单模与多模光纤的区别

合集下载

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

光纤是新一代的传输介质。

因为光纤不会向外界辐射电子信号,所以使用
光纤介质的网络无论是在安全性、可靠性还是在传输速率等网络性能方面都有了很大的提高。

光纤由单根玻璃光纤、紧靠纤心的包层以及塑料保护涂层组成。

为使用光纤传输信号,光纤两端必须配有光发射机和接收机,光发射机和接收机是实现光信号和电信号的转换。

实现电光转换的通常是发光二极管(LED)或激光二极管(LD);实现光电转换的是光电二极管或光电三极管。

光纤分单模光纤和多模光纤:单模光纤是沿直线传播,多模光纤是沿折线传播。

在光纤通信理论中,光纤有单模、多模之分,区别在于:
1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相对困难
2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容易
一般有以下区别:
1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好,使用多模光纤传输时能传输较短距离。

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别

多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。

80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这就是说在1.31μm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

单模光纤和多模光纤(“模”是指以一定角速度进入光纤的一束光)。

单模采用激光二极管LD作为光源,而多模光纤采用发光二极管LED为光源。

单模和多模光纤区别

单模和多模光纤区别

单模和多模光纤区别在光纤通信理论中,光纤有单模、多模之分,区别在于:光纤是新一代的传输介质,与铜质介质相比,光纤具有一些明显的优势。

因为光纤不会向外界辐射电子信号,所以使用光纤介质的网络无论是在安全性,可靠性还是网络性能方面都有了很大的提高。

光纤传输的带宽大大超出铜质线缆,而且光纤支持的最大连接距离达两公里以上。

是组建较大规模网络的必然选择。

现在有两种不同类型的光纤,分别是单模光纤和多模光纤。

(所谓“模”就是指以一定的角度进入光纤的一束光线)。

多模光纤使用发光二极管(LED)作为发光设备,而单模光纤使用的则是激光二极管(LD)。

多模光纤允许多束光线穿过光纤。

因为不同光线进入光纤的角度不同,所以到达光纤末端的时间也不同。

这就是我们通常所说的模色散。

色散从一定程度上限制了多模光纤所能实现的带宽和传输距离。

正是基于这种原因,多模光纤一般被用于同一办公楼或距离相对较近的区域内的网络连接。

单模光纤只允许一束光线穿过光纤。

因为只有一种模态,所以不会发生色散。

使用单模光纤传递数据的质量更高,传输距离更长。

单模光纤通常被用来连接办公楼之间或地理分散更广的网络。

总结:1、单模传输距离远2、单模传输带宽大3、单模不会发生色散,质量可靠4、单模通常使用激光作为光源,贵,而多模通常用便宜的LED5、单模价格比较高6、多模价格便宜,近距离传输可以相关光纤问题:1、光纤法兰盘是不是就是光纤的接头?2、单模光纤和多模光纤最长传输距离能达到多少?3、尾纤是不是就是光纤连接器?4、尾纤是不是也多模和单模之分?5、光缆终端盒是什么?有什么作用?6、尾纤和光缆如何连接?是不是只有尾纤才可以上odf?7、光收发器和光缆终端盒是不是同样的东西?答复:1 法兰盘是一种光纤耦合方法,是一种活接头,前提是要有尾纤。

2 单模的距离比多模的长;单模光纤比多模光纤价格便宜,但终端设备相对多模贵;反之,多模光纤比单模光纤价格贵点,但终端设备相对比单模便宜一些。

多模光纤和单模光纤的区别

多模光纤和单模光纤的区别

光纤的类型1.单模光纤单模光纤中,模内色散是比特率的主要制约因素。

由于其比较稳定,如果需要的话,可以通过增加一段一定长度的“色散补偿单模光纤”来补偿色散。

零色散补偿光纤就是使用一段有很大负色散系数的光纤,来补偿在1550nm处具有较高色散的光纤。

使得光纤在1550nm 附近的色散很小或为零,从而可以实现光纤在1550nm处具有更高的传输速率。

在单模光纤中,另一种色散现象是偏振模色散(PMD),由于PMD是不稳定的,因而不能进行补偿。

2.多模光纤多模光纤中,模式色散与模内色散是影响带宽的主要因素。

PCVD工艺能够很好地控制折射率分布曲线,给出优秀的折射率分布曲线,对渐变型多模光纤(GIMM),可限制模式色散而得到高的模式带宽。

全系统带宽达到一定程度时,同样也受到模内色散的制约,尤其在850nm处,多模光纤的模内色散非常大。

一些国际标准给出的多模光纤在850nm处的色散系数为-120ps/(nm·km),而PCVD多模光纤的色散值介于-95~-110 ps/(nm·km)。

单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。

多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

光纤使用注意!光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。

一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。

光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。

光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。

为什么多模光纤比单模光纤用的频繁?在什么情况下应该用单模光纤?一般来说,多模光纤要比单模光纤来的便宜。

多模和单模的优缺点

多模和单模的优缺点

单模光纤和多模光纤的区别详解两者的优缺点按光在光纤中的传输模式可分为:单模光纤和多模光纤。

单模和多模只有一字之差,那么这两者有什么区别呢,只是简单的摸的数量区别吗?下面我们就来了解两者的区别。

单模光纤和多模光纤的区别单模光纤只能传输的是单模信号,而多模光纤可以传输多模信号,多模光纤(Multimode optical fiber = MMF):顾名思义就是能够传播多种模式电磁波(这里当然是光波)的光纤;由于有多个模式传送,所以存在有很大的模间色散,可传输的信息容量较小;多模光纤纤芯较大,一般为50um,数值孔径为0.2左右;模的数量取决于纤芯的直径、数值孔径和波长。

