3√23−4+√2−1 =√2+√2−4−1=2√2−5;(2)去分母得:3x (x −2)−2(x +2)=3(x 2−4),去括号,得3x 2−6x −2x −4=3x 2−12,整理,得−8x =−8,解得x =1,经检验,x =1是原方程的解,故原方程的解为x =1;(3)原式=1x ÷[x 2+1x (x−1)−2x−1]+1x+1=1x ÷[x 2+1−2x x (x −1)]+1x +1=1x ·x (x −1)(x −1)2+1x +1 =1x −1+1x +1=x +1(x −1)(x +1)+x −1(x −1)(x +1)=2xx 2−1.【解析】本题考查了实数的运算,解分式方程,分式的混合运算,掌握实数的运算的法则,解分式方程的步骤和方法,记得要验根,分式混合运算的法则是解题的关键,(1)先根据二次根式的乘法,负指数幂,绝对值的化简,再合并即可;(2)根据去分母,去括号,整理求出整式方程的解,注意要检验是否为增根;(3)先化简括号内的分式,再根据除以这个分式等于乘以这个分式的倒数,把除法化为乘法计算,最后再算分式的加法即可.16.【答案】6 6 20 20【解析】解:(1)√4×√9=2×3=6,√4×9=6.√16×√25=4×5=20,√16×25=√400=20.故答案为:6,6;20,20;(2)观察以上计算结果,尝试用含有字母a 、b(其中,a ≥0,b ≥0)的式子表示发现的规律√a ×√b =√ab(a ≥0,b ≥0);(3)运用发现的规律进行计算:①√3×√5=√15.②√13×√27=√9=3. (1)直接利用二次根式的性质分别计算得出答案;(2)直接利用(1)中运算规律得出答案;(3)①②直接利用二次根式的性质计算得出答案.此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.17.【答案】解:根据题意得{2x +1≥01−x >0,解得−12≤x <1, 所以x 的范围为−12≤x <1.【解析】根据二次根式的除法法则得到{2x +1≥01−x >0,然后解不等式组即可. 本题考查了二次根式的乘除法:熟练掌握二次根式的性质和乘除法则.18.【答案】< < < =【解析】解:(1)√1×2<1+22; √3×5<3+52;√6×8<6+82;√9×9=9+92.故答案为:<,<,<,=;(2)由(1)得:√ab≤a+b2(a>0,b>0),∵(√ab)2=ab,(a+b2)2=a2+2ab+b24,∴(a2+2ab+b2)−4ab=a2−2ab+b2=(a−b)2≥0,∴(√ab)2≤(a+b2)2,∴√ab≤a+b2(a>0,b>0).(1)直接利用二次根式的性质结合估算无理数的大小的方法分析得出答案;(2)直接利用(1)中数字变化规律进而结合完全平方公式计算得出答案.此题主要考查了二次根式的乘除以及实数比较大小,正确运用乘法公式是解题关键.第3页,共11页。

人教版八年级数学上册 15.2 分式的运算(含答案)

人教版八年级数学上册 15.2 分式的运算(含答案)

15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nna a -=。

2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。

新人教版八年级数学上册八年级数学上15试卷。2分式的乘除计算题精选(含答案)

新人教版八年级数学上册八年级数学上15试卷。2分式的乘除计算题精选(含答案)

新人教版八年级数学上册八年级数学上15试卷。

2分式的乘除计算题精选(含答案)分式的乘除计算题精选(含答案)一、解答题(共21小题)1.(2014·淄博)计算:分析:原式约分即可得到结果。

解答:原式 =答案。

2.(2014·长春一模)化简:分析:原式利用除法法则变形,约分即可得到结果。

解答:原式 =答案。

3.(2012·漳州)化简:分析:先把各分式的分子和分母因式分解以及除法运算转化为乘法运算得到原式。

解答:原式 =然后约分即可。

答案。

4.(2012·南昌)化简:分析:根据分式的乘法与除法法,先把各分式的分子因式分解,再把分式的除法变为乘法进行计算即可。

解答:原式 = ÷1答案。

5.(2012·大连二模)计算:分析:首先将除法运算化为乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分。

