2019-2020学年重庆市合川区八年级上期末考试数学模拟试卷及答案解析

合集下载

2019-2020年最新人教版数学八年级上学期期末考试模拟测试及答案解析-精编试题

2019-2020年最新人教版数学八年级上学期期末考试模拟测试及答案解析-精编试题
(阅卷说明:只计算出一种情况,本题得4分)
六、几何探究(本题6分)
25.(1)证明:连结
∵ 平分 ,

∵直线 ⊥ 于 ,




∴ 是线段 的中垂线



∵ , ,


∴ ……………………………………………………………………2分
(2)当 中点时, 和 之间的等量关系为
证明:过点 作 交 于
由(1)可得 ,
∴CE=CD,∠BCE=∠ACD……………………………………………4分
∴∠BCE-∠6=∠ACD-∠6
即∠4=∠7=60°
∴△ECD是等边三角形………………………………………………5分
24.解:分类讨论
(1)如图,过A作AD⊥BC交BC(延长线)于D,………………………1分
∴∠D=90°,
∴在Rt△ABD中,∠B+∠BAD=90°,
并直接写出结论.
七、选作题
26.如图,在△ABC中,AB=AC, °,请你在图中,分别用两种不同方法,将△ABC分割成四个小三角形,使得其中两个是全等的不等边三角形(不等边三角形指除等腰三角形以外),而另外两个是不全等的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).
线BC上一动点D,从点B出发,以 厘米每秒的速度
匀速运动,若点D运动t秒时,以A、D、B为顶点的三
角形恰为等腰三角形,则所用时间t为秒.
(结果可含根号).
三、解答题(本大题共4个小题,每小题5分,共20分)

2019—2020年最新人教版八年级数学第一学期期末考试模拟检测及答案解析.doc

2019—2020年最新人教版八年级数学第一学期期末考试模拟检测及答案解析.doc

八年级(上)期末模拟数学试卷一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm22.(3分)观察下列数,,2,,2,…则第6个数是()A.3B.C.2D.43.(3分)已知P1(a﹣1,3)和点P2(2,b﹣1)关于x轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.(﹣3)20174.(3分)若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(0,﹣2)B.(1.5,0)C.(8,20)D.(0.5,0.5)5.(3分)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.36.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.(3分)把式子m中根号外的m移到根号内得()A.﹣ B.C.﹣D.﹣二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.10.(3分)若=4,则(a+2)2的平方根是.11.(3分)已知实数a,b,c满足a+b+c≠0并且===k,则直线y=kx ﹣3不经过的象限为第象限.12.(3分)已知一组数据a1,a2,a3,a4,a5的平均数是8,则另一组数据a1+10,a2﹣10,a3+10,a4﹣10,a5+10的平均数为.13.(3分)若a<<b,且a,b为连续正整数,则b2﹣a2= .14.(3分)如图,AB=AC=AD,∠BAD=80°,则∠BCD的大小是.15.(3分)如果5+与5﹣的小数部分分别为a和b,则a+b= .三、解答题(本大题共8个小题,共75分)16.(8分)解下列方程组(1)(代入法)(2)(加减法)17.(8分)计算下面各题.(1)(﹣2)×﹣6(2)(+﹣1)(﹣+1)18.(8分)如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.19.(10分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是.(3)将点C向x轴的负方向平移6个单位,它与点重合.(4)连接CE,则直线CE与y轴是什么位置关系?(5)点D分别到x、y轴的距离是多少?20.(10分)如图所示的平面直角坐标系中,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.21.(9分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.22.(11分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.23.(11分)已知直线l1∥l2,l3和l1,l2分别交于C,D两点,点A,B分别在线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.(1)如图1,有一动点P在线段CD之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明;(2)如图2,当动点P在线段CD之外运动时,上述的结论是否成立?若不成立,并给出证明.参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.(3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.2.(3分)观察下列数,,2,,2,…则第6个数是()A.3B.C.2D.4【解答】解:∵2=,2=,∴第一个数为,第二个数为,第三个数为,∴第6个数为=4.故选:D.3.(3分)已知P1(a﹣1,3)和点P2(2,b﹣1)关于x轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.(﹣3)2017【解答】解:∵P1(a﹣1,3)和点P2(2,b﹣1)关于x轴对称,∴a﹣1=2,b﹣1=﹣3,解得:a=3,b=﹣2,则(a+b)2017=1.故选:C.4.(3分)若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(0,﹣2)B.(1.5,0)C.(8,20)D.(0.5,0.5)【解答】解:将点A(2,4)代入函数y=kx﹣2得,2k﹣2=4,2k=6,k=3,函数解析式为y=3x﹣2.将各点代入解析式:A、将(0,﹣2)代入y=3x﹣2得,﹣2=3×0﹣2,等式成立,故本选项正确;B、将(1.5,0)代入y=3x﹣2得,0≠3×1.5﹣2,等式不成立,故本选项错误;C、将(8,20)代入y=3x﹣2得,20≠3×8﹣2,等式不成立,故本选项错误;D、将(0.5,0.5)代入y=3x﹣2得,0.5≠3×0.5﹣2,等式不成立,故本选项错误;故选:A.5.(3分)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,故选:C.6.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【解答】解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选:C.7.(3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.8.(3分)把式子m中根号外的m移到根号内得()A.﹣ B.C.﹣D.﹣【解答】解:∵﹣>0,∴m<0,则原式=﹣=﹣,故选:C.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.10.(3分)若=4,则(a+2)2的平方根是±16 .【解答】解:由=4,两边平方得a=14,∴(a+2)2=162,∴(a+2)2平方根是±16.故答案为:±16.11.(3分)已知实数a,b,c满足a+b+c≠0并且===k,则直线y=kx ﹣3不经过的象限为第二象限.【解答】解:∵===k,∴a=k(b+c),b=k(a+c),c=k(a+b),∴a+b+c=k(b+c)+k(a+c)+k(a+b)=k(2a+2b+2c)=2k(a+b+c),∵a+b+c≠0,∴k=,∴y=x﹣3,该函数经过第一、三、四象限,不经过第二象限,故答案为:二.12.(3分)已知一组数据a1,a2,a3,a4,a5的平均数是8,则另一组数据a1+10,a2﹣10,a3+10,a4﹣10,a5+10的平均数为10 .【解答】解:∵数据a1,a2,a3,a4,a5的平均数是8,∴a1+a2+a3+a4+a5=8×5=40,∴a1+10+a2﹣10+a3+10+a4﹣10+a5+10=a1+a2+a3+a4+a5+10=50,∴数据a1+10,a2﹣10,a3+10,a4﹣10,a5+10的平均数为10.故答案为10.13.(3分)若a<<b,且a,b为连续正整数,则b2﹣a2= 7 .【解答】解:∵32<13<42,∴3<<4,即a=3,b=4,∴b2﹣a2=7.故答案为:7.14.(3分)如图,AB=AC=AD,∠BAD=80°,则∠BCD的大小是140°.【解答】解:∵AB=AC=AD,∴∠BCA=∠B=(180°﹣∠BAC),∠DCA=∠D=(180°﹣∠CAD),∴∠BCD=∠BCA+∠DCA=(180°﹣∠BAC)+(180°﹣∠CAD)=180°﹣(∠BAC+∠CAD)=180°﹣∠BAD=180°﹣40°=140°,故答案为:140°.15.(3分)如果5+与5﹣的小数部分分别为a和b,则a+b= 1 .【解答】解:由2<3,得a=﹣2,b=5﹣﹣2,a+b=﹣2+3﹣=1,故答案为:1.三、解答题(本大题共8个小题,共75分)16.(8分)解下列方程组(1)(代入法)(2)(加减法)【解答】解:(1),由②得x=﹣4y+13③,把③代入①得2(﹣4y+13)+3y=16,解得:y=2,把y=2代入③得x=5.则方程组的解为;(2),①×3+②×2得13x=﹣13,解得x=﹣1,把x=﹣1代入①得﹣3﹣2y=1,解得:y=﹣1.则方程组的解为.17.(8分)计算下面各题.(1)(﹣2)×﹣6(2)(+﹣1)(﹣+1)【解答】解:(1)原式=3﹣6﹣3=﹣6(2)原式=[+(﹣1)][﹣(﹣1)]=3﹣(﹣1)2=3﹣(2﹣2+1)=3﹣(3﹣2)=218.(8分)如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.【解答】解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.19.(10分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是 3 .(3)将点C向x轴的负方向平移6个单位,它与点 D 重合.(4)连接CE,则直线CE与y轴是什么位置关系?(5)点D分别到x、y轴的距离是多少?【解答】解:(1)如图:(2)A点到原点的距离是3,故答案为:3;(3)将点C向x轴的负方向平移6个单位,它与点D重合,故答案为:D;(4)直线CE与y轴平行;(5)点D到x轴的距离是5,点D到y轴的距离是3.20.(10分)如图所示的平面直角坐标系中,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.【解答】解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)∵A(3,4),∴A点到y轴的距离为3,且OB=5,∴S=×5×3=.21.(9分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.【解答】解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x吨,1辆小车一次运货y吨.根据题意,得,解得.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.22.(11分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表100(1)在图①中,“80分”所在扇形的圆心角度数为54°;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.【解答】解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲校20名同学的成绩比较整齐.23.(11分)已知直线l1∥l2,l3和l1,l2分别交于C,D两点,点A,B分别在线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.(1)如图1,有一动点P在线段CD之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明;(2)如图2,当动点P在线段CD之外运动时,上述的结论是否成立?若不成立,并给出证明.【解答】解:(1)∠2=∠1+∠3.证明:如图①,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)上述结论不成立,新的结论:∠3=∠1+∠2.证明:如图②,设PB与l1交于点F,∵l1∥l2,∴∠3=∠PFC.在△APF中,∵∠PFC是△APF的一个外角,∴∠PFC=∠1+∠2,即∠3=∠1+∠2.美好的未来不是等待,而是孜孜不倦的攀登。

