深度解析-数学归纳法
数学归纳法经典解析详解

数学归纳法经典解析详解
数学归纳法是解决数学问题时常用的方法之一。
它基于一个基本的思想:如果我们可以证明某个命题在第一个数成立,并且可以证明如果命题在第n个数成立,那么它在第n+1个数也成立,那么我们就可以说这个命题对于所有正整数都成立。
数学归纳法分为三个步骤:基础步骤、归纳假设和归纳步骤。
基础步骤是证明命题在第一个数值上成立。
通常,我们需要计算命题在第一个数值上的值,然后验证它是否成立。
如果成立,我们就完成了基础步骤。
归纳假设是假设命题在第n个数值上成立。
这是一个假设,我们假设命题在某个特定的数值上成立,而不是需要一个个去验证每个数值。
归纳步骤是证明命题在第n+1个数值上也成立。
我们使用归纳假设,即假设命题在第n个数值上成立,然后通过一系列的推理步骤来证明命题在第n+1个数值上也成立。
数学归纳法的关键在于建立起递推关系,即通过归纳假设和归纳步骤来证明命题在每个数值上成立。
总结来说,数学归纳法是一种通过建立递推关系来证明命题成立的方法。
它包括基础步骤、归纳假设和归纳步骤三个步骤,其中归纳假设是假设命题在某个特定的数值上成立,而归纳步骤是通过归纳假设来证明命题在下一个数值上也成立。
数学的归纳法解析总结

数学的归纳法解析总结2020-10-27数学的归纳法解析总结数学归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础,第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n且n∈N)结论都正确”。
由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的.推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
常见数学归纳法及其证明方法(一)第一数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤(1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况(2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法对于某个与自然数有关的命题(1)验证n=n0时P(n)成立(2)假设no。
数学中的数学归纳法

数学中的数学归纳法数学归纳法是数学中一种常用的证明方法,它通过已知某个命题成立和成立条件,则可以推导出该命题对所有符合条件的情况都成立。
数学归纳法在数学领域中发挥着重要的作用,本文将介绍数学归纳法的基本原理和应用。
一、数学归纳法的基本原理数学归纳法的基本原理可以归纳为三个步骤:基础步骤、归纳步骤和归纳假设。
1. 基础步骤:首先要证明当n取某个特定值时,命题成立。
这是数学归纳法的起点,称为基础步骤。
通常情况下,我们会取n=1或n=0作为基础步骤。
2. 归纳步骤:接下来,假设当n=k时,命题成立,即我们假设命题对于某个值k成立。
然后,使用这个假设来证明当n=k+1时,命题也成立。
这一步骤称为归纳步骤。
3. 归纳假设:在归纳步骤中,我们假设命题对于n=k成立,这被称为归纳假设。
通过归纳假设,我们可以推导出命题对于n=k+1的情况也成立。
归纳法的基本原理就是通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
二、数学归纳法的应用数学归纳法不仅仅是一种证明方法,它也被广泛应用于其他数学问题的解决中。
以下是数学归纳法的一些典型应用。
1. 证明整数性质:数学归纳法常被用来证明某个整数性质对于所有正整数成立。
例如,我们可以利用数学归纳法证明所有正整数的和公式:1 + 2 + 3 + ... + n = n(n + 1) / 2。
2. 证明不等式:数学归纳法还可以应用于证明不等式的成立。
例如,我们可以利用数学归纳法证明对于所有正整数n,2^n > n^2。
3. 证明命题等式:除了整数性质和不等式,数学归纳法也可以应用于证明命题等式的成立。
例如,我们可以利用数学归纳法证明斐波那契数列的通项公式:F(n) = (φ^n - (1-φ)^n) / √5,其中φ为黄金分割率。
数学归纳法作为一种重要的证明方法,广泛应用于数学的各个领域。
它能够简化证明过程,使得证明更加直观和清晰。
总结:数学归纳法是一种重要的证明方法,它通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
数学归纳法的原理与应用

数学归纳法的原理与应用数学归纳法是一种重要的证明方法,常用于证明整数集上的命题。
它的基本思想是,通过证明命题在第一个整数上成立,并假设命题在某个正整数k上成立,推导出它在下一个正整数k+1上也成立。
这样,通过无限次的迭代,我们可以推导出该命题在所有正整数上都成立。
在本文中,我将介绍数学归纳法的原理,并举例说明其应用。
一、数学归纳法的原理数学归纳法的原理可以分为两个步骤:基础步骤和归纳步骤。
1. 基础步骤基础步骤是证明命题在第一个整数上成立。
通常,这一步骤可以通过具体计算或逻辑推理来完成。
假设我们要证明一个关于正整数n的命题P(n),我们需要证明P(1)成立。
2. 归纳步骤归纳步骤是假设命题在某个正整数k上成立,然后通过这个假设推导出它在下一个正整数k+1上也成立。
具体地,我们需要证明当P(k)成立时,P(k+1)也成立。
这一步骤通常需要运用数学归纳法的假设和相应的数学性质来进行推导。
通过这两个步骤,我们可以得出结论:若基础步骤成立,并且归纳步骤成立,那么命题P(n)对任何正整数n都成立。
二、数学归纳法的应用数学归纳法在数学中有着广泛的应用。
下面,我将举两个例子来说明它的应用。
1. 证明等差数列的求和公式我们知道,等差数列中相邻两项之差是常数d。
现在,我们希望证明等差数列的前n项和公式:Sn = (n/2)(2a + (n-1)d)其中,Sn表示前n项的和,a表示第一项,d表示公差。
首先,我们需要通过数学归纳法的基础步骤证明当n=1时,公式成立。
可以发现,此时等式右边的表达式为a,恰好等于等差数列的第一项。
然后,我们假设当n=k时,公式也成立。
