做几何证明题方法归纳
初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。
2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。
3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。
4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。
5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。
6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。
7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。
在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。
2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。
3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。
4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。
综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。
几何证明题的基本结构和方法

几何证明题的基本结构和方法:1.正确地进行证明,先要探求证明的思路:这有三种方法:一种方法是从结论着眼,思考要使结论成立,需要具备什么条件,这样逆推直到需要的条件已经具备,当然这种逆推的过程中,要不断地向已知条件靠拢,这就是“执果索因”。
有时,这种逆推会遇到障碍,这时也可用另一种方法思考,即从已知条件入手,思考从已知条件可以顺推出什么结论来,这样顺推直至结论成立,这就是“由因导果”,或者也可以顺推与逆推相结合,从问题的两头向中间靠拢,从而发现问题的突破口,这也叫“两头凑”。
2.“执果索因”的方法也就是证明的思维方法中的“综合法”,“由因导果”的方法也就是证明的思维方法中的“分析法”。
“两头凑”的方法也就是证明的思维方法中的“分析综合法”。
3.“综合法”、“分析法”,“分析综合法”是证明的思维方法中的直接证法。
注:今后学习中还会学习到证明的思维方法中的间接证法:反证法和同一法。
这两种方法在今后的学习中会逐步介绍给同学们。
八.思维方法的训练例1.已知如图,AOC为一直线,OB为任一射线,OP平分∠AOB,OE平分∠BOC,求证:OE⊥OP。
分析:1、由逆推法分析要证明OE⊥OP,由垂直定义只要证明∠EOP=90°,而∠EOP由∠1、∠2所组成,只要证明∠1+∠2=90°。
由于OE,OP分别是∠BOC和∠AOB的角平分线,∠1=∠BOC,∠2=∠AOB,又由于AOC为一直线,∠AOB+∠BOC=180°,那么(∠AOB+∠BOC)=90°,即∠1+∠2=90°。
2.由顺推法分析:①由AOC为直线推出∠AOB+∠BOC=180°,②由OP,OE分别为∠AOB,∠BOC平分线推得∠2=∠AOB,∠1=∠BOC,③由∠POE=∠1+∠2=(∠AOB+∠BOC)推得∠POE=90°再推得OP⊥OE。
3.上述分析中①和②的两个推理是并列的,因而在证明中先写①或②没有什么关系,但③是①和②共同的结果,所以③必须在①和②的后面。
平面几何证明题的解题方法

平面几何证明题的解题方法平面几何证明题是数学中的重要内容之一,通过证明题的解答,我们可以深入理解几何学的概念和性质。
然而,解答平面几何证明题并非易事,需要灵活运用多种证明方法和技巧。
本文将介绍几种常用的解题方法,帮助读者更好地应对平面几何证明题。
一、直接证明法直接证明法是解答平面几何证明题的基础方法之一。
它通过逻辑推理和已知条件与结论之间的关系,一步步地证明结论的正确性。
在使用直接证明法时,首先要仔细分析所给条件和待证明结论。
根据已知条件,可以运用各种几何定理和性质,逐步推导出结论,直至得到所要证明的结论。
例如,对于“证明三角形ABC的三条中线交于一点”的证明题,我们可以先通过已知条件得出三角形ABC的三条中线等长,再利用中位线的性质得出这三条中线交于一点的结论。
二、反证法反证法是解答平面几何证明题的另一种常用方法。
它通过假设所要证明的结论不成立,推导出一个与已知条件矛盾的结论,从而证明所要证明的结论成立。
在运用反证法时,我们需要首先假设所要证明的结论不成立,然后通过推理,得出一个矛盾的结论,以此证明原命题的正确性。
例如,对于“证明等腰三角形的底角相等”的证明题,我们可以先假设等腰三角形的底角不相等,然后推导出一个与已知条件矛盾的结论,例如底边不等长或者顶角不等于90度,从而证明等腰三角形的底角相等的结论成立。
三、合同法合同法是一种常用于证明线段或角相等的证明方法。
通过构造相等的辅助线段或角,以达到证明所要求的结论。
在使用合同法时,我们需要根据已知条件和待证明的结论,合理构造辅助线段或角,并利用几何定理和性质证明这些辅助线段或角相等,从而得出所要证明的结论。
例如,对于“证明两个三角形全等”的证明题,我们可以通过构造辅助线段或角,使得两个三角形的对应边或对应角相等,然后运用全等三角形的性质,推导出两个三角形全等的结论。
四、相似法相似法是一种常用于证明平行线、比例关系和相似三角形等性质的证明方法。
通过证明对象与已知对象之间的相似关系,来推导出所要求的结论。
立体几何平行证明题常见模型及方法