2019—2020年最新人教版八年级数学第一学期期末考试模拟检测卷及答案解析.doc

2019—2020年最新人教版八年级数学第一学期期末考试模拟检测卷及答案解析.doc

八年级(上)期末模拟数学试卷一、选择题(本题含16个小题,1-10题每题3分,11-16题每题2分,共42分在每小了题给出的四个选项中,只有一项是符合题目要求的1.(3分)的相反数是()A.﹣B.C.D.52.(3分)下列式子中是分式的是()A.B.C.D.3.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°5.(3分)计算的结果为()A.6B.﹣6C.18D.﹣186.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°7.(3分)用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)8.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB9.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b10.(3分)用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°11.(2分)若分式的值为零,则x的值是()A.1B.﹣1C.±1D.212.(2分)把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.213.(2分)能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥214.(2分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC 于E点,若△ABC与△EBC的周长分别是40,24,则AB为()A.8B.12C.16D.2015.(2分)如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个16.(2分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60二、填空题(本题含4个小题,每小题3分,共12分)17.(3分)计算:×= .18.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 度.19.(3分)如果关于x的分式方程=1有增根,那么m的值为.20.(3分)在数学课上,老师提出如下问题:尺规作图:作一个角等于已知角已知:∠AOB,求作:∠A'OB',使:∠A′OB′=∠AOB小易同学作法如下:①作射线O′A',②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D,③以点O′为圆心,以OC长为半径作弧,交O′A于C,④以点C′圆心,以CD为半径作弧,交③中所画弧于D′,⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角老师说:“小易的作法正确”请回答:小易的作图依据是.三、解答题〔本题含6个小题,共46分.解答应写出文字说明、证明过程或演算步骤21.(6分)已知+=b+3(1)求a的值;(2)求a2﹣b2的平方根.22.(6分)如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若ED=4cm,FC=lcm,∠BAC=76°,∠EAC=58°(1)求出BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?23.(7分)观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:= = ;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.24.(7分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,求证:.请你补全已知和求证,并写出证明过程.25.(9分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?26.(11分)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案与试题解析一、选择题(本题含16个小题,1-10题每题3分,11-16题每题2分,共42分在每小了题给出的四个选项中,只有一项是符合题目要求的1.(3分)的相反数是()A.﹣B.C.D.5【分析】根据相反数的意义求解即可.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)下列式子中是分式的是()A.B.C.D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.3.(3分)下列图形是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3分)如图是两个全等三角形,则∠1=()A.62°B.72°C.76°D.66°【分析】根据全等三角形的对应角相等解答.【解答】解:第一个图中,∠1=180°﹣42°﹣62°=76°,∵两个三角形全等,∴∠1=76°,故选:C.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.5.(3分)计算的结果为()A.6B.﹣6C.18D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.6.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°【分析】分这个角为底角和顶角两种情况讨论即可.【解答】解:当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选:B.【点评】本题主要考查等腰三角形的性质,分两种情况讨论是解题的关键.7.(3分)用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.【点评】本题考查了根据精确度取近似数,精确度可以是“十分位(0.1)、百分位(0.01)、千分位(0.0010”等,按四舍五入取近似数,只看精确度的后一位数.8.(3分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.10.(3分)用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选:D.【点评】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.11.(2分)若分式的值为零,则x的值是()A.1B.﹣1C.±1D.2【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.12.(2分)把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.2【分析】根据勾股定理求出OA的长,根据实数与数轴的知识解答.【解答】解:=,∴OA=,则点A对应的数是,故选:B.【点评】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.13.(2分)能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.14.(2分)如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC 于E点,若△ABC与△EBC的周长分别是40,24,则AB为()A.8B.12C.16D.20【分析】首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长﹣△EBC的周长=AB,据此求出AB的长度是多少即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16.故选:C.【点评】此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.15.(2分)如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【分析】先运用SAS证明△ABD≌△ACD,再得(1)△ABD≌△ACD正确;(2)AB=AC 正确;(3)∠B=∠C正确;∠BAD=∠CAD(4)AD是△ABC的角平分线.即可找到答案.【解答】解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,及全等三角形性质的运用.16.(2分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二、填空题(本题含4个小题,每小题3分,共12分)17.(3分)计算:×= .【分析】根据二次根式的乘法法则进行计算即可.【解答】解:×=;故答案为:.【点评】此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则=是本题的关键,是一道基础题.18.(3分)如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 75 度.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.19.(3分)如果关于x的分式方程=1有增根,那么m的值为﹣4 .【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.=1,【解答】解:去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4.故答案为:﹣4.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.(3分)在数学课上,老师提出如下问题:尺规作图:作一个角等于已知角已知:∠AOB,求作:∠A'OB',使:∠A′OB′=∠AOB小易同学作法如下:①作射线O′A',②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D,③以点O′为圆心,以OC长为半径作弧,交O′A于C,④以点C′圆心,以CD为半径作弧,交③中所画弧于D′,⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角老师说:“小易的作法正确”请回答:小易的作图依据是SSS和全等三角形的对应角相等.【分析】根据作图可得DO=D′O′,CO=C′O′,CD=C′D′,再利用SSS判定△D′O′C′≌△DOC即可得出∠O'=∠O.【解答】解:由题意可得O′C′=OC,O′D′=OD,C′D′=CD,∵在△C′O′D′和△COD中,∵,∴△C′O′D′≌△COD(SSS),∴∠C′O′D′=∠COD(全等三角形的对应角相等),∴小易的作图依据是:SSS和全等三角形的对应角相等.【点评】此题主要考查了基本作图,解决问题的关键是掌握作一个角等于已知角的方法,掌握三角形全等的判定方法.三、解答题〔本题含6个小题,共46分.解答应写出文字说明、证明过程或演算步骤21.(6分)已知+=b+3(1)求a的值;(2)求a2﹣b2的平方根.【分析】(1)直接利用二次根式的性质分析得出答案;(2)直接利用(1)中所求得出b的值,进而得出答案.【解答】解:(1)∵,有意义,∴,解得:a=5;(2)由(1)知:b+3=0,解得:b=﹣3,则a2﹣b2=52﹣(﹣3)2=16,则平方根是:±4.【点评】此题主要考查了二次根式有意义的条件,正确得出a的值是解题关键.22.(6分)如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若ED=4cm,FC=lcm,∠BAC=76°,∠EAC=58°(1)求出BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?【分析】根据△ABC与△ADE关于直线MN对称确定对称点,从而确定对称线段、对称角和对称三角形,利用轴对称的性质即可解决问题;【解答】解:(1)∵△ABC与△ADE关于直线MN对称,ED=4cm,FC=1cm,∴BC=ED=4cm,∴BF=BC﹣FC=3cm.(2)∵△ABC与△ADE关于直线MN对称,∠BAC=76°,∠EAC=58°,∴∠EAD=∠BAC=76°,∴∠CAD=∠EAD﹣∠EAC=76°﹣58°=18°.(3)结论:直线MN垂直平分线段EC.理由如下:∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.【点评】本题考查轴对称的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(7分)观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:= 1+﹣= 1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.【点评】此题主要考查了二次根式的性质与化简,正确发现数字变化规律是解题关键.24.(7分)证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB求证:PD=PE .请你补全已知和求证,并写出证明过程.【分析】根据图形写出已知条件和求证,利用全等三角形的判定得出△PDO≌△PEO,由全等三角形的性质可得结论.【解答】解:已知:PD⊥OA,PE⊥OB,垂足分别为D、E;求证:PD=PE.故答案为:PD=PE.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△PDO和△PEO中,,∴△PDO≌△PEO(AAS),∴PD=PE.【点评】本题主要考查了角平分线的性质和全等三角形的性质及判定,利用图形写出已知条件和求证是解答此题的关键.25.(9分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【解答】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【点评】本题考查理解题意的能力,第一问以件数做为等量关系列方程求解,第2问以玩具件数和钱数做为不等量关系列不等式组求解.26.(11分)如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=120°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=70°﹣15°=55°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α②如图2,当点D在线段BC上时,∠ADC=x°+α③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=30°,∴∠BAC=120°,∵∠BAD=70°,∴∠DAE=50°,∴∠ADE=∠AED=65°,∴∠CDE=180°﹣50°﹣30°﹣65°=35°;(2)∵∠ACB=70°,∠CDE=15°,∴∠E=70°﹣15°=55°,∴∠ADE=∠AED=55°,∴∠ADC=40°,∵∠ABC=∠ADB+∠DAB=70°,∴∠BAD=30°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴,(1)﹣(2)得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α∴,∴2α=β,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α∴,(2)﹣(1)得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点评】本题考查了等腰三角形的性质,三角形的外角的性质,三角形的内角和,正确的识别图形是解题的关键.。