也就是假设Sn = (k/2)(2a + (k-1)d)成立。
接下来,我们通过归纳步骤证明当n=k+1时,公式也成立。
我们将Sn在等式两边加上等差数列的第k+1项an+1,得到Sn + an+1 =(k/2)(2a + (k-1)d) + an+1。
根据等差数列的性质,an+1 = a + kd。
数学中的数学归纳法

数学中的数学归纳法数学归纳法,又称归纳推理法,是数学中一种常用的证明方法。
它基于两个重要的前提:第一,如果证明了某个命题在某个特定情况成立,且能够证明当命题在一个特定情况下成立时,它在下一个情况下也成立,那么可以推断该命题在所有情况下都成立;第二,数列是整数的任意一个子集,并且它包涵了第一个正整数,且对任意的正整数n,满足“n属于该子集,而n+1也属于该子集”。
数学归纳法的运用需要三个关键步骤:首先,我们需要证明当n取某个合适的值时命题成立;其次,假设当n取k时该命题成立,然后证明当n取k+1时该命题也成立;最后,根据数学归纳法的前提,我们可以断定该命题对于所有的正整数n都成立。
以求证一个数学公式为例,我们以斐波那契数列作为研究对象,斐波那契数列的定义如下:F(1) = 1F(2) = 1F(n) = F(n-1) + F(n-2) (n≥3)我们来利用数学归纳法证明斐波那契数列的性质。
首先,当n取1和2时命题成立,因为F(1)和F(2)的值分别为1,满足定义。
假设当n取k时该命题成立,即假设F(k) = F(k-1) + F(k-2)成立。
现在我们要证明当n取k+1时该命题也成立。
将n取k+1代入斐波那契数列的递推公式,得到:F(k+1) = F((k+1)-1) + F((k+1)-2)= F(k) + F(k-1)根据我们的假设,我们可以得到:F(k+1) = F(k-1) + F(k-1) + F(k-2)= F(k-1) + F(k)根据斐波那契数列的定义,我们知道F(k+1) = F(k) + F(k-1),因此假设成立。
由此可见,当n取k+1时命题也成立。
根据数学归纳法的原理,我们可以得出结论:对于所有的正整数n,斐波那契数列的定义成立。
数学归纳法是数学中一种重要的证明方法,它能够帮助我们建立起基本的数学理论和推导出重要的数学公式。
通过逐步证明命题在不同情况下的成立性,我们可以确保其在所有情况下都成立。
数学归纳法相关知识点总结

数学归纳法相关知识点总结数学归纳法是一种常用且重要的证明方法,广泛应用于数学和计算机科学等领域。
它是建立在自然数的基础上,通过确定基本情况成立和对于任意情况的假设进行推理,来证明任意情况成立的方法。
以下是与数学归纳法相关的知识点总结。
一、数学归纳法的基本思想1.1 证明基本情况成立:通过直接验证第一个情况是否成立来确保归纳法的开始。
1.2 假设第k个情况成立:假设前k个情况均成立,即假设第k个情况成立。
1.3 推导第k+1个情况成立:根据第k个情况的成立,推导第k+1个情况的成立。
1.4 利用数学归纳法原理:基于第一个情况成立、第k个情况成立能推导第k+1个情况成立,所以根据数学归纳法原理,可以得出所有情况均成立。
二、数学归纳法的应用场景2.1 整数证明:证明与整数相关的等式或不等式。
2.2 数列证明:证明数列的性质,如递推关系、通项公式等。
2.3 集合证明:证明集合的性质,如集合的元素个数等。
2.4 图论证明:证明与图论相关的问题,如图的染色问题、路径问题等。
三、数学归纳法常见误区及注意事项3.1 遗漏基本情况:在使用数学归纳法时,必须验证基本情况的成立,否则无法进行后续推导。
3.2 假设过强:假设第k个情况成立时,注意不要假设第k-1个情况也成立,否则可能导致推导错误。
3.3 步骤不清晰:数学归纳法需要严谨的逻辑推导,每一步的推导必须明确、清晰,不能存在模棱两可的推理。
3.4 漏掉递归关系:在推导第k+1个情况成立时,需要明确并合理利用第k个情况的假设,也即递归关系的应用。
四、数学归纳法的拓展应用4.1 强归纳法:相比于数学归纳法只假设前一个情况成立,强归纳法假设前k个情况均成立。
4.2 双重归纳法:在证明数学命题时,先对整数n归纳,再对其他相关数值归纳。
4.3 递归定义证明:对于递归定义的数列或集合,可以通过数学归纳法来证明其性质。
五、数学归纳法在计算机科学中的应用5.1 证明算法的正确性:通过数学归纳法来证明算法在各个情况下的正确性。
高中数学中的数学归纳法知识点总结

高中数学中的数学归纳法知识点总结数学归纳法是数学中常用的一种证明方法,在高中数学课程中占有重要的地位。
它是通过对特定命题的逐一验证来证明一般性结论的方法。
本文将对高中数学中的数学归纳法的相关知识点进行总结。
一、数学归纳法的基本思想数学归纳法是一种以自然数为基础的证明方法。
其基本思想是:假设某个命题对自然数1成立,然后假设对于任意的自然数k成立,可以证明对于自然数k+1也成立,最后通过数学归纳法原理得出该命题对所有自然数成立。
二、数学归纳法的基本步骤使用数学归纳法证明一个命题通常包括以下几个步骤:1. 基础步骤:证明该命题在自然数1上成立;2. 归纳假设:假设对于任意的自然数k,命题成立;3. 归纳证明:证明对于自然数k+1,命题也成立;4. 数学归纳法原理:根据数学归纳法原理,可以得出该命题对于所有自然数成立。
三、数学归纳法的示例下面通过几个具体的数学归纳法示例来说明其应用:1. 数列的性质证明:证明斐波那契数列的性质,即F(1)=1,F(2)=1,并且对于自然数n≥3,F(n)=F(n-1)+F(n-2)。
(1)基础步骤:当n=1或2时,斐波那契数列成立;(2)归纳假设:假设对于任意的自然数k,斐波那契数列成立;(3)归纳证明:考虑n=k+1的情况,有F(k+1)=F(k)+F(k-1),根据归纳假设,F(k)和F(k-1)都成立,因此F(k+1)也成立;(4)根据数学归纳法原理,得出斐波那契数列对所有自然数成立。
2. 数学命题的证明:证明1+2+3+...+n=n(n+1)/2。
(1)基础步骤:当n=1时,等式成立;(2)归纳假设:假设对于任意的自然数k,等式成立;(3)归纳证明:考虑n=k+1的情况,有1+2+3+...+(k+1)=k(k+1)/2+(k+1)=[(k+1)(k+2)]/2,根据归纳假设,等式成立;(4)根据数学归纳法原理,得出等式对所有自然数成立。