解答:原式 =答案。

6.(2011·六合区一模)化简:分析:本题考查的是分式的乘除法运算,按运算顺序,先算括号里面的,再做乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分。

解答:原式 = ÷ (2分)答案。

省略部分内容)7.(2010·密云县)化简:化简分式 $\frac{2x^3-2x^2}{x^4-4x^3+4x^2}$。

解:原式 $=\frac{2x^2(x-1)}{x^2(x-2)^2}=\frac{2(x-1)}{(x-2)^2}$。

8.(2010·从化市一模)化简:化简分式 $\frac{2x^2-4x}{x^3-2x^2}$。

解:原式 $=\frac{2x(x-2)}{x^2(x-2)}=\frac{2}{x}$。

9.(2009·清远)化简:化简分式 $\frac{a^2-b^2}{a^2+b^2}$。

解:原式 $=\frac{(a+b)(a-b)}{a^2+b^2}$。

10.(2007·双柏县)化简:化简分式 $\frac{x^2-4}{x^2-1}\div\frac{x^2-3x+2}{x^2-x-2}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的乘除计算题精选(含答案)一.解答题(共21小题)1.•.2.÷.3..4..5..7..8.9.10.11.(ab3)2•.12.××.13..14.÷•.15..16..17..18..19.(1);(2).20..21.÷•.分式的乘除计算题精选(含答案)参考答案与试题解析一.解答题(共21小题)1.(2014•淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.2.(2014•长春一模)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.3.(2012•漳州)化简:.考点:分式的乘除法.专题:计算题.=•,然后约分即可.解答:解:原式=•=x.点评:本题考查了分式得乘除法:先把各分式的分子或分母因式分解,再把除法运算转化为乘法运算,然后进行约分得到最简分式或整式.4.(2012•南昌)化简:.考点:分式的乘除法.专题:计算题.分析:根据分式的乘法与除法法先把各分式的分子因式分解,再把分式的除法变为乘法进行计算即可.解答:解:原式=÷=×=﹣1.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.5.(2012•大连二模)计算:.考点:分式的乘除法.分析:首先将除法运算化为乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式=y(x﹣y)÷=y(x﹣y)•=y.点评:此题考查了分式的除法.此题难度不大,注意把分子分母中能够分解因式的部分首先因式分解,然后约分,化为最简分式.考点:分式的乘除法.专题:计算题.分析:本题考查的是分式的乘除法运算,按运算顺序,先算括号里面的,再做乘法运算,要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:原式=÷(2分)=•(5分)=(6分)点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有括号的先算括号里面的.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后把除法转化成乘法,再约去.7.(2010•密云县)化简:.考点:分式的乘除法.分析:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.然后将各分式的分子、分母分解因式,进而可通过约分、化简得出结果.解答:解:原式==.点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.8.(2010•从化市一模)化简:考点:分式的乘除法.分析:本题考查的是分式的乘法运算,做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:(3分)=(6分)=.(9分)点评:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式,然后找到其中的公因式约去.9.(2009•清远)化简:考点:分式的乘除法.专题:计算题.分析:本题可先将分式的除法运算转化为乘法运算,然后将各分式的分子、分母分解因式,进而可通过约分、化简得出结果.解答:解:原式==.点评:分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.分式的乘除运算实际就是分式的约分.10.(2007•双柏县)化简:考点:分式的乘除法.分析:在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.解答:解:原式=÷=•=x.11.(2002•汕头)计算:(ab3)2•.考点:分式的乘除法.专题:计算题.分析:根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算即可得出结果.解答:解:原式=a2b6•=﹣b5.点评:本题考查积的乘方的性质,熟练掌握性质是解题的关键,难度适中.12.化简:××.考点:分式的乘除法.分析:直接利用分式的乘法运算法则化简求出即可.解答:解:××=.点评:此题主要考查了分式的乘法运算,正确化简求出是解题关键.13.计算:.考点:分式的乘除法.专题:计算题.分析:将原式的第一项的分子分母分解因式,且分子提取﹣1,第三项利用分式的乘方法则:给分式的分子分母分别平方,并把结果相除,然后根据除以一个数等于乘以这个数的倒数把原式化为积的形式,约分后即可得到结果.解答:解:原式===.点评:此题考查了分式的乘除法以及分式的乘方运算.学生在做此类题若出现多项式时,一般将14.计算:÷•.考点:分式的乘除法.专题:计算题.分析:原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=÷•=••=.点评:此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.15.计算题:.考点:分式的乘除法.专题:计算题.分析:把除法运算转化为乘法运算和把25x2﹣9因式分解得到原式=••,然后约分即可.解答:解:原式=••=x2.点评:本题考查了分式的乘除法:先把分子或分母因式分解,再把除法运算转化为乘法运算,然后进行约分得到最简分式或整式.16.计算:.考点:分式的乘除法.注意除以一个分式等于乘以这个分式的倒数.解答:解:原式==.点评:本题考查分式的乘除法运算,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.17.化简:.考点:分式的乘除法.分析:首先把分子、分母能因式分解的先分解,然后约分即可.解答:解:原式=•,=.点评:此题主要考查了分式的乘法,应先将分子、分母中能够分解因式的部分进行分解因式,然后找到其中的公因式约去.18.化简:.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣••=﹣.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.分式化简,(1);(2).考点:分式的乘除法.专题:计算题.分析:先把幂去掉,再把除号变成乘号,约去同类项得出结果.解答:解:(1)原式=﹣×==.(2)原式==.点评:根据分式的性质分母分子分别相乘约去同类项,特别注意负号.20..考点:分式的乘除法.分析:先把分式的分子和分母用平方差公式和完全平方公式进行因式分解,再约去公因式,然后把除法运算转化为乘法运算,化简即可得出结果.解答:解:原式==•(x+3)(x﹣3)=3x+9.点评:本题考查分式的乘除法,由于式子比较复杂,同学们在解答的时候要细心.21.计算:÷•.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=••=﹣=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.1.上图中A-J均为有机化合物,根据图中的信息,回答下列问题:(1)环状化合物A的相对分子质量为82,其中含碳87.80%,含氢12.2%。