2019—2020年最新人教版数学八年级上学期期末模拟综合试题及答案解析.doc

2019—2020年最新人教版数学八年级上学期期末模拟综合试题及答案解析.doc

第一学期期末模拟调研考试八年级数学试卷注意:本试卷共8页,三道大题,26个小题。

总分120分。

时间120分钟。

一、 选择题(本大题共12小题.1~6小题,每小题2分;7~12小题,每小题3分;共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)1.5的算术平方根是 A .5 B .5- C .5- D .5 2.把不等式2x -< 4的解集表示在数轴上,正确的是得分 评卷人3.下列运算中,正确的是A .3x -2x=1B .x +x 4=x 5C .(-2x)3=-6x 3D .x 2y ÷y=x 24.要了解一批电视机的使用寿命,从中任意抽取40台进行试验。

在这个问题中,40是A .个体B .总体C .样本容量D .总体的一个样本 5.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70° C .80° D .90°6. (2,-13)关于y 轴的对称点坐标是A .(2,-13)B .(-2,-13)C .(-2,13)D .(2,13) 7.下列多项式中,能用公式法分解因式的是A .xy x -2B .xy x +2C .22y x + D .22y x -8.下列说法:①有理数与数轴上的点一 一对应 ②无限小数都是无理数 ③顶角和腰长对应相等的等腰三角形全等 ④斜边相等的直角三角形全等。

其中正确的个数是A .0个B .1个C .2个D .3个 9.在△ABC 中,C B A ∠=∠=∠3121 ,则△ABC 是 A .等腰直角三角形 B .锐角三角形 C .钝角三角形 D .直角三ABCD 40° 120°图14=1+3 9=3+616=6+10图2…角形10.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x xD .48)12(5=-+x x11.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图2中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是ABCDA .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 =18+31 二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在题中横线上) 13.比较大小:(用=<>或,,填空)14.因式分解:3226126y xy y x +-=15.一个等腰三角形的两边长分别是25和10,则其周长为 16.如图3,直线a b ∥,直线c 与a 、b 相交。

2019-2020年最新人教版数学八年级上学期期末考试模拟检测及答案解析-精编试题

2019-2020年最新人教版数学八年级上学期期末考试模拟检测及答案解析-精编试题

八年级(上)期末模拟数学试卷一、选择题(本大题有7小题,每题3分,共21分) 1、下列交通标志属于轴对称图形的是A B C D 2、化简23·a a 的结果是A.a B,5a C 。

6a D. 8a3.下列计算中,正确的是A.|3|3--= B 。

030= C.1133-=- D 、1133-=4.下列长度的三条线段,能构成三角形的是 A.1,2,6 B.1,2,3 C.2,3,4 D.2,2,45、若等腰三角形底角为72︒,则顶角为 A.2 B.3 C. 4 D.\66.如图1,在ABC ∆中,AB=AC,AD 是BC 边上的高,点E 、F 是A 、D 的三等分点若ABC ∆的面积为12,则图中BEF ∆的面积为 A 、2 B 、3 C 、4 D 、67、如图1,是一个长为2a 宽为2()b a b >的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图2拼成一个新的正方形,则中间空白部分的面积是A.ab B 。

2)a b +( C 。

2()a b - D 、22a b -二、填空题8、如图,ABC DEF ∆≅∆,请根据图中提供的信息,写出_______x =9.一个多边形的每个外角都等于72︒,则这个多边形的边数是10、分解因式:221____a a ++= 22x x -=________11、如图,在ABC ∆中,D 是BC 边延长线上一点,40B ∠=︒,120ACD ∠=︒,则=A ∠_______12、若等腰三角形的两条边长分别为4cm 和9cm ,则等腰三角形的周长为__________ 13、如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第______块去配,其依据是根据定理________(可以用字母简写)14、已知,a b 满足3,2,a b ab +==则22a b +=________15、已知分式211x x -+的值为零,那么x 的值是___________16、如图,ABC ∆中,AB=AC, =30C ∠︒,DA BA ⊥与A ,BC=4.2cm ,则DA=_______17、如图,ABC ∆是等边三角形,AE=CD,AD 、BE 相交于点P ,BQ DA ⊥于Q ,BPQ ∠的度数是______;若PQ=3,EP=1,则DA 的长是_______. 三、解答题18.在图的方格纸中画出ABC ∆关于y 轴对称的,并写出点B 的对称点1B 的坐标19、先化简,再求值:2)(23)a b a b a -+-(,其中1,32a b =-=20、化简:35(2)362m m m m m -÷+---21、解方程:21124x x x -=--22、姐妹两人加工同一种服饰品,姐姐比妹妹每小时多加工30个,姐姐加工900个饰品的时间与妹妹加工600个饰品的时间相同,求姐妹每小时分别能加工多少个服装饰品?23.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”。