3. 方程求解:证明n^2-n+41是素数的情况。
高考数学热点问题专题解析——数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。
证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N =≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立 3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ≥,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。
在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k ≤的时依然成立。
第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k ≤,命题均成立,然后证明1n k =+命题成立。
可使用的条件要比第一归纳法多,证明的步骤如下: (1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立 (2)归纳假设:假设()0,n k k n n N ≤≥∈成立,证明当1n k =+时,命题也成立 (3)归纳结论:得到结论:0,n n n N ≥∈时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++≤ 思路:根据等比数列求和公式可化简所证不等式:321n n ≥+,n k =时,不等式为321k k ≥+;当1n k =+时,所证不等式为1323k k +≥+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明 证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+≤-()()()1313131n n n n +∴-≤+- 1133331n n n n n n n ++⇔⋅-≤⋅+-- 321n n ⇔≥+,下面用数学归纳法证明: (1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =≥∈时,不等式成立,则1n k =+时,()()133332163211k k k k k +=⋅≥+=+>++ 所以1n k =+时,不等式成立n N *∴∀∈,均有131n n S n S n++≤ 小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++∈ (1)求数列{}n a 的通项公式(2)设21log 1n n b a ⎛⎫=+ ⎪⎝⎭,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+⎛⎫>∈ ⎪⎝⎭解:(1)2632n nn S a a =++ ① ()21116322,n n n S a a n n N *---=++≥∈ ②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-⇒+=-0n a > 所以两边同除以1n n a a -+可得:13n n a a --={}n a ∴是公差为3的等差数列()131n a a n ∴=+-,在2632n nn S a a =++中令1n =可得: 211116321S a a a =++⇒=(舍)或12a =31n a n ∴=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +⎛⎫⋅⋅⋅> ⎪-⎝⎭,若直接证明则需要进行放缩,难度较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( × )(2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × )(3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )1.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a (a ≠1,n ∈N *),在验证n =1时,等式左边的项是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3答案 C解析 当n =1时,n +1=2,∴左边=1+a 1+a 2=1+a +a 2.2.(2016·黄山模拟)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+ (12))时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立答案 B解析 因为n 为正偶数,n =k 时等式成立,即n 为第k 个偶数时命题成立,所以需假设n 为下一个偶数,即n =k +2时等式成立.3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( ) A .1B .2C .3D .0 答案 C解析 凸n 边形边数最小时是三角形,故第一步检验n =3.4.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.5.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=________,a 3=________,a 4=________,猜想a n =________.答案 3 4 5 n +1题型一 用数学归纳法证明等式例1 设f (n )=1+12+13+ (1)(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).证明 ①当n =2时,左边=f (1)=1,右边=2(1+12-1)=1, 左边=右边,等式成立.