初中数学几何证明题技巧之欧阳学创编

合集下载

s参数与史密斯圆图之欧阳学创编

s参数与史密斯圆图之欧阳学创编

阻抗匹配与史密斯(Smith)圆图: 基本原理时间:2021.03.03 创作:欧阳学本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:•计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

•手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

•经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

•史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

八年级数学初二数学几何难题之欧阳法创编

八年级数学初二数学几何难题之欧阳法创编

F1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形. 2、已知:如图,在四边形ABCD M 、N 分别是AB 、CD 的中点,线交MN 于E 、F . 求证:∠DEN =∠F .3、如图,分别以△ABC 的AC 和△ABC 的外侧作正方形ACDE 点P 是EF 的中点. 求证:点P 到边AB 的距离等于4、如图,四边形ABCD AE =AC ,AE 与CD 相交于F .求证:CE =CF . 5、如图,四边形ABCD 为正方形,DE CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . 6、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .7、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.8、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .9、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.10、P 为正方形ABCD 内的一点,并且PA =a ,PB =a 2,PC=a 3,求正方形的边长.11、如图1,已知△ABC,∠ACB=90°,分别以AB 、BC 为边向外作△ABD 与△BCE,且DA=DB ,BE=EC ,若∠ADB=∠BEC=2∠ABC, D EDA CB F F E PC B A A P C B PA DC B A CB P D连接DE交AB于点F,试探究线段DF与EF的数量关系,并加以证明。

12、如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1) 当AB≠AC时,证明四边形ADFE为平行四边形;(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.13、如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。

八年级数学几何证明题技巧(含标准答案)[1]

八年级数学几何证明题技巧(含标准答案)[1]

八年级数学几何证明题技巧(含标准答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学几何证明题技巧(含标准答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学几何证明题技巧(含标准答案)(word版可编辑修改)的全部内容。

几何证明题的技巧1。

几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系.这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2。

掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3。

掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形.在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的。

求证:DE=DF分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45.从而不难发现∆∆DCF DAE ≅证明:连结CDAC BC A BACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线.显然,在等腰直角三角形中,更应该连结CD,因为CD 既是斜边上的中线,又是底边上的中线。

初中数学代数、几何解题技巧之欧阳体创编

初中数学代数、几何解题技巧之欧阳体创编

如何用好题目中的条件暗示时间:2021.02.03 创作:欧阳体有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。