2019—2020年最新人教版八年级数学上学期期末模拟检测题及答案解析(试卷).doc

2019—2020年最新人教版八年级数学上学期期末模拟检测题及答案解析(试卷).doc

第一学期期末模拟考试八年级数学试题一、填空题(共6小题,每小题3分,共18分)1.(3分)已知3x=5,9y=8,则3x﹣2y= .2.(3分)一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为.3.(3分)因式分解:2x2﹣2= .4.(3分)二次三项式4x2﹣(k﹣3)x+9是完全平方式,则k的值是.5.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是.6.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.二、选择题(共8小题,每小题4分,共32分)7.(4分)下列运算正确的是()A.x6÷x2=x3B.2x﹣1=C.(﹣2x3)2=4x6D.﹣2a2•a3=﹣2a68.(4分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=69.(4分)数字0.0000036用科学记数法表示为()A.3.6×10﹣5B.3.6×10﹣6C.36×10﹣6 D.0.36×10﹣510.(4分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1 B.m≠1 C.m>1且m≠﹣1 D.m>﹣1且m≠111.(4分)如图,将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠1=56°,那么∠2的度数是()A.56° B.58° C.66° D.68°12.(4分)已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=()A.29 B.37 C.21 D.3313.(4分)如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°14.(4分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G,给出以下五个结论:①∠B=∠C=45°;②AE=CF,③AP=EF,④△EPF是等腰直角三角形,⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是()A.只有①B.①②④C.①②③④D.①②④⑤三、解答题(共9小题,共70分)15.(8分)计算:(1)2(x+1)(x﹣1)﹣x(2x﹣1)(2)[(x+y)(x﹣y)+2y(x﹣y)﹣(x﹣y)2]÷(2y)16.(8分)解方程:(1)﹣=1(2)=+17.(5分)(1)计算并观察下列各式:(x﹣1)(x+1)= ;(x﹣1)(x2+x+1)= ;(x﹣1)(x3+x2+x+1)= .(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填空.(x﹣1)()=x6﹣1(3)利用你发现的规律计算:(x﹣1)(x m+x m﹣1+x m﹣2+x m﹣3+…+x+1)的结果为.18.(6分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足,AB=CD,求证:DE=BF.19.(7分)先化简,再求值:(+1)÷,其中x是满足不等式组的最小整数.20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.21.(7分)为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前4天完成,求实际每天栽树多少棵?22.(9分)如图,过∠AOB的平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,过点E作直线分别交线段CD和射线OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23.(12分)如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案与试题解析一、填空题(共6小题,每小题3分,共18分)1.(3分)已知3x=5,9y=8,则3x﹣2y= .【分析】根据同底数幂的除法得到3x﹣2y=3x÷32y,进一步得到原式=3x÷9y,再代入计算即可求解.【解答】解:∵3x=5,9y=8,∴3x﹣2y=3x÷32y=3x÷9y=.故答案为:.【点评】本题考查了幂的乘方的性质,同底数幂的除法,很容易混淆,一定要记准法则才能做题.2.(3分)一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为16 .【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=7×360°,解得n=16,故答案为:16.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.3.(3分)因式分解:2x2﹣2= 2(x+1)(x﹣1).【分析】首先提公因式2,再利用平方差进行二次分解.【解答】解:原式=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.4.(3分)二次三项式4x2﹣(k﹣3)x+9是完全平方式,则k的值是15或﹣9 .【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵二次三项式4x2﹣(k﹣3)x+9是完全平方式,∴k﹣3=±12,解得:k=15或k=﹣9,故答案为:15或﹣9【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30 .【分析】根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.【点评】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8 个.【分析】建立网格平面直角坐标系,然后作出符合等腰三角形的点P的位置,即可得解.【解答】解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.【点评】本题考查了等腰三角形的判定,作出图形,利用数形结合的思想求解更形象直观.二、选择题(共8小题,每小题4分,共32分)7.(4分)下列运算正确的是()A.x6÷x2=x3B.2x﹣1=C.(﹣2x3)2=4x6D.﹣2a2•a3=﹣2a6【分析】各项利用同底数幂的乘除法,单项式乘以单项式,负整数指数幂法则计算得到结果,即可作出判断.【解答】解:A、原式=x4,不符合题意;B、原式=,不符合题意;C、原式=4x6,符合题意;D、原式=﹣2a5,不符合意义,故选:C.【点评】此题考查了单项式乘单项式,幂的乘方与积的乘方,同底数幂的除法,以及负整数指数幂,熟练掌握运算法则是解本题的关键.8.(4分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选:C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.9.(4分)数字0.0000036用科学记数法表示为()A.3.6×10﹣5B.3.6×10﹣6C.36×10﹣6 D.0.36×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000036=3.6×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(4分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1 B.m≠1 C.m>1且m≠﹣1 D.m>﹣1且m≠1【分析】先去分母,用含m的代数式表示出x,根据解为正数求出m的范围即可.【解答】解:两边都乘以x﹣1,得:m﹣1=2(x﹣1),解得:x=,因为分式方程的解为正数,所以>0且≠1,解得:m>﹣1且m≠1,故选:D.【点评】本题考查了分式方程的解法和分式方程的解以及一元一次不等式.确定m的取值范围时,容易忽略x不等于1的条件.11.(4分)如图,将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠1=56°,那么∠2的度数是()A.56° B.58° C.66° D.68°【分析】首先根据根据折叠可得∠1=∠EFB′=56°,再求出∠B′FC的度数,然后根据平行线的性质可得∠2=∠B′FC=68°.【解答】解:根据折叠可得∠1=∠EFB′,∵∠1=56°,∴∠EFB′=56°,∴∠B′FC=180°﹣56°﹣56°=68°,∵AD∥BC,∴∠2=∠B′FC=68°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.12.(4分)已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=()A.29 B.37 C.21 D.33【分析】把a+b=5两边平方,利用完全平方公式化简,把ab的值代入计算即可求出a2+b2的值;原式结合后,把各自的值代入计算即可求出值.【解答】解:把a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=﹣4代入得:a2+b2=33,则a2﹣ab+b2=33﹣(﹣4)=37.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.(4分)如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°【分析】由于点C关于直线MN的对称点是B,所以当B、P、D三点在同一直线上时,PC+PD的值最小【解答】解:连接PB.由题意知,∵B、C关于直线MN对称,∴PB=PC,∴PC+PD=PB+PD,当B、P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴PA=PC,∴∠PCD=∠PAD=30°故选:A.【点评】此题考查了线路最短的问题、等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.14.(4分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G,给出以下五个结论:①∠B=∠C=45°;②AE=CF,③AP=EF,④△EPF是等腰直角三角形,⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是()A.只有①B.①②④C.①②③④D.①②④⑤【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP 平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC 的面积的一半.【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴①∠B=∠C=×(180°﹣90°)=45°,AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴②AE=CF;④EP=PF,即△EPF是等腰直角三角形;同理可证得△APF≌△BPE,∴⑤四边形AEPF的面积是△ABC面积的一半,∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故③错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、②、④、⑤,共四个.因此选D.【点评】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,中位线的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.三、解答题(共9小题,共70分)15.(8分)计算:(1)2(x+1)(x﹣1)﹣x(2x﹣1)(2)[(x+y)(x﹣y)+2y(x﹣y)﹣(x﹣y)2]÷(2y)【分析】(1)先算乘法,再合并同类项即可;(2)先算括号内的乘法,再合并同类项,最后算除法即可.【解答】解:(1)原式=2x2﹣2﹣2x2+x=x﹣2;(2)原式=[x2﹣y2+2xy﹣2y2﹣x2+2xy﹣y2]÷2y=[﹣4y2+4xy]÷2y=﹣2y+2x.【点评】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.16.(8分)解方程:(1)﹣=1(2)=+【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.依此即可求解.【解答】解:(1)﹣=1,去分母,得2+3x=x﹣2,移项合并,得2x=﹣4,解得x=﹣2,经检验,x=﹣2是增根,故原分式方程无解.(2)=+去分母,得42x=12(x+8)+10x,去括号,得20x=96,解得x=4.8,经检验,x=4.8是原分式方程的解.【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.17.(5分)(1)计算并观察下列各式:(x﹣1)(x+1)= x2﹣1 ;(x﹣1)(x2+x+1)= x3﹣1 ;(x﹣1)(x3+x2+x+1)= x4﹣1 .(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填空.(x﹣1)(x5+x4+x3+x2+x+1 )=x6﹣1(3)利用你发现的规律计算:(x﹣1)(x m+x m﹣1+x m﹣2+x m﹣3+…+x+1)的结果为x m+1﹣1 .【分析】(1)利用平方差公式计算(x﹣1)(x+1),利用立方差公式计算(x﹣1)(x2+x+1)=x3﹣1;利用上面两等式的变化规律计算(x﹣1)(x3+x2+x+1);(2)利用(1)中三个等式的变化规律求解;(3)利用(1)中三个等式的变化规律求解.【解答】解:(1)(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(2)(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(3)(x﹣1)(x m+x m﹣1+x m﹣2+x m﹣3+…+x+1)=x m+1﹣1.故答案为x2﹣1;x3﹣1;x4﹣1;(x5+x4+x3+x2+x+1)=x m+1﹣1.【点评】本题考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.也考查了规律型问题的解决方法.18.(6分)已知:如图,AE=CF,DE⊥AC,BF⊥AC,E,F是垂足,AB=CD,求证:DE=BF.【分析】欲证明DE=BF,只要证明△ABF≌△CDE(HL)即可.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BFA=90°,∵AE=CF,∴AF=CE,在Rt△ABF和△Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴DE=BF.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.19.(7分)先化简,再求值:(+1)÷,其中x是满足不等式组的最小整数.【分析】先解不等组求出x的范围,然后求出合适的x值,【解答】解:∵∴﹣2<x≤1∴由题意可知:x=﹣1∴原式=÷==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.(8分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求△ABC的周长.【分析】(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.(2)由△CBD的周长为20,推出AC+BC=20,根据AB=2AE=12,由此即可解决问题.【解答】解:(1)解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°.(2)∵MN垂直平分AB,∴DA=DB,∵BC+BD+DC=20,∴AD+DC+BC=20,∴AC+BC=20,∵AB=2AE=12,∴△ABC的周长=AB+AC+BC=12+20=32【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.21.(7分)为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前4天完成,求实际每天栽树多少棵?【分析】设原计划每天栽树x棵,则实际每天栽树1.2x棵,根据工作时间=工作总量÷工作效率结合提前4天完成任务,即可得出关于x的分式方程,解之并检验后即可得出结论.【解答】解:设原计划每天栽树x棵,则实际每天栽树1.2x棵,根据题意得:﹣=4,解得:x=50,经检验,x=50是原分式方程的解.答:实际每天栽树50棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(9分)如图,过∠AOB的平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,过点E作直线分别交线段CD和射线OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DCO,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON ﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠COB,又∵CD∥OB,∴∠DCO=∠COB,∴∠DOC=∠DCO,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.23.(12分)如图(1)AB=9cm,AC⊥AB,BD⊥AB,AC=BD=7cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【分析】(1)利用SAS定理证明△ACP≌△BPQ;(2)根据全等三角形的性质判断线段PC和线段PQ的位置关系;(3)分△ACP≌△BPQ,△ACP≌△BQP两种情况,根据全等三角形的性质列式计算.【解答】解:(1)△ACP与△BPQ全等,理由如下:当t=1时,AP=BQ=2,则BP=9﹣2=7,∴BP=AC,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS);(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直;(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴9﹣2t=7,解得,t=1(s),则x=2(cm/s);②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×9,解得,t=(s),则x=7÷=(cm/s),故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.【点评】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。

