矩形截面波导管壁电流分析
第三章矩形截面金属波导

引言 金属波导中电磁场解的一般形式 矩形截面波导场方程的求解 矩形截面波导传输模式 矩形截面波导中的TE10模 矩形截面波导的工程应用
一 引言
波导管作为定向导引电磁波传输的机构, 是微波传输线的一种典型类型,它已不再 是普通电路意义上的传输线。虽然电磁波 在波导中的传播特性仍然符合本书第二章 中关于传输线的概念和规律,但是深入研 究导行电磁波在波导中的存在模式及条件, 横向分布规律等问题,则必须从场的角度 根据电磁场基本方程来分析研究。
mπ 2 nπ 2 2 β 2 = ω 2 ε ( k x2 + k y ) = ω 2 ε + a b mπ 2 nπ 2 kc2 = + = ωc 2 ε a b fc = 1 2π ε 1 m n + 2 a 2b
三 矩形截面波导场方程的求解
矩形截面波导结构和坐标如图所示,结构 参数内腔宽a和高b,电磁参数:腔内填充 介质介电常数和磁导率。 求解思路:先求纵场,再求横场。
y
b 0 z
、 ε
x a
矩形截面波导结构和坐标图
1 纵场满足方程和边界条件 很容易推导纵向场所满足的方程如下, TE波中Ψ表示磁场,TM波中Ψ表示电场。
模式存在的条件
对于一种模式,并不是所有的频率电磁波 都能以这种模式存在,或者说每一种模式 存在是有条件的。 这个条件就是这种模式一定能以行波的形 式在波导中传播。 相位常数是实数,其模平方要大于0。
β >0
2
截止频率和截止波长
根据相位常数和模式之间的关系,一种频率 电磁波能在矩形波导中以一种模式传播,则 其频率要大于某一个临界值,这个临界值称 为这种模式存在的截止频率。 截止频率对应波长称为截止波长,截止频率 和截止波长的乘积数值上等于电磁波在波导 填充介质为无界时的相速度。 根据模式截止特性容易判定矩形波导具有高 通的选频特性。
chap2 11矩形波导解读

在矩形波导作为传输线运用时,功率容量和衰减是 一个问题的两个方面。功率容量是为了使通信和雷达 “看”得远,减小衰减是为了保证功率不受损失,一个 “增产” ,一个“节支” ,相互依存,缺一不可。
(五)矩形波导的主模—TE10模
由式(2.50)得
PTE10
A2 a3bZ TEM
2
1 2a (2.66a)
(三)场结构和管壁电流分布
(6)波导横截面内电、磁力线疏密分布相间(体现的是驻波 特性),纵剖面内电、磁力线疏密分布同位(体现的是行波 特性)。
(7)波导中两大系列(TE、TM)波无穷多种模式(TEnm、 TMnm)的场分布可视为m、n取最小值时基本模式场图的组 合。
(五)矩形波导的主模—TE10模
(三)场结构和管壁电流分布
(3)遵循边界条件,理想导体波导壁处电场切向分量应为0, 则电力线应垂直于波导壁而生存,由规律(2)知磁力线必平 行相切于波导壁而生存。 (4)波导壁传导电流(称为壁电流)分布由 n Ht 确定,其中 n为波导壁面向场区一侧的外法向,Ht为壁处切向磁场分 布。 (5)波导空间磁力线始终自身闭合(因自然界不存在磁荷, 磁力线环绕传导或位移电流生存),电力线既有始于又终 止于波导壁而生存(壁处有表面电荷,体现电场的有散性) 的形式,也有闭合力线(体现时变场中电场的有旋性 E j B )
2ห้องสมุดไป่ตู้
(2.62) (2.64)
g
1 2a
k
2
vg v 1 2a
(2.65)
v
Z TE10
Z TEM
c
r r
(三)场结构和管壁电流分布 可见TE10模只有三个场分量存在,一个电场分量和两 个磁场分量。这里,将场的空间分布图形用z=0处的xy剖 面、x=a/2处的yz剖面和y=b/2处的xz剖面上的分布图表示。 并取瞬时进行作图,首先作三个剖面上的电场分布图。
2.2 矩形波导