【例1】直线与x轴、y轴分别交于B、A两点,如图1。

图1(1)求B、A两点的坐标;(2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。

求D点的坐标。

解析:(1)容易求得,A(0,1)。

(2)如图2,图2∵,A(0,1),∴OB=,OA=1。

∴在Rt△AOB中,容易求得∠OBA=30°∵把△AOB以直线AB为轴翻折,∴∠OBC=2∠OBA=60°,BO=BC。

∴△OBC是等边三角形以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。

反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。

图3(1)求三解形ABC的面积。

(2)证明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值。

解析:(1)容易求得:A(,0),B(0,1),∴。

(2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。

图4(3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得:∴,∵,∴,∴。

②如图5,当点P在第一象限时,用类似的方法可求得a=。

图5反思:由第(1)小题中求得的和第(2)小题中证明所得的结论:三角形BOP的面积是一个常数,实质上暗示着第(3)小题的解题思路:利用来解。

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14、怎么样干几许道明题之阳早格格创做【知识粗读】1. 几许道明是仄里几许中的一个要害问题,它对于培植教死逻辑思维本领有着很大效率.几许道明有二种基原典型:一是仄里图形的数量闭系;二是有闭仄里图形的位子闭系.那二类问题时常不妨相互转移,如道明仄止闭系可转移为道明角等或者角互补的问题.2. 掌握领会、道明几许问题的时常使用要领:(1)概括法(由果导果),从已知条件出收,通过有闭定义、定理、公理的应用,逐步背前促成,曲到问题的办理;(2)领会法(执果索果)从命题的论断思量,推敲使其创制需要具备的条件,而后再把所需的条件瞅成要证的论断继承推敲,如许逐步往上顺供,曲到已知究竟为止;(3)二头凑法:将领会与概括法合并使用,比较起去,领会法好处思索,概括法易于表白,果此,正在本量思索问题时,可合并使用,机动处理,以好处收缩题设与论断的距离,末尾达到道明脚段.3. 掌握构制基原图形的要领:搀纯的图形皆是由基原图形组成的,果此要擅于将搀纯图形领会成基原图形.正在更多时间需要构制基原图形,正在构制基原图形时往往需要增加辅帮线,以达到集结条件、转移问题的脚段.【分类剖析】1、道明线段相等或者角相等二条线段或者二个角相等是仄里几许道明中最基原也是最要害的一种相等闭系.很多其余问题末尾皆可化归为此类问题去证.道明二条线段或者二角相等最时常使用的要领是利用齐等三角形的本量,其余如线段中垂线的本量、角仄分线的本量、等腰三角形的判决与本量等也经时常使用到.例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,. 供证:DE =DF领会:由∆ABC 是等腰曲角三角形可知,∠=∠=︒A B 45,由D 是AB 中面,可思量连结CD ,易得CD AD =,∠=︒DCF 45.进而没有易创制∆∆DCF DAE ≅ 道明:连结CD道明:正在曲角三角形中,做斜边上的中线是时常使用的辅帮线;正在等腰三角形中,做顶角的仄分线或者底边上的中线或者下是时常使用的辅帮线.隐然,正在等腰曲角三角形中,更该当连结CD ,果为CD 既是斜边上的中线,又是底边上的中线.原题亦可延少ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰曲角三角形.有兴趣的共教无妨一试. 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF.供证:∠E =∠F道明:连结AC正在∆ABC 战∆CDA 中,正在∆BCE 战∆DAF 中,道明:利用三角形齐等道明线段供角相等.常须加辅帮线,制制齐等三角形,那时应注意:(1)制制的齐等三角形应分别包罗供证中一量;(2)加辅帮线不妨间接得到的二个齐等三角形.2、道明曲线仄止或者笔曲正在二条曲线的位子闭系中,仄止与笔曲是二种特殊的位子.证二曲线仄止,可用共位角、内错角或者共旁内角的闭系去证,也可通过边对于应成比率、三角形中位线定理道明.