立体几何平行证明题常见模型及方法立体几何中的平行证明题常见的模型和方法有很多。
下面我将介绍一些常见的模型和方法,以帮助你更好地理解和应用立体几何的平行证明。
一、常见模型1.平面与平面的平行证明:常见的模型有两条平行线或两个平行四边形,通过证明平面与平面内对应的直线或四边形是平行的,即可得证。
2.直线与直线的平行证明:常见的模型有平行四边形和交叉角等,通过证明两直线间的对应角相等或同位角互补,即可得证。
3.平面与直线的平行证明:常见的模型有平行四边形的一对对角线、三角形的高、垂足、垂线等,通过证明直线与平面内的直线或线段互相垂直,即可得证。
4.空间中的平面与平面的平行证明:常见的模型有两个平行四边形的高度等、点到平面的垂直距离等,通过证明两个平面内的垂直线的相互平行性,即可得证。
二、常见方法1.剪影法:利用平行关系特殊的剪影形状进行证明。
例如,通过剪影的形状可以直观地判断两根线段平行。
2.联立法:通过建立适当的方程组,将待证的平行条件与已知条件进行联立,最终得到结论。
常见的方法有正投影、平行投影等。
3.直角法:利用直角关系进行证明。
通过找到合适的垂线、垂足等直角线段,可以推导出平行关系。
4.反证法:假设不平行,然后找到与之矛盾的证据,从而推出平行的结论。
5.三角形法:构造适当的三角形,通过三角形的性质和形状关系进行证明。
6.同增减法:通过分析多个角度相应的同增减性质,推导出平行的结论。
7.通道法:利用另一个已经知道的已知命题,构造合适的通道来推导出平行的结论。
以上仅是常见的模型和方法,实际的平行证明题在解题过程中可能会遇到各种不同的情况和策略。
解决此类问题的关键是要有良好的几何直观和分析能力,熟练掌握几何定理和性质,并能够合理运用不同的方法解决问题。
立体几何常见证明方法

立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。
二、线面平行的证明方法1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。
(用相似三角形或平行四边形)3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
三、面面平行的证明方法1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
四、两直线垂直的证明方法1、根据定义,证明两直线所成的角为90°2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).五、线面垂直的证明方法1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.六、面面垂直的证明方法1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
解决几何证明问题的二十五大方法

解决几何证明问题的二十五大方法在数学的学习中,几何证明问题常常让同学们感到头疼。
但其实,只要掌握了合适的方法,这些问题也能迎刃而解。
下面就为大家介绍解决几何证明问题的二十五大方法。
方法一:综合法综合法是从已知条件出发,通过一系列的推理和运算,最终得出结论。
这是最基本也是最常用的方法之一。
比如已知一个三角形的两边和夹角,我们就可以利用余弦定理求出第三边。
方法二:分析法分析法是从结论入手,逐步寻求使结论成立的条件。
例如要证明一个四边形是平行四边形,我们先分析平行四边形的定义和判定条件,然后再看已知条件能否满足这些判定条件。
方法三:反证法先假设命题的结论不成立,然后通过推理得出矛盾,从而证明原命题成立。
比如证明“在一个三角形中,不能有两个钝角”,我们就可以假设三角形中有两个钝角,然后推出与三角形内角和定理相矛盾的结果。
方法四:同一法当一个命题的条件和结论所指的对象都唯一存在时,通过证明所作图形与已知图形重合,来证明命题成立。
方法五:数学归纳法常用于证明与自然数有关的命题。
先证明当 n 取第一个值时命题成立,然后假设当 n=k 时命题成立,证明当 n=k+1 时命题也成立。
方法六:构造法通过构造辅助图形来帮助证明。
比如构造全等三角形、相似三角形、平行四边形等。
方法七:等量代换法利用等量关系进行代换,从而简化证明过程。
方法八:割补法将不规则的图形割补成规则的图形,便于计算和证明。
方法九:面积法通过计算图形的面积来证明一些几何关系。
方法十:向量法利用向量的运算和性质来证明几何问题。
方法十一:坐标法建立坐标系,将几何问题转化为代数问题进行求解。
方法十二:比例法根据相似三角形的对应边成比例等性质来证明。
方法十三:中线加倍法在三角形中,将中线延长一倍,构造全等三角形。
方法十四:截长补短法在证明线段的和差关系时,通过截长或补短,构造全等三角形。
方法十五:旋转法将图形绕着某一点旋转一定的角度,使条件集中。
方法十六:对称法利用图形的对称性来证明。
(完整版)做几何证明题方法归纳

做几何证明题方法归纳知识归纳:1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
一. 证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1求证:DE =DF分析:由∆ABC 连结CD ,易得CD = 证明:连结CDΘΘΘAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。
空间几何证明题的解题方法