H10(即TE10)波的截止波长最大,它最容易在波导中传播。
为了保证单一的H10波传输,波导尺寸必须满足:
(c ) H20 (c ) H10
a 2a
(c ) H01
2b
§2.2 矩形波导
2.2.4 矩形波导的主模—TE10
1.场表达式
Ez 0
电力线只分布在波导的横截面内
基模:TE10(a>b)
a
横截面图
y z
Hx 窄边纵切面 Ey
§2.2 矩形波导
x z
g
立体图见图2-5
基模:TE10(a>b) 宽边纵切面
§2.2 矩形波导
3.传输参量
波导波长
g
vp f
1 ( / c )2
相移常数
2 2 g
1 ( / c )2
§2.2 矩形波导
相速
vp
v
1 ( / c )2
群速 vg v 1 ( / c )2
(3) 场量沿z轴为行波,沿x轴和y轴为纯驻波
(4) 主模:最低次模
TE10模
一般来说,用a表示波导宽边,b表示窄边,a>b,K10=π/a是所 有波型中波数最小的,因此TE波型的最低次波型是TE10模。
§2.2 矩形波导
3.传输条件
波导中不同模式的截止波长是不同的,对于特定尺寸的波导,
只有满足 c 的模才能得到传输。
§2.2 矩形波导
TE10单模传输条件:
a 2a
2b
兼顾所能够承受一定的传输功率:图(2-8)
a 1.8a
(2-97)
兼顾最小功率损耗:
a=0.7λ
b=(0.4~0.5)a
§2.2 矩形波导
3-5矩形波导

令(-U0/a)=E0
E y E0 sin a j ( t z ) Hx E0 sin x e a 1 j ( t z ) Hz j E0 cos x e a a x e j ( t z )
j (t z ) Jx x j a E0 cos a x e
k 2 k
1 2 2 c
2 2 2 m n a b
1 2
H T I ( z ) T ( x, y )
ET U ( z ) T ( x, y ) z
X ( x) C1 cos k x x C 2 sin k x x Y ( y ) C3 cos k y y C 4 sin k y y
( x, y) (C1 cosk x x C2 sin k x x)(C3 cosk y y C4 sin k y y)
§3-5矩形波导
一、矩形波导中传输波型 及其场分量
• (一)TM波(Hz=0)
2 ( x, y) 2 ( x, y) k c2 ( x, y) 0 x 2 y 2
(x,y)=X(x)Y(y)
1 d 2 X ( x) 1 d 2Y ( y ) 2 k c 2 2 X ( x) dx Y ( y) dy
j (t z ) Jz z E0 sin a x e JS x
y b
j (t z ) n H t y x H x z H x z E0 sin a x e y b j (t z ) J z x e
矩形波导的设计讲解

矩形波导的设计讲解矩形波导模式和场结构分析第⼀章绪论1.1选题背景及意义矩形波导(circular waveguide)简称为矩波导,是截⾯形状为矩形的长⽅形的⾦属管。
若将同轴线的内导线抽⾛,则在⼀定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。
矩波导加⼯⽅便,具有损耗⼩和双极化特性,常⽤于要求双极化模的天线的馈线中,也⼴泛⽤作各种谐振腔、波长计,是⼀种较常⽤的规则⾦属波导。
矩波导有两类传输模式,即TM 模和TE 模。
其中主要有三种常⽤模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。
在不同⼯作模式下,截⽌波长、传输特性以及场分布不尽相同,同时,各种⼯作模式的⽤途也不相同。
导模的场描述了电磁波在波导中的传输状态,可以通过电⼒线的疏密来表⽰场得强与弱。
本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常⽤模式,并利⽤MATLAB 和三维⾼频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。
1.2国内外研究概况及发展趋势由于电磁场是以场的形态存在的物质,具有独特的研究⽅法,采取重叠的研究⽅法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。
时域有限差分法就是实现直接对电磁⼯程问题进⾏计算机模拟的基本⽅法。
在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进⾏了⼤量的研究,主要是描述物体在瞬态电磁源作⽤下的理论。
另外,对于物体的电特性,理论上具有⼏乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作⽤。
英国物理学家汤姆逊(电⼦的发现者) 在1893 年发表了⼀本论述麦克斯韦电磁理论的书,肯定了矩⾦属壁管⼦(即矩波导) 传输电磁波的可实现性, 预⾔波长可与矩柱直径相⽐拟, 这就是微波。
他预⾔的矩波导传输, 直到1936 年才实现。
微波技术矩形波导2