单模光纤(Single-mode fiber = SMF):则只能够传输一个模式的信号波,但是必须是符合条件的:好象记得教材上说于那个叫归一化频率的东西有关,纤芯特别需要细一点,最好是工作波长的3、4倍;所以单模光线从外形来说就比多模光纤细的多;单模光纤因为只传输一个模式,所以不存在模式色散。

单模光纤和多模光纤的区别多模光纤用于小容量,短距离的系统,单模光纤用于主干,大容量,长距离的系统单模光纤芯径一般是9/125,而多模为50/125或62.5/125。

单模和多模是相对特定波长而言的,相同的光纤在不同的波长可能是单模也可能是多模,光没有单多模之分,光源有单纵模~(dfb)和多纵模(fp)之分,多模光纤在纤径上要比单模细点,单模652是62.5/125,而多模的有50/125和62.5/125两种,从价格上来说,多模的一般是同芯数单模的1.5~2倍,从实际应用来看,多模的基本上用于数据接入光缆中,多模相对于单模来说最大的劣势是模间色散(由于同种光在不同模式内的速率不同)。

在国内主要用的是62.5/125的多模光纤,至于两者的区别好像是成缆后的用途不一样,50的多用于室内光缆。

单模光纤只传基模一种模式,多模可以传多种模式。

单模主要用于长途干线,多模用于局域。

单模光纤和双模光纤有什么区别

单模光纤和双模光纤有什么区别

单模光纤和双模光纤有什么区别推荐文章光纤宽带接无线路由器的方法有哪些热度:路由器与光纤猫ip地址冲突怎么办热度:联通光纤路由器设置的方法热度:光纤猫连接路由器无法上网怎么办热度:Cisco思科光纤交换机配置常用命令介绍热度:在网络工程实施中,经常有菜鸟新手不知道如何分辨单模光纤和多模光纤。

其实两者之间也是有一定的区别的。

下面就跟着店铺一起来看看吧。

单模光纤和多模光纤的区别根据传输点模数的不同,光纤可分为单模光纤和多模光纤。

所谓"模"是指以一定角速度进入光纤的一束光。

单模光纤采用固体激光器做光源,多模光纤则采用发光二极管做光源。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个“模”光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散。

),模分散技术限制了多模光纤的带宽和距离,因此,多模光纤的芯线粗,传输速度低、距离短,整体的传输性能差,但其成本比较低,一般用于建筑物内或地理位置相邻的环境下。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性,因而,单模光纤的纤芯相应较细,传输频带宽、容量大,传输距离长,但因其需要激光源,成本较高。

单模光纤单模光纤的纤芯较细,使光线能够直接发射到中心。

建议距离较长时采用。

另外,单模信号的距离损失比多模的小。

在头3000英尺的距离下,多模光纤可能损失其LED光信号强度的50%,而单模在同样距离下只损失其激光信号的6.25%。

单模的带宽潜力使其成为高速和长距离数据传输的唯一选择。

最近的测试表明,在一根单模光缆上可将40G以太网的64信道传输长达2,840英里的距离。

多模光纤多模光纤中光信号通过多个通路传播;通常建议在距离不到英里时应用。

多模光纤从发射机到接收机的有效距离大约是5英里。

可用跟离还受发射/接收装置的类型和质量影响; 光源越强、接收机越灵敏,距离越远。

研究表明,多模光纤的带宽大约为4000Mb/s。

在安全应用中,选择多模还是单模的最常见决定因素是距离。

单模光纤和多模光纤

单模光纤和多模光纤

单模光纤和多模光纤
单模光纤和多模光纤是光通信领域最常用的两种光纤,它们之间存在着明显的差异。

首先,单模光纤在结构上有一根核心,里面充满原子,把激发的光转化成电信号。


是将光信号透射到一条中心的单芯光纤中,并在发送处和接收处通过对话导口进行对接。

它结构简单,不容易产生失真,同时由于即使长距离传输也不容易拉扯,因而易于安装维修。

而多模光纤具有不同类型的光波,是由多个独立的芯纤及芯芯缠绕层完成的多芯结构。

它采用弯折技术,聚焦点在芯纤中,使光信号通过不同的芯纤分布,从而在长距离传输时
减少损耗同时保证信号的质量。

它的特点是可以容纳多芯光波的传输,可在组网时提供冗
余和避免单点故障等功能。

另外,单模光纤只能传输光信号,传输速度受到抗干扰能力的限制,传输范围比较窄。

而多模光纤可以传输多种信号,速度快、传输范围宽。

在应用方面,单模光纤情况下多用于较短的通信路径中,如本地网络的建设等。

多模
光纤更适合室外的长距离通信,在有线电视等领域发挥着越来越重要的作用。

总结可知,单模光纤与多模光纤的技术原理及优缺点相差较大,在实际应用中应根据
距离、抗干扰等不同要求灵活选择,进行合理利用。

单模光纤和多模光纤分类知识

单模光纤和多模光纤分类知识

单模光纤和多模光纤分类知识一、单模光纤单模光纤(Single-Mode Fiber, SMF)是光纤的一种类型,其传输模式仅为单一的模态,也就是说,光线在光纤中传播时只以一种方式进行。