证二条曲线笔曲,可转移为证一个角等于90°,或者利用二个钝角互余,或者等腰三角形“三线合一”去证.例3. 如图3所示,设BP、CQ是∆ABC的内角仄分线,AH、AK分别为A到BP、CQ的垂线.供证:KH∥BC领会:由已知,BH仄分∠ABC,又BH⊥AH,延少AH接BC于N,则BA=BN,AH=HN.共理,延少AK接BC于M,则CA=CM,AK =KM.进而由三角形的中位线定理,知KH∥BC.道明:延少AH接BC于N,延少AK接BC于M∵BH仄分∠ABC又BH⊥AHBH=BH共理,CA=CM,AK=KM∴KH是∆AMN的中位线即KH//BC道明:当一个三角形中出现角仄分线、中线或者下线沉适时,则此三角形必为等腰三角形.咱们也不妨明白成把一个曲角三角形沿一条曲角边翻合(轴对于称)而成一个等腰三角形.例4. 已知:如图4所示,AB=AC,∠,,90.A AE BF BD DC=︒==供证:FD⊥ED道明一:连结AD正在∆ADE战∆BDF中,道明:有等腰三角形条件时,做底边上的下,或者做底边上中线,或者做顶角仄分线是时常使用辅帮线.道明二:如图5所示,延少ED到M,使DM=ED,连结FE,FM,BM道明:道明二曲线笔曲的要领如下:(1)最先领会条件,瞅察是可用提供笔曲的定理得到,包罗加时常使用辅帮线,睹原题证二.(2)找到待证三曲线所组成的三角形,道明其中二个钝角互余.(3)道明二曲线的夹角等于90°.3、道明一线段战的问题(一)正在较少线段上截与一线段等一较短线段,道明其余部分等于另一较短线段.(截少法)例5. 已知:如图6所示正在∆ABC中,∠=︒B60,∠BAC、∠BCA的角仄分线AD、CE相接于O.供证:AC=AE+CD领会:正在AC上截与AF=AE.易知∆∆≅,∴∠=∠12.由∠=︒AEO AFOB60,知∠+∠=︒∠=︒∠+∠=︒,,.∴∠=∠=∠=∠=︒566016023120123460,得:,≅∴=FOC DOC FC DC∆∆道明:正在AC上截与AF=AE又∠=︒B60即AC AE CD=+(二)延少一较短线段,使延少部分等于另一较短线段,则二较短线段成为一条线段,道明该线段等于较少线段.(补短法)例6. 已知:如图7所示,正圆形ABCD中,F正在DC上,E正在BC 上,∠=︒EAF45.供证:EF=BE+DF领会:此题若仿照例1,将会逢到艰易,没有简单利用正圆形那一条件.无妨延少CB至G,使BG=DF.道明:延少CB至G,使BG=DF正在正圆形ABCD中,∠=∠=︒=ABG D AB AD90,又∠=︒EAF45即∠GAE=∠FAE4、中考题:如图8所示,已知∆ABC为等边三角形,延少BC到D,延少BA到E,而且使AE=BD,连结CE、DE.供证:EC=ED道明:做DF//AC接BE于F∆ABC是正三角形∴∆BFD是正三角形又AE=BD即EF=AC题型展示:道明几许没有等式:例题:已知:如图9所示,∠=∠>12,AB AC.供证:BD DC >道明一:延少AC 到E ,使AE =AB ,连结DE正在∆ADE 战∆ADB 中,道明二:如图10所示,正在AB 上截与AF =AC ,连结DF 则易证∆∆ADF ADC ≅道明:正在有角仄分线条件时,常以角仄分线为轴翻合构制齐等三角形,那是时常使用辅帮线.【真战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一面,DE ⊥CD 于D ,接BC 于E ,且有AC AD CE ==.供证:DE CD =122. 已知:如图12所示,正在∆ABC 中,∠=∠A B 2,CD 是∠C 的仄分线. 供证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的顶面A ,正在∠A 内任引一射线,过B 、C 做此射线的垂线BP 战CQ.设M 为BC 的中面.供证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,供证:()AD AB AC BC <++14【试题问案】1. 道明:与CD 的中面F ,连结AF又∠+∠=︒∠+∠=︒14901390,2. 领会:原题从已知战图形上瞅佳象比较简朴,但是一时又没有知怎么样下脚,那么正在道明一条线段等于二条线段之战时,咱们时常采与“截少补短”的脚法.“截少”将要少的线段截成二部分,道明那二部分分别战二条短线段相等;“补短”将要一条短线段延少出另一条短线段之少,道明其战等于少的线段.道明:延少CA至E,使CE=CB,连结ED 正在∆CBD战∆CED中,又∠=∠+∠BAC ADE E3. 道明:延少PM接CQ于R又BM CM BMP CMR,=∠=∠∴QM是Rt QPR∆斜边上的中线4. 与BC中面E,连结AE。

