《三角函数的应用》三角函数PPT优秀课件

合集下载

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用 课件(共26张PPT)

5.7 三角函数的应用课件(共26张PPT)(共26张PPT)5.7三角函数的应用第五章学习目标学科素养1.了解三角函数是描述周期变化现象的重要函数模型;2.会用三角函数模型解决简单的实际问题1.数学建模2.逻辑推理1自主学习函数y=Asin(ωx+φ),A>0,ω>0中参数的物理意义Aωx+φφ2经典例题题型一三角函数在物理中的应用解列表如下:2t+0 π 2πts 0 4 0 -4 0描点、连线,图象如图所示.(2)小球上升到最高点和下降到最低点时的位移分别是多少?解小球上升到最高点和下降到最低点时的位移分别是4 cm和-4 cm.(3)经过多长时间小球往复振动一次?解因为振动的周期是π,所以小球往复振动一次所用的时间是π s.跟踪训练1已知电流I与时间t的关系为I=Asin(ωt+φ).∴ω≥300π>942,又ω∴N*,故所求最小正整数ω=943.题型二三角函数在生活中的应用解三角函数应用问题的基本步骤跟踪训练2健康成年人的收缩压和舒张压一般为120~140 mmHg 和60~90 mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg为标准值.记某人的血压满足函数式p(t)=115+25sin(160πt),其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.解p(t)max=115+25=140(mmHg),p(t)min=115-25=90(mmHg),即收缩压为140 mmHg,舒张压为90 mmHg.此人的血压在血压计上的读数为140/90 mmHg,在正常值范围内.3当堂达标√√√4.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin +k.据此函数可知,这段时间水深(单位:m)的最大值为A.5B.6C.8D.10√解析根据图象得函数的最小值为2,有-3+k=2,k=5,最大值为3+k=8.【课后作业】对应课后练习。

三角函数的应用ppt课件

三角函数的应用ppt课件
D 系,在转动一周的过程中,H 关于 t 的函数解析式为( )
A.
H
55
sin
π 15
t
π 2
,
x 0, 30
C.
H
55
sin
π 15
t
π 2
55 ,
x 0, 30
B.H
55
sin
π 15
t
π 2
,
x 0, 30
D.H
55
sin
π 15
t
π 2
65,
x 0, 30
解析:因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min ,所 以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要15min , 又因为摩天轮最高点距离地面高度为120m ,所以t 15 时, H 120 ,
i
Asin
t
来刻画,其中

表示频率,A
表示振幅,
表示初相.
解:
(1)由图可知,电流最大值 5A,因此 A=5;电流变化的周期为 1 s,频率为 50Hz, 50
即 50 ,解 得 100π ;再 由初始状 态( t=0)的 电流约为 4.33A,可 得

sin
0.866
,因此
约为
π 3
.所以电流 i
解析:设角速度
k
sin (k
0)
,故旋转一周所用的时间t
k
2
sin
.当
90
2
时,
t
24
,故
k
12
,所以
t
24
sin
.故当“傅科摆”处于北纬
40
时,

5.7 三角函数的应用 课件(共20张PPT)

5.7 三角函数的应用 课件(共20张PPT)
(5)每秒钟小球能往复振动多少次?
.

4
解:(1)由题意可得h=2sin(t+ )的图象,如图所示:

(2)由题意可得当t=0时,h=2sin(0+ )
4
= 2,
故小球在开始振动时的位置在(0, 2).
(3)由解析式可得A=2,故小球的最高点和
最低点与平衡位置的距离均为2(厘米).
(4)可得函数的周期为T=2π,故小球往复
想发现和提出、分析和解决问题,提升数学建模素养.
一、引入新课
地球自转
钟摆
潮涨潮落
我们已经学习了三角函数的概念、图象和性质,特别研究
了三角函数的周期性.在现实世界中,大到宇宙天体的运动,
小到质点的运动以及现实生活中具有周期性变化的现象无
处不在,那么能不能建立数学模型来刻画具有周期性变化
的问题呢?
二、问题探究
函数y=Asin(ωx+φ)+b的半个周期的图象,
1
2
所以A= ×(30-10)=10,
1
2
b= ×(30+10)=20,
1 2

因为 × =14-6,所以ω= .
2

8

3
所以 ×10+φ=2π+2kπ,k∈Z,取φ= ,
8
4
3
所以y=10sin( x+ )+20,x∈[6,14].
8
4
的最多时间是16小时.
②设在时刻x货船航行的安全水深为y,
那么y=11.5-0.5(x-2)(x≥2).

6
设f(x)= 3sin x+10,x∈[2,10],g(x)=11.5-0.5(x-2)(x≥2),
由f(6)=10>g(6)=9.5且f(7)=8.5<g(7)=9知,

北师大版九年级数学下册《三角函数的应用》精品课件PPT

北师大版九年级数学下册《三角函数的应用》精品课件PPT

都来当个小专家!
A
B 咋 办
2 如图,水库大坝的截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这个 C 大坝共需多少土石方(结果精确到
0.01m3 ).
先构造直 角三角形!
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
1 如图,有一斜坡AB长40m,坡顶离地面的
高度为20m,求此斜坡的倾斜角. 2.有一建筑物,在地面上A点测得其顶点 A
C的仰角为300,向建筑物前进50m至B处,又 A
测得C的仰角为450,求该建筑物的高度(结
果精确到0.1m).
B
3. 如图,燕尾槽的横断面是一个等腰梯 形,其中燕尾角∠B=550,外口宽AD=180mm, 燕尾槽的尝试是70mm,求它的里口宽BC(结 果精确到1mm).
北师大版九年级数学下册 2020年北师大版九年级数学下册1.5《三角函数的应用》课件(共16张ppt)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
直角三角形的边角关系
看我露一手
解:要知道货轮继续向东航行途中有无触礁的危险,只
要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无
触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC=
20海里.设AD=x,则