单模光纤的纤芯直径很小,约为4~10μm,只有单一的反射镜面,因此只能传输单一的波长光。

这种光纤主要用于长距离、大容量的数据传输,如长途电话线、高速网络连接和海底光缆等。

1.传输特性:单模光纤的传输特性包括低损耗、高带宽和低色散等。

由于其纤芯直径很小,光线在光纤中传播时不易发生散射,因此传输损耗较低。

同时,由于只传输单一的模态,其色散效应也较小,适合高速、长距离的数据传输。

2.应用领域:由于单模光纤具有传输容量大、传输距离远等优点,广泛应用于长距离、高速的光纤通信系统,如高速网络连接、数据中心、云计算和远程医疗等领域。

3.技术发展:随着光通信技术的不断发展,单模光纤的技术也在不断进步。

新型的单模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的光通信系统提供更高效、更可靠的数据传输解决方案。

二、多模光纤多模光纤(Multi-Mode Fiber, MMF)是光纤的一种类型,其传输模式为多个模态,也就是说,光线在光纤中传播时可以以多种方式进行。

多模光纤的纤芯直径较大,一般在50~100μm之间,允许多种不同路径的光线在光纤中传播。

这种光纤主要用于短距离、低容量的数据传输,如建筑物内的网络连接、局域网等。

1.传输特性:多模光纤的传输特性包括高带宽和低成本等。

由于允许多种模态传输,其带宽相对较大,适合短距离、低容量的数据传输。

同时,多模光纤的成本较低,易于安装和维护。

2.应用领域:由于多模光纤具有成本低、易于安装和维护等优点,广泛应用于短距离、低容量的光纤通信系统,如建筑物内的网络连接、局域网和校园网等。

3.技术发展:随着光通信技术的不断发展,多模光纤的技术也在不断进步。

新型的多模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的短距离光通信系统提供更高效、更可靠的数据传输解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单模与多模光纤的区别
1、光纤分类
光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

故有62.5/125μm、50/125μm、9/125μm等不同种类。

光纤的工作波长有短波850nm、长波1310nm和1550nm。

光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为
0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长
1.65μm以上的损耗趋向加大。

由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、单模光纤
单模光纤(SingleModeFiber):单模光纤只有单一的传播路径,一般用于长距离传输,中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来发现在1310nm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。

这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。

目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED系统通过消除了1400nm水峰的影响因素,从而为用户提供了更广泛的传输带宽,用户可以自由使用从1260nm到1620nm的所有波段,因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM粗波分复用技术打下了坚实的基础,TeraSPEED解决方案为园区/城市级理想的主干光纤系统。

3、多模光缆
多模光纤(MultiModeFiber)-芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

因此,多模光纤传输的距离就比较近,一般只有几公里。

提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。

因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。

OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。

采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm 更可支持40公里传输)。

如Gigac的XFP万兆光模块850nm可以传输330米,单模1550nm可以传输80km.
因此,如果要选择多模光缆应从以下几点进行考虑:
A.从未来的发展趋势来讲,水平布线网络速率需要1Gb/s带宽到桌面,大楼主干网需要升级到10Gb/s速率带宽,园区骨干网需要升级到10Gb/s或100Gb/s的速率带宽。

目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到
10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆。

B.从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于OM3光缆使用低价的VCSEL和850nm光源设备,使万兆传输造价大大降低。

如果距离不超过150米,选用LazrSPEED150(OM250/125支持万兆150米);LazrSPEED300是300米万兆传输最好的选择;LazrSPEED550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统。

4、光纤传输距离
1 传输速率1Gb/s,850nm
a、普通50μm多模光纤传输距离550m,
b、普通62.5μm多模光纤传输距离275m,
c、新型50μm多模光纤传输距离1100m。

2 传输速率10Gb/s,850nm,
a、普通50μm多模光纤传输距离250m,
b、普通62.5μm多模光纤传输距离100m,
c、新型50μm多模光纤传输距离550m。

3.传输速率2.5Gb/s,1550nm,
a、g.652单模光纤传输距离100km,
b、g.655单模光纤传输距离390km(ofs truewave)。

4 传输速率10Gb/s,1550nm,
a、g.652单模光纤传输距离60km,
b、g.655单模光纤传输距离240km(ofs truewave)。

5 传输速率在40Gb/s,1550nm,
a、g.652单模光纤传输距离4km,
b、g.655单模光纤传输距离16km(ofs truewave)。

ofs truewave:ofs公司出品的真波光纤。

相关文档
最新文档