新北师大版八年级下册《三角形的证明》之欧阳法创编

新北师大版八年级下册《三角形的证明》之欧阳法创编

三角形的证明时间:2021.03.09 创作:欧阳法1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等2.下列说法中,正确的是()A.两腰对应相等的两个等腰三角形全等B.两角及其夹边对应相等的两个三角形全等C.两锐角对应相等的两个直角三角形全等D.面积相等的两个三角形全等3.如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°4.已知:如图,在△MPN中,H是高MQ和NR 的交点,且MQ=NQ.求证:HN=PM.1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙5.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.(1)当直线l 不与底边AB相交时,求证:EF=AE+BF.(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15C.12或15 D.18 2.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3C.3<x<6D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC 的平分线于点D,求证:MD=MA.1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6B.7 C.8D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7 C.D.9 5.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12.5°C.15°D.20°3、如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.1.下列命题:①两个全等三角形拼在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线所在直线;③等边三角形一边上的高所在直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.其中错误的有()A.1个B.2个C.3个D.4个2.如图,AC=CD=DA=BC=DE.则∠BAE是∠BAC的()A.4倍B.3倍C.2倍D.1倍3.如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为.4.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是()A.60°B.110°C.120°D.135°5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12 C.32D.646.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立? 若成立,给予证明;若不成立,说明理由.7.如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.1、否定“自然数a、b、c中恰有一个偶数”时的正确反正假设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数2、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°3、证明:在一个三角形中至少有两个角是锐角.1、说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab=0,那么a=0,b=0;(4)在一个三角形中有两个角相等,那么这两个角所对的边相等2.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B.6 C.5D.44.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.25.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于()A.6 B.4C.3D.26.如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.3B.22C.4D.37.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗? 请证明你的结论.8.如图,在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重合.(1)在图中画△BCD,使△BCD的面积=△ABC的面积(点D在小正方形的顶点上).(2)请直接写出以A、B、C、D为顶点的四边形的周长.9.如图,把矩形纸片ABCD沿EF折叠,使点B 落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.1.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A.已知斜边和一锐角B.已知一直角边和一锐角C.已知斜边和一直角边D.已知两个锐角2.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.333.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.4.已知Rt△ABC中,∠C=90°,且BC=12AB,则∠A等于()A.30°B.45°C.60°D.不能确定5.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.6.如图,在5×5的方格纸中,每一个小正方形的边长都为1,∠BCD是不是直角? 请说明理由.7.正方形网格中的每个小正方形边长都是1.每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中,画△ABC,使△ABC的三边长分别为3、22、5;(2)在图2中,画△DEF,使△DEF为钝角三角形且面积为2.【提高练习】1.如图.矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3.则AB 的长为( )A .3B .4C .5D .62.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .553.张老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数n (n >1)的代数式表示:a =,b =,c =;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.4.如图,AC =BC =10cm ,∠B =15°,AD ⊥BC 于点D ,则AD 的长为( )A .3cmB .4cmC .5cmD .6cm n 2 3 4 5 … a 22-1 32-1 42-1 52-1 … b 4 6 8 10 … c 22+1 32+1 42+1 52+1 …5.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D,BD=8,则AC=.6.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC,使△ABC为面积为5的直角三角形;(2)在图2中画一个△ABC,使△ABC为钝角等腰三角形.7.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△AEB≌△CDA;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求BE的长.【典型例题】1.如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( )A .AE =BEB .AC =BEC .CE =DED .∠CAE =∠B2.如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )A .7B .14C .17D .203.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( )A .三条中线的交点B .三边垂直平分线的交点C .三条高的交点D .三条角平分线的交点4.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处5.如图,AD为∠BAC的角平分,线段AD的垂直平分线交AB于M,交AC于N,试说明MD∥AC.6.如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.7.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB 垂直平分DF.【变式练习】1.如图,在Rt△ABC中,∠B=90°,ED是AC 的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C 的度数为()A.30°B.40°C.50°D.60°2.如图,在△ABC中,已知AC=29,AB的垂直平分线交AB于点D,交AC于点E.△BCE的周长等于50,求BC的长为多少?3.如图,在△ABC中,DE垂直平分AB,FG垂直平分AC,BC=13cm,则△AEG的周长为多少?4.已知:如图,△ABC的∠A>∠ABC,边BC 的垂直平分线DE分别交AC,BC于D,E,则AD+BD与BC的关系是()A.大于B.小于C.等于D.不能确定5.如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置? 你能画图说明吗? 6.如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB,△BCE的周长为8cm,且AC -BC=2cm,求AB、BC的长.1.如图,在△ABC中,DE垂直平分AB,分别交AB、BC于D、E点.MN垂直平分AC,分别交AC、BC于M、N点.(1)若∠BAC=100°,求∠EAN的度数;(2)若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.2.如图2,点D为线段AB与线段BC的垂直平分线的交点,∠A=35°,则∠D等于()A.50°B.65°C.55°D.70°3.如图3,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.a+bB.a-bC.2a+bD.a+2b4.如图有一块直角三角形纸片,∠ACB=90°,两直角边AC=4,BC=8,线段DE垂直平分斜边AB,则CD等于()A.2B.2.5C.3D.3.55.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线交AD于E,连接EC;则∠AEC等于()A.100°B.105°C.115°D.120°1.如图,∠POA=∠POB,PD⊥OA于点D,PE⊥OB于点E,OP=13,OD=12,PD=5,则PE=()A.13B.12C.5D.12.三角形内有一点,它到三边的距离相等,则这点是该三角形的()A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线的交点3.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cmB.4cmC.3cmD.2cm4.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB 垂直平分OP5.如图,直线a、b、c,表示三条相互交叉的公路,现拟建一个货物中转站,要求它到三条公路的距离都相等,则可以供选择的地址有()A.一处B.四处C.七处D.无数处6.求作一点P,使PC=PD,且点P到AC,AB 的距离相等.(要求保留作图痕迹,不必写出作法)7.(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB 上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行? 若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行? 请说明理由.8.如图,AD为△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF交AD于点G、试判断线段AD与EF的位置关系,并证明你的结论.9.如图,△ABC中,O是BC的中点,D是∠BAC平分线上的一点,且DO⊥BC,过点D 分别作DM⊥AB于M,DN⊥AC于N.求证:BM=CN.【变式练习】1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.42.如图所示,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D,若OE=4,∠AOB=60°,求DE的长3.如图,利用尺规求作所有点P,使点P同时满足下列两个条件:①点P到A,B两点的距离相等;②点P到直线l1,l2的距离相等.(要求保留作图痕迹,不必写出作法)4.已知:如图所示,△ABC中,∠C=90°,AD 是∠BAC的平分线,DE⊥AB于E,F在AC 上,BD=DF.求证:CF=EB.5.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM 是否平分∠BAD? 请你证明你的结论;(2)线段DM与AM有怎样的位置关系? 请说明理由.【提高练习】1.如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC =6,求PD 等于 2.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .44.如下图左,在矩形ABCD 中,点P 在AB 上,且PC 平分∠ACB .若PB =3,AC =10,则△PAC 的面积为.5.已知:如上图右,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于点E ,若两平行线间的距离为6,求OE 的长6.2011年4月21日是重庆一中80周年校庆日,学校准备进一步美化校园,在校内一块四边形草坪内栽上一棵银杏树如图,要求银杏树的位置点P到边AB、BC的距离相等,并且P到点A、D的距离也相等.请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).。