B的一氯代物仅有一种,B的结构简式为(2)M是B的一种同分异构体,M能使溴的四氯化碳溶液褪色,分子中所有的碳原子共平面,则M的结构简式为。

(3)由A生成D的反应类型是,由D生成E的反应类型是。

(4)G的分子式为C6H10O4, 0.146gG需用20ml0.100mol/L NaOH溶液完全中和,J是一种分子化合物,则由G转化为J的化学方程式为;(5)分子中含有两个碳谈双键,且两个双键之间有一个碳谈单键的烯?与单烯?可发生如下反应,则由E和A反应生成F的化学方程式为(6)H中含有官能团是,I中含有的官能团是。

2.有机化合物A-H的转换关系如下所示:请回答下列问题:(1)链径A有支链且只有一个官能团,其相对分子质量在65~75之间,lnolA完全燃烧消耗7mol氧气,则A的结构简式是______,名称是___________________;(2)在特定催化剂作用下,A与等物质的量的H2反应生成E。

由E转化为F的化学方程式是_____________________________________________________________________;(3)G与金属钠反应能放出气体。

由G转化为H的化学方程式是__________________________________________________________________;(4)①的反应类型是______________;③的反应类型是_____________________;(5)链径B是A的同分异构体,分子中的所有碳原子共平面,其催化氧化产物为正戊烷,写出B所有可能的结构简式______________________________________________________;(6)C也是A的一种同分异构体,它的一氯代物只有一种(不考虑立体异构)。

则C的结构简式为___________________________________________________。

3.PC是一种可降解的聚碳酸酯类高分子材料,由于其具有优良的耐冲击性和韧性,因而得到了广泛的应用。

以下是某研究小组开发的生产PC的合成路线:。

相关文档
最新文档