水泥工艺技术培训课件(doc 57页)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泥工艺技术培训课件(doc 57页)

窑预分解系统的问题分析及改进措施摘要:

我厂1号RSP窑经过6年多的运转,系统耐火材料呈现出不同程度的磨损、烧坏现象。SB室下部掉砖,进而壳体烧损;SC室用风不良,导致边壁物料保护层不均衡,局部衬砖磨损严重;斜烟道及鹅颈管侧墙衬砖垮落,由于鹅颈管结构缺陷,经常结皮和堆料;MC室断面物料分布不均,物料稀相区炉壁烧损,直至筒体严重变形;因窑尾缩口处风速低,喷腾能力减弱而塌料;高温级旋风筒分离效率低,导致物料大量返回,内循环增加等。本文依据热工标定结果,对该预分解系统出现的问题进行分析,并提出改进措施。

1 RSP窑系统工况分析

热工标定主要参数对比见表1、表2,窑尾高温区工艺流程见图1。

表1 预热预分解系统温度变化℃

表2 RSP炉的分解进程变化

注:1997年数据为南京化工大学硅酸地方国营工程研究所的热工标定结果,SC 室出口指斜烟道出进口等同于鹅颈管出口。

图1 窑尾高温区工艺流程

1.1 三次风温度及其对SC室工况的影响由表1可见,三次风温度和入炉生料温度分别只有600℃和671℃。入炉生料温度低主要是由于C4锥体及下料管增开人孔门较多,外漏风量和散热损失增加引起的,通过加强管理,隔热堵漏后完全可以解决;三次风温度目前基本稳定在560~580℃,提高的余地很小。其原因是:我厂采用单筒冷却机,经过多年的运转,内部装置所遭受的磨损和腐蚀不断加剧,而且增加了砌筑耐火砖的长度,熟料停留时间短(约为30min),出机熟料温度高(~290℃),使热效率本身就不高的单筒冷却机热回收率进一步降低(1997年热工标定结果为56.6%)。

三次风温度是影响分解率和燃尽率的重要因素。较低的三次风温度导致炉内煤粉着火速度减慢,形成滞后燃烧,特别是SC室内煤粉是在纯助燃空气中燃烧,助燃空气的温度在很大程度上决定了煤粉燃尽率,三次风温度低,即使分解炉多加煤,SC室内温度也不会高,反而会加剧煤粉滞后燃烧。从表1和表2可以看出,SC室生料出口温度和分解率分别是948℃和43.4%,结合入炉生料表观分解率已达22.6%的实际情况,说明SC室内的分解反应极低,煤粉燃烧状况不理想。

1.2 MC室及其鹅颈管由于SC室内煤粉燃尽率及物料分解率低,使得绝大部分的燃烧及分解反应在MC室内进行,进而加重MC室及鹅颈管的燃烧负荷,致使MC室炉壁烧损。从总体而言,MC室A侧衬料烧损较轻,残存耐火砖厚度普遍在50~70mm,而B侧耐火砖残存厚度仅有40~50mm,多处有烧蚀掉砖

(图2中的a、b两点),且掉砖在托砖板上下两侧,托砖板烧损表现为B侧的近半圈严重烧损,而越靠近A侧(进料端)损坏程度越轻。从以上现象可初步断定,由于托砖板表露于高温热气中,将其热量传给筒体,筒体受热膨胀,硅钙板与之脱离,顶垮耐火衬料。再结合炉内壁温度的检测结果,A、B两侧的炉壁温度分别为830℃和864℃,证明了A、B两侧所承受的热负荷不均衡,B侧物料浓度低、热负荷高,致使炉壁烧损较A侧严重。

图2 MC室及鹅颈管结构

鹅颈管的结构缺陷是RSP窑系统的最大不足,设计的意图是在不增加预热器框架高度的前提下尽可能地延长MC室与级的连接段,增加物料在炉内的停留时间。但预热器呈2-1-1-2-1布置,2个C4筒挡住了MC室上升的空间,同时需避开横梁的阻挡,鹅颈管实际结构如图2所示,形成先拐弯后倾斜(60°)过渡,如此导致后果有:

1)因MC室出口变径拐弯,且温度较高(902℃),常常引起结皮,每次停窑检修都需要清理。

2)结皮形成缩口,使炉内阻力增大,阻碍MC室内料气的流通,增大了物料在炉内的返混度,直接引起MC室内单位容积物料负荷的增加,当达到一定程度时,物料由窑尾缩口处直接“短路”入窑。返混度的增加,降低了炉内风速,颗粒与气流间的速度差减小,不利于传热和物质的扩散以及燃烧、分解的进行。