2019—2020年最新人教版八年级数学上学期期末模拟测试及答案解析(试卷).doc

第一学期期末模拟考试八年级数学试题一、选择题(每小题3分,共30分)1.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣2.(3分)若x2﹣kxy+9y2是一个整式完全平方后的结果,则k值为()A.3B.6C.±6D.±813.(3分)若等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的底边为()A.4cm B.6cm C.4cm或8cm D.8cm4.(3分)已知A,B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个5.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°6.(3分)如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°7.(3分)如图,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,则以下结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有2个D.点O是CD的中点8.(3分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠1C.m>1且m≠﹣1D.m>﹣1且m≠19.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm10.(3分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:6a2b÷2a= .12.(3分)若a+b=5,ab=3,则2a2+2b2= .13.(3分)若分式的值为零,则x的值是.14.(3分)如图,已知AB∥CF,E为DF的中点,若AB=11cm,CF=5cm,则BD= cm.15.(3分)如图,已知∠ACB=90°,BD=BC,AE=AC,则∠DCE= 度.16.(3分)如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 度.三、解答题(共8小题,共72分)17.(8分)计算:(1)1﹣;(2).18.(8分)把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y219.(8分)解方程:(1)+1=;(2)20.(8分)如图,在折纸活动中,小明制作了一张△ABC的纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,求∠1+∠2的度数.21.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.22.(9分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′(2)三角形ABC的面积为;(3)在直线l上找一点P,使PA+PB的长最短.23.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.24.(12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.①BG与y轴的位置关系怎样?说明理由;②求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB 上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.【点评】本题考查了分式的基本性质,规律总结:(1)同类分式中的操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式变号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.2.(3分)若x2﹣kxy+9y2是一个整式完全平方后的结果,则k值为()A.3B.6C.±6D.±81【分析】根据首末两项是x和3y的平方,那么中间项为加上或减去x和3y的乘积的2倍,进而得出答案.【解答】解:∵x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×3y•x,解得k=±6.故选:C.【点评】本题主要考查了完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解是解题关键.3.(3分)若等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的底边为()A.4cm B.6cm C.4cm或8cm D.8cm【分析】分4cm是底边和腰长两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形.【解答】解:①4cm是底边时,腰长为×(16﹣4)=6,能组成三角形,②4cm是腰长时,底边为16﹣2×4=8,∵4+4=8,∴不能组成三角形,综上所述,该等腰三角形的底边长为4cm.故选:A.【点评】本题考查了等腰三角形的性质,三角形的任意两边之和大于第三边的性质,难点在于分情况讨论.4.(3分)已知A,B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个【分析】关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;A,B两点的坐标分别是(﹣2,3)和(2,3),纵坐标相同,因而AB平行于x轴,A,B之间的距离为4.【解答】解:正确的是:②A,B关于y轴对称;④若A,B之间的距离为4.故选:B.【点评】本题考查的是如何利用点的坐标判断两点关于x轴,y轴是否对称.5.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°【分析】根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【解答】解:根据题意得:360°÷36°=10,(10﹣2)×180°=1440°,则该多边形的内角和等于1440°,故选:C.【点评】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.6.(3分)如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°【分析】易证△ABD≌△BCE,可得∠1=∠CBE,根据∠2=∠1+∠ABE可以求得∠2的度数,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.【点评】本题考查了全等三角形的证明,全等三角形对应角相等的性质,等边三角形内角为60°的性质,本题中求证△ABD≌△BCE是解题的关键.7.(3分)如图,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,则以下结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有2个D.点O是CD的中点【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,∠AOE=∠AOD,同理可得OC=OE,∠BOC=∠BOE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【解答】解:∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE,∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;在Rt△AOD和Rt△AOE中,,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,∠AOE=∠AOD,同理可得OC=OE,∠BOC=∠BOE,∴∠AOB=×180°=90°,故B选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故C选项结论错误;∵OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选:C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.8.(3分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠1C.m>1且m≠﹣1D.m>﹣1且m≠1【分析】先去分母,用含m的代数式表示出x,根据解为正数求出m的范围即可.【解答】解:两边都乘以x﹣1,得:m﹣1=2(x﹣1),解得:x=,因为分式方程的解为正数,所以>0且≠1,解得:m>﹣1且m≠1,故选:D.【点评】本题考查了分式方程的解法和分式方程的解以及一元一次不等式.确定m的取值范围时,容易忽略x不等于1的条件.9.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm【分析】利用翻折变换的性质得出AD=BD,进而利用AD+CD=BC得出即可.【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=4cm,△ADC的周长为15cm,∴AD+CD=BC=15﹣4=11(cm).故选:B.【点评】此题主要考查了翻折变换的性质,根据题意得出AD=BD是解题关键.10.(3分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C .D .【分析】关键描述语是:有两块面积相同的试验田.等量关系为:第一块的亩数=第二块的亩数.【解答】解:第一块试验田的亩数为:;第二块试验田的亩数为:.那么所列方程为:=. 故选:C .【点评】题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:6a 2b ÷2a= 3ab .【分析】根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.【解答】解:原式=3ab .故答案是:3ab .【点评】本题考查了单项式的除法法则,正确理解法则是关键.12.(3分)若a+b=5,ab=3,则2a 2+2b 2= 38 .【分析】2a 2+2b 2=2(a 2+b 2),然后根据a 2+b 2=(a+b )2﹣2ab 进行计算即可.【解答】解:原式=2(a 2+b 2)=2[(a+b )2﹣2ab]=2[52﹣2×3]=38.故答案为:38.【点评】本题主要考查的是完全平方公式的应用,依据完全平方公式将a 2+b 2变形为(a+b )2﹣2ab 是解题的关键.13.(3分)若分式的值为零,则x的值是﹣2 .【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣2=0且x2﹣5x+6≠0,解得x=﹣2.故答案为:﹣2.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14.(3分)如图,已知AB∥CF,E为DF的中点,若AB=11cm,CF=5cm,则BD=6 cm.【分析】根据平行线的性质得出∠A=∠ACF,∠AED=∠CEF,进而利用全等三角形的判定与性质得出答案.【解答】解:∵AB∥CF,∴∠A=∠ACF,∠AED=∠CEF,在△AED和△CEF中,∴△AED≌△CEF(AAS),∴FC=AD=5cm,∴BD=AB﹣AD=11﹣5=6(cm).故答案为:6.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.15.(3分)如图,已知∠ACB=90°,BD=BC,AE=AC,则∠DCE= 45 度.【分析】根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.【解答】解:∵BD=BC,AE=AC,∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴90+(180﹣2x)+(180﹣2y)=180,∴x+y=135,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=45°.故答案为:45.【点评】考查了等腰三角形的性质,根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.16.(3分)如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 80 度.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.三、解答题(共8小题,共72分)17.(8分)计算:(1)1﹣;(2).【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=1﹣•=1﹣=(2)原式=﹣=﹣=﹣=﹣【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【分析】(1)首先提取公因式(x﹣y),再利用平方差公式分解因式得出答案;(2)首先利用平方差公式分解因式,再利用完全平方公式分解因式得出答案.【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(8分)解方程:(1)+1=;(2)【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.依此即可求解.【解答】解:(1)+1=,4x+2x+6=7,6x=1,x=,检验:当x=时,2(x+3)≠0.故原方程的解是x=;(2),12﹣2(x+3)=x﹣3,12﹣2x﹣6=x﹣3,﹣2x﹣x=﹣3﹣12+6,﹣3x=﹣9,x=3,检验:当x=3时,(x+3)(x﹣3)=0.故原方程无解.【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.20.(8分)如图,在折纸活动中,小明制作了一张△ABC的纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,求∠1+∠2的度数.【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.【点评】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,利用全等三角形的性质证明即可;(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;【解答】(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAC=∠EAD.在△ABC和△ADE中,∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE,∴S△ABC=S△ADE,∴S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ACD=S△ACE=×122=72.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD的面积是解此题的关键,难度适中.22.(9分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′(2)三角形ABC的面积为12.5 ;(3)在直线l上找一点P,使PA+PB的长最短.【分析】(1)根据网格结构找出点A、B、C关于直线l成轴对称的点A′、B′、C′的位置,然后顺次连接即可;(2)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B与点A关于直线l的对称点A′,根据轴对称确定最短路线问题,A′B与直线l的交点即为所求的点P的位置.【解答】解:(1)△A′B′C′如图所示;(2)S△ABC=6×5﹣×6×1﹣×5×5﹣×4×1,=30﹣3﹣12.5﹣2,=30﹣17.5,=12.5;故答案为:12.5;(3)如图,点P即为所求的使PA+PB的长最短的点.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.23.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【解答】解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:=﹣3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.24.(12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.①BG与y轴的位置关系怎样?说明理由;②求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB 上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)先求出m,n的值,即可得出结论;(2)①先判断出△BDG≌△ADF,得出BG=AF,∠G=∠DFA,最后根据平行线的性质得出∠DFA=45°,∠G=45°,即可得出结论;②利用等腰三角形的性质,建立方程即可得出结论;(3)先求出点P坐标,进而得出Rt△FME≌Rt△ENP,进而得出求出OE,即可得出结论.【解答】(1)由n2﹣12n+36+|n﹣2m|=0.得:(x﹣6)2+|n﹣2m|=0,∴n=6,m=3,∴A(3,0),B(0,6).(2)①BG⊥y轴.在△BDG与△ADF中,,∴△BDG≌△ADF∴BG=AF,∠G=∠DFA∵OC平分∠ABC,∴∠COA=45°,∵DE∥OC,∴∠DFA=45°,∠G=45°.∵∠FOE=90°,∴∠FEO═45°∵∠BEG=45°,∴∠EBG=90°,即BG与y轴垂直.②从①可知,BG=FA,△BDE为等腰直角三角形.∴BG=BE.设OF=x,则有OE=x,3+x=6﹣x,解得x=1.5,即:OF=1.5.(3)∵A(3,0),B(0,6).∵直线AB的解析式为:y=﹣2x+6,∵P点的横坐标为6,故P(6,﹣6)要使△EFP为等腰直角三角形,必有EF=EP,且∠FEP═90°,如图2,过F、P分别向y轴作垂线垂足分别为M、N.∵∠FEP═90°∴∠FEM+∠PEN=90°,又∠FEM+∠MFE=90°∴∠PEN=∠MFE∴Rt△FME≌Rt△ENP∴ME=NP=6,∴OE=10﹣6=4.即存在点E(0,4),使△EFP为等腰直角三角形【点评】此题是三角形综合题,主要考查了非负的性质,全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,求出点P的坐标是解本题的关键.。