②假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k=(k +1)[f (k +1)-1k +1]-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],∴当n =k +1时结论成立.由①②可知当n ∈N *时,f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).思维升华 用数学归纳法证明恒等式应注意(1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1)(n ∈N *). 证明 ①当n =1时,左边=121×3=13, 右边=1×(1+1)2×(2×1+1)=13, 左边=右边,等式成立.②假设n =k (k ≥1,k ∈N *)时,等式成立.即121×3+223×5+…+k 2(2k -1)(2k +1)=k (k +1)2(2k +1),当n =k +1时,左边=121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)(2k +3)+2(k +1)22(2k +1)(2k +3)=(k +1)(2k 2+5k +2)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3), 右边=(k +1)(k +1+1)2[2(k +1)+1]=(k +1)(k +2)2(2k +3), 左边=右边,等式成立.即对所有n ∈N *,原式都成立.题型二 用数学归纳法证明不等式例2 (2016·烟台模拟)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1成立. (1)解 由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列.又a 1=b +r ,a 2=b (b -1),所以a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)证明 由(1)及b =2知a n =2n -1.因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2, 左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k >k +1, 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2, 即证2k +32≥(k +1)(k +2), 由基本不等式得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立, 故2k +32k +1≥k +2成立, 所以当n =k +1时,结论成立.由①②可知,当n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 思维升华 数学归纳法证明不等式的适用范围及关键(1)适用范围:当遇到与正整数n 有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.(2)关键:由n =k 时命题成立证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3. 证明 ①当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3).所以直线PQ 1的方程为y =4x -11,令y =0,得x 2=114,因此2≤x 1<x 2<3, 即n =1时结论成立.②假设当n =k 时,结论成立,即2≤x k <x k +1<3.当n =k +1时,直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4·(x -4).又f (x k +1)=x 2k +1-2x k +1-3,代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1, 由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3; x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0, 即x k +1<x k +2,所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立.由①②知对任意的正整数n,2≤x n <x n +1<3.题型三 归纳—猜想—证明命题点1 与函数有关的证明问题例3 (2017·绵阳质检)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论.解 由x 1=12及x n +1=11+x n, 得x 2=23,x 4=58,x 6=1321, 由x 2>x 4>x 6,猜想:数列{x 2n }是递减数列.下面用数学归纳法证明:①当n =1时,已证命题成立.②假设当n =k 时命题成立,即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3)=11+x 2k +2-11+x 2k (1+x 2k +1)(1+x 2k +3)=x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0, 即x 2(k +1)>x 2(k +1)+2.所以当n =k +1时命题也成立.结合①②知,对于任何n ∈N *命题成立.命题点2与数列有关的证明问题例4在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4;(2)猜想{a n }的通项公式,并加以证明.解(1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k=(k-1)λk+2k,那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,a k+1=[(k+1)-1]λk+1+2k+1,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).