空间几何证明题的解题方法解题方法是解决几何证明题的关键。
在空间几何的学习中,遇到证明题是常有的事情。
本文将介绍几种常见的解题方法,帮助读者更好地应对空间几何证明题。
一、归纳法归纳法是证明题中常用的方法之一。
通过观察、分析已知条件和结论之间的关系,归纳出一般规律,再用具体例子验证这一规律的正确性。
在解决证明题时,首先要对已知条件进行分析,将其归纳为几种特殊情况,并观察它们与结论之间的联系。
然后通过具体实例验证这一规律是否成立。
最后在证明中运用归纳法,将已知条件的特殊情况逐一证明,得出结论的正确性。
二、反证法反证法是一种常见的解决几何证明题的方法。
它通过假设结论不成立,利用逻辑推理和已知条件推出与已知条件相矛盾的结论,从而推翻假设,得出结论的正确性。
在运用反证法解题时,首先要根据已知条件和结论的关系提出猜测,然后假设结论不成立,推出与已知条件相矛盾的结论。
最后通过分析这一矛盾来证明猜测的正确性。
三、构造法构造法是一种通过构造特殊图形或方法来解决几何证明题的方法。
在解决证明题时,可以根据已知条件和结论的要求,通过构造特殊的图形或方法,使得所构造的图形或方法与问题的条件相符。
通过观察其性质和关系得出结论的正确性。
构造法能够将问题转化为图形或方法的可视化表现,有助于理解和解决问题。
四、相似性相似性是空间几何证明题中常用的解题方法之一。
在解决证明题时,可以通过发现几何图形的相似性质和性质之间的关系,推导出结论的正确性。
相似性可以用比例关系来表示,通过构造合适的比例关系,运用比例的性质来证明结论。
五、平行性平行性是空间几何证明题中常用的方法之一。
在解决证明题时,可以通过分析几何图形中的平行性质,用平行线的性质和平行线之间的关系来推导出结论的正确性。
在解决证明题时,可以利用平行线的性质来推导出其他线段的相等关系、角的相等关系和比例关系等。
六、共线性共线性是解决空间几何证明题的常用方法之一。
在解决证明题时,可以通过观察几何图形中的点、线、面的位置关系,分析它们是否共线,从而推导出结论的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做几何证明题方法归纳
知识归纳:
1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
一. 证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1
求证:DE =DF
分析:由∆ABC 连结CD ,易得CD = 证明:连结CD
AC BC A B
ACB AD DB
CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,
∴≅∴=∆∆ADE CDF DE DF
说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。
本题亦可延长ED 到G ,使DG =DE ,连
结BG ,证∆EFG 是等腰直角三角形。
有兴趣的同学不妨一试。
ABC CDA SSS B D AB CD AE CF
BE DF
∴≅∴∠=∠==∴=,∆∆() 在∆BCE 和∆DAF 中,
BE DF B D BC DA BCE DAF SAS E F
=∠=∠=⎧⎨⎪
⎩
⎪∴≅∴∠=∠∆∆()
说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:
(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。
二. 证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。
求证:KH ∥BC
AH ∵BH 平分∠ABC ∴=∠∠ABH NBH 又BH ⊥AH
∴==︒∠∠AHB NHB 90 BH =BH
∴≅∴==∆∆ABH NBH ASA BA BN AH HN
(),
同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线
∴KH MN // 即KH//BC 说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
例4. 已知:如图4 求证:FD ⊥ 证明一:连结AD
AB AC BD BAC BD AD
B DAB DAE =∴+==︒∴=∴==,∠∠∠∠∠∠129090 在∆ADE 和∆BDF 中,
AE BF B DAE AD BD ADE BDF
FD ED
===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆31
3290
说明:
辅助线。
证明二:如图5 BD DC
BDM BDM CE BM C CBM
BM AC
A ABM A A
B A
C BF AE AF CE BM =∠=∠∴≅∴=∠=∠∴∠=︒
∴∠=︒=∠==∴==,,∆∆//9090
∴≅∴==∴⊥∆∆AEF BFM
FE FM DM DE FD ED
说明:证明两直线垂直的方法如下:
(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
三. 证明一线段和的问题
(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法)
例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。
求证:AC =AE +CD
︒60,,得:
()
∴≅∴∠=∠AEO AFO SAS ∆∆42
又∠=︒B 60
∴∠+∠=︒∴∠=︒
∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC
()
即AC AE CD =+
(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明
例6. 已知:如图7 求证:EF =BE + 分析:使BG =DF 。
证明:延长CB 至 在正方形ABCD
∴≅∴=∠=∠∆∆ABG ADF AG AF ,13
又∠=︒EAF 45
∴∠+∠=︒∴∠+∠=︒23452145
即∠GAE =∠FAE
∴=∴=+GE EF
EF BE DF
中考题:
AE =
∴==BA AF EF
即EF =AC
AC FD
EAC EFD EAC DFE SAS EC ED
//()∴∠=∠∴≅∴=∆∆
题型展示:
AE AB AD AD ADE ADB
BD DE E B DCE B DCE E
=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠,,,21∆∆
∴>BD DC
垂线BP 和CQ 。
设M 为BC 的中点。
求证:MP =MQ
【试题答案】
1. 证明:取 AC AD
AF CD
AFC =∴⊥∴∠= 又∠+∠14 ∴∠=∠=∴≅∴=∴=
43
1
2
AC CE
ACF CED ASA CF ED
DE CD
∆∆()
CD CD CBD CED
B E
BAC B
BAC E
=⎩
⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22
又∠=∠+∠BAC ADE E
∴∠=∠∴=∴==+=+ADE E AD AE BC CE AC AE AC AD
,
3. 证明:延长PM 交CQ 于R
CQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,
∴≅
∆∆BPM ()
AD AB AC BC AD AB AC BC ∴<++∴<++41
4。