(3-4)
1E P= ab 4η
2 0
空气波导
µ =120π ε
非磁介质波导 µ = µ0 ,ε = ε0εr
E ab λ P= 1− 2a 480π
2 0
2
P=
2 E0 ab εr
ห้องสมุดไป่ตู้480π
λ 1− 2a
2
λ 请注意:对非磁介质波导, = 请注意:对非磁介质波导,
ωµ π
β π
TE10波主要特性
传 条 播 件 波 波 导 长
λ< c = 2a λ λ λg = 2 λ
1− 2a C λ 1− 2a 1 λ 1− 2a
2 2
相
速
υp =
波 阻 型 抗
η=
µ ε
场结构
图 3-1
二、TE10波的另一种表示
$ dσ = kdxdy。
v
y
ds z x b a 0
图 3-2
计算功率时的面积元
2 v v 1 E0 2 π S ⋅ dσ = sin xdxdy 2η a 2 1 E0 a b 2 π P= ∫0 ∫0 sin a xdxdy 2η 2 1 E0 a π = b∫ 1− cos xds 2η 0 a
我们在上面给出的TE 波表达式, 我们在上面给出的 TE10 波表达式 , 是以 Hz 为领矢 矢量的。然而, 作领矢矢量, 矢量的。然而,在实用上也常有用Ey作领矢矢量,即 设 π − jβz Ey = E0 sin x e (3(3-1) a 利用Maxwell方程 方程 利用
2 Htmdl s
(3-9)
其中, 其中,
电磁场与微波技术实验2矩形波导仿真与分析

实验二 矩形波导仿真与分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导高次模的基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、预习要求1、 导波原理。
2、 矩形波导模式基本结构,及其基本电磁场分析和理论。
3、 HFSS 软件基本使用方法。
三、实验原理由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。
这里只分析TE 模(Ez=0)对于TE 模只要解Hz 的波动方程。
即采用分离变量,并带入边界条件解上式,得出TE 模的横向分量的复振幅分别为(1)矩形波导中传输模式的纵向传输特性①截止特性波导中波在传输方向的波数β由式9 给出222000220z z c z H H k H x y ∂∂++=∂∂式7000220002200020002()cos()sin()()sin()cos()()sin()cos()()cos()sin()z x c c z y c c y x H c x y H c H n m n E j j H x y k y k b a b H m m n E j j H x y k x k a a b E m m n H j H x y Z k a a b E n m n H j H x y Z k b a b ωμωμπππωμωμπππβπππβπππ∂⎧==⎪∂⎪⎪∂==-⎪∂⎪⎨⎪=-=⎪⎪⎪==⎪⎩式822222c c k k ππβλλ=-=-式9式中k 为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即k 2>k 2c 或λ<λc(f >f c ) 式10如果上式不满足,则电磁波不能在波导内传输,称为截止。
故k c 称为截止波数。
矩形波导中TE 10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE 10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
矩形波导 PPT