命题点3存在性问题的证明例5设a1=1,a n+1=a2n-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解(1)方法一a2=2,a3=2+1.再由题设条件知(a n+1-1)2-(a n-1)2=1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=n-1+1(n∈N*).方法二a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想a n=n-1+1.下面用数学归纳法证明上式:当n=1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1 =(k +1)-1+1.所以当n =k +1时结论成立.所以a n =n -1+1(n ∈N *).(2)方法一 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明加强命题:a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<14<a 3<1,结论成立. 假设n =k 时结论成立,即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2. 再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1.因此a 2(k +1)<c <a 2(k +1)+1<1.这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14. 方法二 设f (x )=(x -1)2+1-1,则a n +1=f (a n ).先证:0≤a n ≤1(n ∈N *).①当n =1时,结论显然成立.假设n =k 时结论成立,即0≤a k ≤1.易知f (x )在(-∞,1]上为减函数,从而0=f (1)≤f (a k )≤f (0)=2-1<1,即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立.再证:a 2n <a 2n +1(n ∈N *).②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,有a 2<a 3,即n =1时②成立.假设n =k 时,结论成立,即a 2k <a 2k +1.由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立,所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14.③ 又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2,所以a 2n +1>a 22n +1-2a 2n +1+2-1.解得a 2n +1>14.④ 综上,由②③④知存在c =14使得a 2n <c <a 2n +1对一切n ∈N *成立. 思维升华 (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.(2015·江苏)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解 (1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧ n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5.(t ∈N *).下面用数学归纳法证明: ①当n =6时,f (6)=6+2+62+63=13,结论成立; ②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论: (ⅰ)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3 =(k +1)+2+k +12+k +13,结论成立; (ⅱ)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1 =(k +1)+2+(k +1)-12+(k +1)-13,结论成立; (ⅲ)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2 =(k +1)+2+k +12+(k +1)-23,结论成立; (ⅳ)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2 =(k +1)+2+(k +1)-12+k +13,结论成立; (ⅴ)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k 3+2=(k +1)+2+k +12+(k +1)-13,结论成立; (ⅵ)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1 =(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.9.归纳—猜想—证明问题典例 (12分)数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)证明(1)中的猜想.思维点拨 (1)由S 1=a 1算出a 1;由a n =S n -S n -1算出a 2,a 3,a 4,观察所得数值的特征猜出通项公式.(2)用数学归纳法证明.规范解答(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1;当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32; 当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74; 当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴a 4=158.