2019—2020年最新人教版八年级数学上学期期末模拟综合试卷及答案解析.doc

八年级数学上学期期末考试模拟试题时量:120分钟 满分:120分一、选择题(每小题3分,共12小题,满分36分。

请把表示正确答案的字母填入下表中对应的题号下。

)1、分式的值为0,则x 的值为A 、0B 、2C 、1D 、-1 2、如果把分式中的x 和y 都扩大3倍,那么分式的值A 、不变B 、扩大3倍C 、缩小3倍D 、缩小6倍 3、下列命题是假命题的是A 、有一个外角是120︒的等腰三角形是等边三角形B 、等边三角形有3条对称轴C 、有两边和一角对应相等的两个三角形全等D 、有一边对应相等的两个等边三角形全等4、如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于 A 、120︒ B 、105︒ C 、60︒ D 、45︒5、一个等腰三角形的两边长分别为4和8,则它的周长是A 、12B 、16C 、20D 、16或206、化简()11612π-⎛⎫-++ ⎪⎝⎭的结果为第4题图12x x --xy x y+AB2 C2 D、7、不等式组10420-≥⎧⎨->⎩x x 的解集在数轴上表示为8、沿河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,船往返一次所需时间是A 、小时b a S +2 B 、小时—b a S 2 C 、小时)(b S a S + D 、小时—)(ba Sb a S ++ 9、如图所示,△ABC 中,5,6,9AC AB BC ===,AB 的垂直平分线交BC于点D ,则△ACD 的周长是A 、11B 、14C 、15D 、2010、在下列实数中:03.1415-227,,无理数有 A 、1个 B 、2个 C 、3个 D 、4个11、下列各式:()22214151,,,,532x x y a x x b yπ-+--,分式共有A 、5个B 、4个C 、3个D 、2个 12x 应满足的条件是AB C D第9题图A.8x ≠B.8x ≤C.8x <D.0x >且8x ≠二、填空题(每小题3分,共6小题,满分18分)13、使分式32+x 有意义的x 的取值范围是 . 14、如图,△ABC 中,∠A=50°,∠ABO=28°,∠A CO=32°,则∠BOC= . 15.16、用科学记数法表示:0.00021= .17、如图,△ABC 沿直线AB 向下翻折得到△ABD ,若25ABC ∠=︒,110ADB ∠=︒,则DAC ∠的度数是 .18、比较大小:三、解答题(19题每小题4分,20题6分,满分14分)19、计算:(12(2)2221221121a a aa a a a ---÷+--+ABCO8题图第14题图ABCO第17题图ABCD20、求不等式组26623212x xxx-<-⎧⎪⎨++>⎪⎩的整数解四、分析与说理(每小题8分,共2小题,满分16分)21、已知:如图所示,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:BE=CF22、已知:如图所示,△ABC中,∠ABC=45°,高AE第21题图C与高BD 交于点M ,BE=4,EM=3.(1)求证:BM=AC ;(2)求△ABC 的面积.五、实践与应用(每小题8分,共2小题,满分16分)23、2017年夏季,湖南省部分地区发生了罕见的旱灾,连续几个月无有效降水。