3)斜坡段堆料,尤其在投料初期系统内气料比大,断面风速较低,部分生料易在斜坡段失速沉降堆积,当拉风投料、喂料量大幅波动、系统气流量或压力发生变化时,原沉积的物料被触动滑落造成塌料。

1.3 级旋风筒的效率分析级旋风筒进口温度稳定在约880℃时,入窑物料温度仅750℃,比正常理论温度降低了近100℃,出口气体温度也只有808℃,这充分说明级旋风筒散热损失及外漏风比较严重。外漏风主要集中在锥体及下料管部位,生产中经常将锥体及下料管捅灰孔打开,预热器系统中有60%以上堵塞现象发生在该部位,为便于清堵,我们根据堵塞的多发点,先后开了4个人孔门,提高了清堵效率,但也带来了不容忽视的负面影响:①外漏风导致热效率急剧下降,入窑物料温度仅为750℃,不利于快速烧成;②开孔无法保证筒体内壁光滑,物料滞留粘结,最终形成堵料;③由于所开人孔门没有严格的隔热措施,散热损失进一步加大。从表2可知,C4下料管内物料表观分解率已从14.1%增加到2

2.6%,这只能靠级旋风筒内的物料大量返混来实现。由于级内筒经常烧掉,1998年将内筒拆除,分离效率下降了许多。

2 窑尾烟室及缩口的改造

1号窑缩口尺寸先后采用过1.40m×1.40m、1.20m×1.40m和1.10m×1.10

m等多个截面尺寸,使用效果均不理想。由于经常使用压缩空气清吹结皮,内部截面积变得无规则,动力损失增加,导致缩口风速下降。2001年8月停窑检修时,测量缩口尺寸为1.36m×1.40m,比预设截面增大了许多,而窑尾烟室则因结皮层的长期累积,有效通风面积大幅度变小,实测通风截面积仅为2.03m ×1.53m(窑轴向的烟室捅灰孔已于1998年被封死,主要目的是为了减少漏风引起的冷凝结皮,同时增加内壁浇注料整体牢固性)。随着烟室有效面积的减小,缩口的喷射效应降低,加之在生产中缩口断面的逐渐变大,使窑系统缩口处风速偏低,MC室内形成的喷射能力减弱,物料无法及时排出,加剧了MC室内物料的返混度。当MC室内物料负荷增至一定程度后整体或局部“短路”入窑,形成塌料。发生塌料后,减料降窑速,系统步入恶性循环中,长时间停留在低产阶段。改造时,考虑原有浇注料损坏严重,凸凹不平而影响气流畅通,故将其全部打掉重新浇注,保证浇注料整体的牢固性和密闭性,避免分层脱裂。为确保窑尾烟室有效通风面积,严格按原设计的有效尺寸来控制HN-13NL耐碱浇注料及100mm耐高温硅酸钙绝热板(简称硅钙板)的总体厚度。由于缩口部位施工空间狭窄,对浇注质量有较大影响,因此在保证衬料质量的同时也考虑浇注料的施工性能,选用的莫来石质浇注料要有较好的保温性能、良好的施工性能(施工加水量仅为7%~8%)和流动性,同时又具有较高的机械强度和使用温度(≤1400℃)。

分析历次使用的缩口截面积情况,确定截面积为1.44m2具体结构尺寸见图3,并将四角浇注成圆弧过渡形式,从而有利于喷射和旋流效应,使气流在断面较均匀地分布和减少死角,有利于提高浇注墙体的稳定性和耐久性。窑尾斜坡耐火砖仍选用X-17型抗剥落高铝砖。该砖的耐火及耐磨性完全能满足窑尾工况的要求。

图3 缩口改造结构尺寸

停窑检查时发现的局部“抽签”现象,主要原因是经常使用高压空气清理结皮积料和施工质量不过关,“抽签”部位正是平时清理的主要受力点。因此,此次检修时我们设专人负责全程监督,注意避免出现台阶和膨胀缝的留设。缩短下料“溜子”长度,并尽可能的倾斜,大大减少下料斜坡堆料的现象。改造后系统压力变化见表3。

表3 缩口改造前后系统压力变化Pa

根据1号窑预热预分解系统的匹配及地处高海拔地区,正常运行时适当提高空气过剩系数,阻力比平原地区同类型窑有较大幅度的提高。生产经验数据表明,完成设计产量时系统总压降低于4600Pa,高温风机进口压力低于4850Pa,被认为是不正常的,无法保证各管道内的物料悬浮良好,更不可避免在局部发生物料“短路”。从表3可见,改造后的系统压力趋于合理。

3 调整三次风匹配,改善SC室流场。

3.1 问题分析分解炉着火不良,煤粉预燃效果差,火焰燃烧区较长,从而导致操作中控制不住分解炉出口温度(即进口温度)。为提高入窑物料温度,

相关文档
最新文档