[2分] 由此猜想a n =2n -12n -1(n ∈N *).[4分] (2)证明 ①当n =1时,a 1=1,结论成立.[5分]②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1, 那么n =k +1时,[7分]a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k=2+a k -a k +1,∴2a k +1=2+a k .[9分]∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k. ∴当n =k +1时,结论成立.[11分]由①②知猜想a n =2n -12n -1(n ∈N *)成立.[12分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论;.第二步:验证一般结论对第一个值n 0(n 0∈N *)成立;第三步:假设n =k (k ≥n 0,k ∈N *)时结论成立,证明当n =k +1时结论也成立;第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N *成立.1.如果命题p (n )对n =k (k ∈N *)成立,则它对n =k +2也成立.若p (n )对n =2也成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立答案 B解析 n =2时,n =k ,n =k +2成立,n 为2,4,6,…,故n 为所有正偶数.2.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( )A .假设n =k (k ∈N *),证明n =k +1时命题成立B .假设n =k (k 是正奇数),证明n =k +1时命题成立C .假设n =2k +1(k ∈N *),证明n =k +1时命题成立D .假设n =k (k 是正奇数),证明n =k +2时命题成立答案 D解析 相邻两个正奇数相差2,故D 选项正确.3.(2017·淄博质检)设f (x )是定义在正整数集上的函数,且f (x )满足:当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,那么下列命题总成立的是( )A .若f (1)<2成立,则f (10)<11成立B .若f (3)≥4成立,则当k ≥1时,均有f (k )≥k +1成立C .若f (2)<3成立,则f (1)≥2成立D .若f (4)≥5成立,则当k ≥4时,均有f (k )≥k +1成立答案 D解析 当f (k )≥k +1成立时,总能推出f (k +1)≥k +2成立,说明如果当k =n 时,f (n )≥n +1成立,那么当k =n +1时,f (n +1)≥n +2也成立,所以如果当k =4时,f (4)≥5成立,那么当k ≥4时,f (k )≥k +1也成立.4.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)答案 C解析 当n =2时,13+a 2=(2×3)a 2,∴a 2=13×5. 当n =3时,13+115+a 3=(3×5)a 3,∴a 3=15×7. 当n =4时,13+115+135+a 4=(4×7)a 4,a 4=17×9. 故猜想a n =1(2n -1)(2n +1). 5.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1 答案 B解析 当n =k (k ∈N *)时,左式为(k +1)(k +2)·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1).6.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =_________________________________________________.答案 n n +1解析 由(S 1-1)2=S 1·S 1,得S 1=12, 由(S 2-1)2=(S 2-S 1)S 2,得S 2=23, 依次得S 3=34,猜想S n =n n +1. 7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n (2n +1)3时,第二步从“k ”到“k +1”应添加的项为________. 答案 (k +1)2+k 2解析 由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N *).8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).答案 5 12(n +1)(n -2) 解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2). 9.(2016·北京东城区质检)在数列{b n }中,b 1=2,b n +1=3b n +42b n +3(n ∈N *).求b 2,b 3,试判定b n 与2的大小,并加以证明.解 由b 1=2,b n +1=3b n +42b n +3, 得b 2=3×2+42×2+3=107,b 3=5841. 经比较有b 1>2,b 2>2,b 3> 2.猜想b n >2(n ∈N *).下面利用数学归纳法证明.①当n =1时,∵b 1=2,∴ 2 <b 1.②假设当n =k (k ≥1,k ∈N *)时,结论成立, 即 2 <b k ,∴b k - 2 >0.当n =k +1时,b k +1-2=3b k +42b k +3- 2 =(3-22)b k +(4-32)2b k +3 =(3-22)(b k -2)2b k +3>0. ∴b k +1> 2,也就是说,当n =k +1时,结论也成立.根据①②知b n >2(n ∈N *).10.数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *).(1)证明:{x n }是递减数列的充要条件是c <0;(2)若0<c ≤14,证明:数列{x n }是递增数列. 