浅谈初中数学几何证明题解题方法--之欧阳德创编

浅谈初中数学几何证明题解题方法--之欧阳德创编

浅谈初中数学几何证明题解题方法内容摘要:几何证明题的一般结构由已知条件和求证目标组成。

做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程关键词:几何证明条件结论.执因索果执果索因辅助线初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。

这种思维方式学生刚接触,会遇到一些困难。

许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。

为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。

学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

一、几何证明题的一般结构初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。

已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。

求证指题目要求的经过推理最终得出的结论。

已知条件是题目既定成立的、毋庸置疑而且必然正确的。

求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。

例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA ∠CMD 是对顶角等等求证目标是:△ABC ≌△DCB注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等二、做几何证明题的一般步骤(一)、审题B CA DMN审题就是读题,这一步是解决几何证明题的关键,非常重要。

许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。

和读其它类型的题有所不同,读几何证明题要求图文对照,做到心中有几何基础知识,一边读题一边对照几何图形,要求每读一句题对照图形一次,读懂而且要读完整。

《数学思想与方法》形成性考核册作业答案之欧阳学创编

《数学思想与方法》形成性考核册作业答案之欧阳学创编

数学思想与方法》形成性考核册作业1答案作业1一、简答题1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。

代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。

2、比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。

答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。

决定性现象的特点是:在一定的条件下,其结果可以唯一确定。

因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。

对于这类现象,由于条件和结果之间不存在必然性联系。

在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。

用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。

但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。

同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。

这些是确定数学的局限所在。

二、论述题1、论述社会科学数学化的主要原因。

答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。

第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何证明题技巧
几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。

掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。

在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。

很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。

我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。

这里的记有两层意思。

第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。

如给出对边相等,就用边相等的符号来表示。

第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。

难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。

分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。

看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。

然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。

很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,
重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:(1)正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。

顾名思义,就是从相反的方向思考问题。

运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。

这种方法是推荐学生一定要掌握的。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。

如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证
明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。

对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等
1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两个角相等
1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

四、证明两直线平行
1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明线段不等
1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

八、证明两角的不等
1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

九、证明比例式或等积式
1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

十、证明四点共圆
1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆。

相关文档
最新文档