m 场量沿x轴[0,a]出现的半周期(半个纯驻波)的数目;
n 场量沿y轴[0,b]出现的半周期的数目。
④j 相位关系 Ey-Hx、Ex-Hy
z轴有功率传输
Ez-Hx、Ez-Hy
x、y轴无功率传输
所以行波状态下,沿波导纵向(z轴)传输有功功率、横向(x、
y轴)无功功率。
2) 场结构
为了能形象和直观的了解场的分布(场结构),可以 利用电力线和磁力线来描绘它。电力线和磁力线遵循 的规律:
力线上某点的切线方向
该点处场的方向
力线的疏密程度
场的强弱
电力线 发自正电荷、止于负电荷,也可以环绕着交变磁场构 成闭合曲线,电力线之间不能相交。在波导壁的内表面(假设为 理想导体)电场的切向分量为零,只有法向分量(垂直分量), 即在波导内壁处电力线垂直边壁。
磁力线 总是闭合曲线,或者围绕载流导体,或者围绕交变电 场而闭合,磁力线之间不能相交,在波导壁的内表面上只能存在 磁场的切向分量,法向分量为零。
3)相速和群速
TMmn和TEmn波型的相速和群速表示式相同:
vp
v
1(/c)2
vg v 1-c2
4)波型阻抗
TMmn和TEmn波型阻抗为:
ZTE
1
1c2
g
ZTM
1c2
g
5)尺寸选择——矩形波导的工作波型图
基于前面的定义,根据波导横截面尺寸、工作波长、 截止波长之间关系,构成矩形波导工作波型图。根据不 同要求,可利用波型图对波导的横截面尺寸和波导波长 作出选择。
TE0n和TEm0是非简并模;其余的TEmn和TMmn都存在简并模: 若a=b, 则TEmn 、TEnm、TMmn和TMnm是简并模;若a=2b,则TE01与TE20,TE02和 TE40,TE50、TE32和TM32是简并模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
CONTENTS
1 概述
2 波导管壁电流分布形态 3 波导管的开槽 4 心得与体会
一、概述
定义: 当波导内传输电磁波时,波导壁上将会感应出高频电流,我们称之为波导管 壁电流。
研究波导管壁电流的意义:
波导壁面上的电流分布形态,是与波导传输模式的场结构密不可分的。掌握 了壁电流分布形态,使我们可对波导传输线的导体损耗进行估算,而且对于 处理相关技术问题和设计由波导衍生的元件等都具有指导意义。
四、心得与体会
通过这次讨论课,我们加深了对矩形波导的认识,对其管壁电流有 了更深刻的理解。我们发现若实际工程中若应用矩形波导,考虑管 壁电流是必不可少的环节,尤其是开槽问题。所以我们会继续认真 学习电磁波技术,发现它更深层次的奥秘。
ห้องสมุดไป่ตู้
二、波导管壁电流分布形态——宽壁面
在y=0的宽壁面上,由 模的场量表达式可知:
在波导底宽壁面上既有z方向的壁电流,又有x方向的壁电流,在同一z位置处z方
向电流与x方向电流有 的相位差。在y=b的宽壁面上,因为法线方向相反,所以
壁电流分布形态与y=0宽壁面相同,当方向相反。
2
二、波导管壁电流分布形态
模对应的波导内壁上一瞬间的壁电流分布形态如图:
三、壁电流的特性在实际工程中的应用——开槽问题
非辐射性槽:1、2 辐射性槽:3、4、5
4、开槽的方法:当波导工作在TE10模时,在波导宽壁面中心线即a/2处开纵 向窄缝。
为什么这样 开槽?
因为矩形波导中的主模为TE10模,而由TE10的管 壁电流分布可知,在波导宽边中线处只有纵向电 流,因此沿波导宽边的中线开槽不会因切断管壁 电流而影响波导内的场分布,也不会引起波导内 电磁波由开槽口向外辐射能量。
二、波导管壁电流分布形态
波导管壁上的电流,与管壁上磁场的切向分量相关。其关系为:
n为波导内壁面的法线方向单位矢量, H t 为波导内壁面上切线方向磁场。
二、波导管壁电流分布形态——窄壁面
对于 TE10 模,在x=0的窄壁面上,由 模的场量表达式可知:
因此在窄壁面上电流为-y方向。同理,x=a的窄壁面上电流也是-y方向