2019—2020年最新人教版八年级数学第一学期期末考试模拟测试卷及答案解析.docx

八年级(上)期末模拟数学试卷注意事项:1.本卷共有 4 页,共有 25 小题,满分 120 分,考试时限 120 分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对 条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交.一、选择题:(本题有 10 个小题,每小题 3 分,共 30 分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相 应的格子内.1.点P (1,2)关于y 轴对称点的坐标是:A.(-1,2)B. (1,-2)C. (1,2)D. (-1,-2)2. 医学研究发现一种新病毒的直径约为0.000043毫米,这个数用科学记数法表示为:A. 41043.0-⨯B. 41043.0⨯C. 5103.4-⨯D. 5103.4⨯3. 下列运算中正确的是:A. 10552a a a =+B. 623623a a a =⋅C. 326a a a =÷D. 2224)2(b a ab =- 4. 等腰三角形的两边长分别为4,8,则其周长为:A. 16B. 20C. 16或20D. 125.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若△AFD的周长为18,△ECF 的周长为6,四边形纸片ABCD 的周长为:A. 20B. 24C. 32D. 486.已知x 2+kxy+36y 2是一个完全平方式,则k 的值是:A .12B .±12C .6D .±67、已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为:A.等腰三角形B .直角三角形C.等腰三角形或直角三角形D .等腰直角三角形8、若分式方程21321-+=+-x a x 有增根,则a 的值是: A .-1 B .0C .1D .2 9、若35-=x ,则562++x x 的值为:A .1B .-1C .±1D .非以上答案10、如图,Rt △ABC 中,∠ACB==90°,AC=6,BC=8,AD 是角平分线,AD 的长为:A .B .5C .4D .3二、填空题:(每题 3 分,共 18 分.请直接将答案填写在答题卡中,不写过程)11、.x 的取值范围是. 12、化简2422x x x+--=. 13、如图所示,一场暴雨过后,垂直于地面的一棵树在C 处折断,树尖B 恰好碰到地面,经测量AB=43米,∠ABC=30°,则树折断前高米.14、已知218a =,23b =,则212a b -+的值为. 15、如图,在平面直角坐标系中,已知点A (2,-2),在坐标轴上确定一点B ,使得△AOB 是等腰三角形,则符合条件的点B 共有 个.16、 如图,将一副三角板中含有30°角的三角板的直角顶点落在等腰直角三角形的斜边的中点D 处,并绕点D 旋转,两直角三角板的两直角边分别交于点E ,F ,下列结论:①DE=DF ;②S 四边形AEDF =S △BED +S △CFD ;B③S △ABC =EF 2;④EF 2=BE 2+CF 2,其中正确的序号是.三、解答题(应写出文字说明、证明过程或推演步骤.本大题共9小题,满分72分.)17、(10分)计算(1)0.25×(﹣2)﹣2÷(16)﹣1﹣(14.3-π)0;(2)[(2x+y )2 -(2x-y )2]÷4y .18、(8分)分解因式(1)分解因式:a 3b ﹣ab 3;(2)x 2-x-6.19、(6分)先化简,再求值:44)22(22-+÷+--x x x x x x x ,其中4-34=x . 20、(5分)如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以120海里/时的速度从港口A 出发,向北偏东60°方向航行到达B ,另一海舰以90海里/时的速度同时从港口A 出发,向南偏东30°方向航行到达C ,则此时两艘海舰相距多少海里?21、 (7分)(1)已知a 2+b 2=6,ab=1,求a ﹣b 的值;(2)已知,求a 2+b 2的值.22、(6分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.23、(8分)育才文具店第一次用4000元购进某款书包,很快卖完,临近开学,又用3600元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,文具店决定对剩余的书包按同一标准一次性打折销售,但要求第二批书包的利润不少于960元,问最低可打几折?24、(10分)如图,已知∠C=∠D=90°,E是CD的中点,AB=BC+AD.(1)求证:AE平分∠DAB,BE平分∠ABC;(2)若AD=9,CD=24,求BE的长.25. (12分)如图1,在平面直角坐标系xoy 中,已知点A (0,a ),B (b ,0),且a ,b满足210250a a -+=,点C 在x 轴正半轴上.(1)求A ,B 两点的坐标及∠BAO 的度数;(2)如图2,过点B 作BE ⊥AC 于点E ,交AO 于点F ,连接OE .①求证:OE ;②当AE=OE 时,求点C 的坐标.图1 图2八年级参考答案及评分标准1-10 A C D B B B C B A A11、x ≥-2;12、2;13、12;14、4;15、8;16、①②④17.(1)原式=0.25×1/4÷1/16﹣1 (3分)=1﹣1=0(5分)(2)原式=[4x 2+4xy+y 2﹣4x 2+4xy ﹣y 2]÷4y (3分)=8xy ÷4y (4分)=2x .(5分)18.(1)原式=ab (a 2﹣b 2)=ab (a+b )(a ﹣b )(4分)(2)x 2-x-6=(x+2)(x ﹣3)(8分)19.原式=(2)2)2)(2)2)(2)2)(2)(4)x x x x x x x x x x x x ⎡⎤+-+--⨯⎢⎥+-+-+⎣⎦(((( =44x +(4分) 当4-34=x 时,原式3=. (6分)20.由题意知,∠ABC=90°,AB=2×120=24,AC=2×90=180,(2分) 由勾股定理得300==(4分) 答:此时两艘海舰相距300海里.(5分)21.(1)由a 2+b 2=6,ab=1,得a 2+b 2﹣2ab=4,(a-b )2=4,a-b=±2.(3分)(2)11312+==-131-11312==-(5分) a 2+b 2=(a+b )2-2ab=22+-21-=3-1=2.(7分)22.(1)由勾股定理得,BC=2分) 22265AB BC AC +==(3分)△ABC 为直角三角形;(4分)(2) 作高BD , 由1122AB BC AC BD ⋅=⋅得,1122BD = 解得,BD=点B 到AC 的距离为 .(6分)23.解:(1)设第一次每个书包的进价是x 元,(1分) 依题意,列方程4000360020 1.2x x-=.(3分) 解得x =50.(4分)经检验,x =50是原分式方程的解,且符合题意.(5分) 答:第一次书包的进价是50元. (6分)(2)设可以打y 折,则3600÷(50×1.2)=60(个). 由80308030360096010y ⨯+⨯⨯-≥.解得y ≥9.故最低可打9折.(8分)24.(1)证明:延长AE 交BC 的延长线于F 点,∵∠BCD =∠D =90°,∴AD ∥BC∴∠DAF =∠AFB在△ADE 和△FCE 中,D FCD DAF AFB DE CE ∠∠∠∠=⎧⎪⎨⎪⎩==∴△ADE ≌△FCE∴AE=EF ,AD=CF∴AB=BC+AD=BC+CF=BF ,∴BE 平分∠ABC ,BE ⊥AE,∠AFB =∠BAF∠DAF =∠BAF∴AE 平分∠DAB ;(5分)(2) 设BC=x ,则AB=x+9,由勾股定理得,15==,在Rt △BCE 中,BE 2=222212BC CE x +=+①在Rt △ABE 中,BE 2=(x+9)2 -152,②由①②解得,x=16,BE=20. (10分)25.解(1)由210250a a -++,得(a-5)2=0,(1分) (a-5)2≥0≥0,∴a=5,b=-5,∴A(0,5),B(-5,0) (2分)∴OA=OB∠BOA=90°∴∠BAO=45°;(3分)(2)①∵BE ⊥AC 于点E ,AO ⊥OC 于点O ∴∠1+∠BCE=90°,∠2+∠OCE=90°∴∠1=∠2(4分)在△AOE 和△BOD 中,12OA A O B B O E ∠=∠==⎧⎪⎨⎪⎩∴△AOE ≌△BOD (5分)∴OE=OD ,∠AOE=∠BOD∴∠DOE=∠DOF+∠AOE=∠DOF+∠BOD=90°(7分) 由勾股定理得,OE,∴OE ;(8分)②当AE=OE 时∠AOE=∠OAE∵∠AOE+∠COE=90°,∠OAE+∠OCE=90°, ∴∠COE=∠OCE∴OE=OC (9分)∴AE=CE又∵BE ⊥AC∴AB=CB (10分)由勾股定理得∴BC11分)∴OC=5∴C(5,0). (12分)以上答案仅供参考,不同解法酌情评分。