证明 (1)充分性:若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,所以数列{x n }是递减数列.必要性:若{x n }是递减数列,则x 2<x 1,且x 1=0.又x 2=-x 21+x 1+c =c ,所以c <0.故{x n }是递减数列的充要条件是c <0.(2)若0<c ≤14,要证{x n }是递增数列. 即x n +1>x n ,即x x +1-x n =-x 2n +c >0,也就是证明x n < c .下面用数学归纳法证明当0<c ≤14时,x n < c 对任意n ≥1,n ∈N *都成立. ①当n =1时,x 1=0< c ≤12,结论成立. ②假设当n =k (k ∈N *)时结论成立,即x k < c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增, 所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立.故x n < c 对任意n ≥1,n ∈N *都成立.因此,x n +1=x n -x 2n +c >x n ,即{x n}是递增数列. 11.已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求2f 1(π2)+π2f 2(π2)的值; (2)证明:对任意的n ∈N *,等式|nf n -1(π4)+π4f n (π4)|=22都成立. (1)解 由已知,得f 1(x )=f ′0(x )=(sin x x )′=cos x x -sin x x2, 于是f 2(x )=f ′1(x )=(cos x x )′-(sin x x2)′ =-sin x x -2cos x x 2+2sin x x3, 所以f 1(π2)=-4π2,f 2(π2)=-2π+16π3, 故2f 1(π2)+π2f 2(π2)=-1. (2)证明 由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf ′0(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin(x +π2),类似可得 2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin(x +3π2), 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin(x +n π2)对所有的x ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时,等式成立,即kf k -1(x )+xf k (x )=sin(x +k π2). 因为[kf k -1(x )+xf k (x )]′=kf ′k -1(x )+f k (x )+xf ′k (x )=(k +1)f k (x )+xf k +1(x ),[sin(x +k π2)]′=cos(x +k π2)·(x +k π2)′ =sin[x +(k +1)π2], 所以(k +1)f k (x )+xf k +1(x )=sin[x +(k +1)π2]. 因此当n =k +1时,等式也成立.综合①②可知等式nf n -1(x )+xf n (x )=sin(x +n π2)对所有的n ∈N *都成立. 令x =π4,可得nf n -1(π4)+π4f n (π4) =sin(π4+n π2)(n ∈N *), 所以|nf n -1(π4)+π4f n (π4)|=22(n ∈N *).*12.设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式;(2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.解 由题设得,g (x )=x 1+x(x ≥0). (1)由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x ,g 3(x )=x 1+3x ,…,可猜想g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x,结论成立. ②假设n =k 时结论成立,即g k (x )=x 1+kx. 那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x ,即结论成立. 由①②可知,结论对n ∈N *成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x恒成立. 设φ(x )=ln(1+x )-ax 1+x(x ≥0), 则φ′(x )=11+x -a (1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增.又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax 1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,∴ln(1+x )≥ax 1+x不恒成立, 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1,n -f (n )=n -ln(n +1), 比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:上述不等式等价于12+13+…+1n +1<ln(n +1), 在(2)中取a =1,可得ln(1+x )>x 1+x,x >0. 令x =1n ,n ∈N *,则1n +1<ln n +1n . 下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立. ②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1). 那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.。