A
tan 550 BD , tan 250 CD ,

高中数学课件三角函数ppt课件完整版

高中数学课件三角函数ppt课件完整版

归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数

三角函数的应用 ppt课件

三角函数的应用 ppt课件

(2) 电压值重复出现一次的时间间隔;
(3) 电压的最大值和第一次取得最大值的时间.
探究二 三角函数模型在生活中的应用 例2 如图,游乐场中的摩天轮匀速转动,每转动一圈需要12分钟, 其中心O距离地面40.5米,半径为40米,如果你从最低处登上摩天轮, 那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻 开始计时,请回答下列问题:
(1) 作出函数的图象; [答案] 函数的图象如图所示.
(3) 当单摆摆动到最右边时,离开平衡位置的位移是多少?
(4) 单摆来回摆动一次需要多长时间?
解题感悟 三角函数模型在物理中的应用主要体现在简谐运动中,其中对弹簧振子和单 摆的运动等有关问题考查的最多,尤其要弄清振幅、频率、周期、平衡位置 等物理概念的意义和表示方法.
5.7三角函数的应用
学习目标
1.会用三角函数模型解决一些具有周期变化规律的实际问
题.
2.能将某些实际问题抽象为三角函数模型.
要点梳理
1.三角函数模型的作用 三角函数作为描述现实世界中
周期现象 的一种数学
模型,可以用来研究很多问题,在刻画
周期变化 规ቤተ መጻሕፍቲ ባይዱ、预
测未来等方面发挥重要作用.
[激趣诱思] 江心屿,位于浙江省温州市区北面瓯江中游,属于中国四大 名屿.该屿风景秀丽,东西双塔凌空,映衬江心寺,历来被称 为“瓯江蓬莱”. 江心寺为全国32所观音道场之一,分前、中、后三殿,殿内槛联匾额,琳琅 满目.寺院大门两边有一著名的叠字联: “云朝朝,朝朝朝,朝朝朝散;潮长长,长长长,长长长消 (念‘yúnzhāocháo,zhāozhāocháo,zhāocháozhāosàn;cháochángzhǎng, chángchángzhǎng,chángzhǎngchángxiāo’).”该对联巧妙地运用了叠字 诗展现了瓯江潮水涨落的壮阔画面.

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

三角函数的应用PPT省公开课获奖课件市赛课比赛一等奖课件

B
┌ C D C
经过本节课旳学习你又增长了哪些知 识?
• 我们发觉以上几种问题旳处理措施,都是 首先构建直角三角形,在两个直角三角形 中利用边角关系分步处理。此类题型需要 大家冷静分析,仔细解答。
从已知旳 边和角
表达
未知旳边和 角
求出 答案
A 6m D
1350 8m


F 30m E C
100m
由梯形面积公式S AD BCAF 得,
2 S 36 4 2 72 2.
2
V 100S 100 72 2 10182.34 m3 .
答:修建这个大坝共需土石方约10182.34m3.
1 如图,有一斜坡AB长40m,坡顶离地面旳
AD
┌ C
AB
BC sin 350
BD sin 450 sin 350
4 0.6428 0.5736
4.48m.
AB BD 4.48 4 0.48m.
答:调整后旳楼梯会加长约0.48m.
成功在于坚持
解:如图,根据题意可知,∠A=350,∠BDC=400,DB=4m.
求(2) AD旳长. tan 400 BC ,
E
怎么做?
2m
C
400
D
5m B
我快乐,我会做
解:如图,根据题意可知,∠CDB=400,EC=2m,DB=5m.求
DE旳长. tan 400 BC , BC BD tan 400.
E
BD
BE BC 2 BD tan 400 2 6.1955(m). tan BDE BE 5 tan 400 2 1.24.
2m
C
BD
5
∴∠BDE≈51.12°.

《三角函数的应用》三角函数PPT优秀教学课件

《三角函数的应用》三角函数PPT优秀教学课件
已经用三角函数模型刻画过匀速圆周运动.例如筒车运动、摩天轮的运动 、钟表指针的转动等.
新知探究
1.问题研究1——简谐运动
问题2 观看弹簧振子的运动视频,振子运动过程中有哪些周 期性现象?可以利用哪些变量之间的函数关系来刻画振子运动过 程中的周期性现象?
弹簧振子的运动(如图).
新知探究
1.问题研究1——简谐运动
50
50
再由初始状态(t=0)的电流约为4.33A,可得sinφ=0.866,因此φ约为
π 3

所以电流i随时间t变化的函数解析式是
i 5 sin(100πt π),t [0, ) .
3
当 t 0时,i 5 3;
2
当 t 1 时,i 5;
600
当 t 1 时,i 0;
150

t
7 600
2
所以函数的解析式为y=20sin(10π t- π ),t∈[0,+∞).
32
新知探究
2.建模解模
教师补充:现实生活中存在大量类似弹簧振子的运动,如钟摆的摆动,水中 浮标的上下浮动,琴弦的震动,等等.这些都是物体在某一中心位置附近循环往 复的运动.
在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置 的距离的运动称为“简谐运动”.可以证明,在适当的坐标系下,简谐运动可以 用函数y=Asin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.描述简谐运动的物理量 ,如振幅、周期和频率等都与这个解析式中的常数有关:
新知探究
2.建模解模
问题6 例1中简谐运动的振幅、周期与频率各是多少?相位、初相分别是 什么?
答案:振幅A=20mm,周期T= 3 s,频率f= 5 次,相位为 10π t- π ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档