2019—2020年最新人教版八年级数学上册(第一学期)期末模拟综合测试三及答案解析.doc

八年级(上)期末数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列计划图形,不一定是轴对称图形的是()A.角B.等腰三角形 C.长方形D.直角三角形2.若分式有意义,则x满足的条件是()A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣13.下列运算中正确的是()A.a3+a3=2a6B.a2•a3=a6C.(a2)3=a5D.a2÷a5=a﹣34.分式与的最简公分母是()A.ab B.3ab C.3a2b2D.3a2b65.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC6.若等腰三角形的两边长分别是4和9,则它的周长是()A.17 B.22 C.17或22 D.137.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.18.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:210.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN二、填空题(本大题共6小题,每小题3分,共18分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.12.一个n边形的内角和是1260°,那么n= .13.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?.14.已知4y2+my+1是完全平方式,则常数m的值是.15.若分式方程:3无解,则k= .16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF 上一动点,则△BDM的周长的最小值为.三、解答题(本大题共8小题,共72分)17.分解因式:(1)6xy2﹣9x2y﹣y3;(2)16x4﹣1.18.先化简,再求值:(+)•÷(+),其中x2+y2=17,(x﹣y)2=9.19.如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.21.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)22.如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,求证:(1)∠BGC=90°+∠BAC;(2)∠1=∠2.23.如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为(直接写出结果).24.△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列计划图形,不一定是轴对称图形的是()A.角B.等腰三角形 C.长方形D.直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、角一定是轴对称图形,不符合题意,本选项错误;B、等腰三角形一定是轴对称图形,不符合题意,本选项错误;C、长方形一定是轴对称图形,不符合题意,本选项错误;D、直角三角形不一定是轴对称图形,符合题意,本选项正确.故选D.2.若分式有意义,则x满足的条件是()A.x=1 B.x=﹣1 C.x≠1 D.x≠﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选C.3.下列运算中正确的是()A.a3+a3=2a6B.a2•a3=a6C.(a2)3=a5D.a2÷a5=a﹣3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的乘除法则、幂的乘方及积的乘方法则,合并同类项,负整数指数幂结合各项进行判断即可.【解答】解:A、a3+a3=2a3,原式计算错误,故本项错误;B、a2•a3=a5,原式计算错误,故本项错误;C.(a2)3=a5,原式计算正确,故本项错误;D.a2÷a5=a﹣3,原式计算正确,故本项正确;故选D.4.分式与的最简公分母是()A.ab B.3ab C.3a2b2D.3a2b6【考点】最简公分母.【分析】先找系数的最小公倍数3,再找字母的最高次幂.【解答】解:分式与的最简公分母是3a2b2,故选C.5.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【考点】全等三角形的判定.【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选A.6.若等腰三角形的两边长分别是4和9,则它的周长是()A.17 B.22 C.17或22 D.13【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7和3,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为9时,周长=9+9+4=22;当腰长为4时,根据三角形三边关系可知此情况不成立;根据三角形三边关系可知:等腰三角形的腰长只能为9,这个三角形的周长是22.故选:B.7.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.1【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故选B.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【考点】等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.三角形中,三个内角的比为1:3:6,它的三个外角的比为()A.1:3:6 B.6:3:1 C.9:7:4 D.3:5:2【考点】三角形的外角性质;三角形内角和定理.【分析】由三角形中,三个内角的比为1:3:6,根据三角形的外角的性质,即可求得它的三个外角的比.【解答】解:∵三角形中,三个内角的比为1:3:6,∴它的三个外角的比为:(3+6):(1+6):(1+3)=9:7:4.故选:C.10.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN【考点】等腰三角形的判定与性质;平行线的性质.【分析】只要证明BM=OM,ON=CN,即可解决问题.【解答】证明:∵ON∥BC,∴∠MOC=∠OCD∵CO平分∠ACD,∴∠ACO=∠DCO,∴∠NOC=∠OCN,∴CN=ON,∵ON∥BC,∴∠MOB=∠OBD∵BO平分∠ABC,∴∠MBO=∠CBO,∴∠MBO=∠MOB,∴OM=BM∵OM=ON+MN,OM=BM,ON=CN,∴BM=CN+MN,∴MN=BM﹣CN.故选B.二、填空题(本大题共6小题,每小题3分,共18分)11.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.12.一个n边形的内角和是1260°,那么n= 9 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.13.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1等于多少度?66°.【考点】全等三角形的性质.【分析】根据图形和亲弟弟三角形的性质得出∠1=∠C,∠D=∠A=54°,∠E=∠B=60°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∴∠1=∠C,∠D=∠A=54°,∠E=∠B=60°,∴∠1=180°﹣∠E﹣∠F=66°,故答案为:66°.14.已知4y2+my+1是完全平方式,则常数m的值是±4 .【考点】完全平方式.【分析】利用完全平方公式的结构特征确定出m的值即可.【解答】解:∵4y2+my+1是完全平方式,∴m=±4,故答案为:±415.若分式方程:3无解,则k= 3或1 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:3(x﹣3)+2﹣kx=﹣1,整理得(3﹣k)x=6,当整式方程无解时,3﹣k=0即k=3,当分式方程无解时,x=3,此时3﹣k=2,k=1,所以k=3或1时,原方程无解.故答案为:3或1.16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF 上一动点,则△BDM的周长的最小值为8 .【考点】轴对称﹣最短路线问题;线段垂直平分线的性质;等腰三角形的性质;勾股定理.【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM 有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.三、解答题(本大题共8小题,共72分)17.分解因式:(1)6xy2﹣9x2y﹣y3;(2)16x4﹣1.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【解答】解:(1)原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2;(2)原式=(4x2+1)(4x2﹣1)=(4x2+1)(2x+1)(2x﹣1).18.先化简,再求值:(+)•÷(+),其中x2+y2=17,(x﹣y)2=9.【考点】分式的化简求值.【分析】先将原式进行化简,然后根据x2+y2=17,(x﹣y)2=9求出x+y和xy的值并代入求解即可.【解答】解:∵x2+y2=17,(x﹣y)2=9,∴2xy=x2+y2﹣(x﹣y)2=17﹣9=8,∴(x+y)2=x2+y2+2xy=17+8=25,∴x+y=5,xy=4,∴原式=×÷=×=×=.19.如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.【考点】全等三角形的判定与性质.【分析】由∠1=∠3、∠CFD=∠EFA知∠D=∠A,由∠1=∠2知∠DCE=∠ACB,由∠CEB=∠B知CE=CB,从而证△DCE≌△ACB得CD=CA.【解答】证明:如图,∵∠1=∠3,∠CFD=∠EFA,∴180°﹣∠1﹣∠CFD=180°﹣∠3﹣∠EFA,即∠D=∠A,∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,即∠DCE=∠ACB,又∵∠CEB=∠B,∴CE=CB,在△DCE和△ACB中,∵,∴△DCE≌△ACB(AAS),∴CD=CA.20.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.【考点】作图﹣轴对称变换;轴对称﹣最短路线问题.【分析】(1)先作出各点关于y轴的对称点,再顺次连接即可;(2)连接AB1交y轴于点P,利用待定系数法求出直线AB1的解析式,进而可得出P点坐标;(3)找出点A关于直线BC的对称点,并写出其坐标即可.【解答】解:(1)如图所示;(2)设直线AB1的解析式为y=kx+b(k≠0),∵A(﹣1,5),B1(1,0),∴,解得,∴直线AB1的解析式为:y=﹣x+,∴P(0,2.5);(3)如图所示,A2(﹣6,0).21.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)【考点】分式方程的应用.【分析】(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度;(2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题.【解答】解:(1)设乙的速度为x米/分钟,,解得,x=10,经检验,x=10是原分式方程的解,∴1.2x=12,即甲的平均攀登速度是12米/分钟;(2)设丙的平均攀登速度是y米/分,,化简,得y=,∴甲的平均攀登速度是丙的:倍,即甲的平均攀登速度是丙的倍.22.如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,求证:(1)∠BGC=90°+∠BAC;(2)∠1=∠2.【考点】三角形内角和定理.【分析】(1)由三角形内角和定理可知∠ABC+∠ACB=180°﹣∠BAC,然后利用角平分线的性质即可求出∠BGC=90°+∠BAC.(2)由于AD是它的角平分线,所以∠BAD=∠CAD,然后根据图形可知:∠1=∠BAD+∠ABG,∠2=90°﹣∠GCH,最后根据三角形的内角和定理以及外角的性质即可求出答案.【解答】解:(1)由三角形内角和定理可知:∠ABC+∠ACB=180°﹣∠BAC,∵BG,CG分别平分∠ABC,∠ACB,∠GBC=∠ABC,∠GCB=∠ACB∴∠GBC+∠GCB=(∠ABC+∠ACB)==90°﹣∠BAC∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(∠ABC+∠ACB)=90°+∠BAC;(2)∵AD是它的角平分线,∴∠BAD=∠CAD∴∠1=∠BAD+∠ABG,∵GH⊥BC,∴∠GHC=90°∴∠2=90°﹣∠GCH=90°﹣∠ACB=90°﹣=∠DAC+∠ADC∵∠ADC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠∠BAD=∠ABG+∠BAD,∴∠2=∠DAC+∠ADC=∠BAD+∠BAD+∠ABG=∠BAD+∠ABG,∴∠1=∠2,23.如图1,我们在2017年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为10×12﹣4×18=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24 .(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2017,则这个十字星中心的数为975 (直接写出结果).【考点】规律型:数字的变化类.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2017求出a的值即可.【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2017,解得:a=975.故答案为:975.24.△ABC是等边三角形,点D、E分别在边AB、BC上,CD、AE交于点F,∠AFD=60°.(1)如图1,求证:BD=CE;(2)如图2,FG为△AFC的角平分线,点H在FG的延长线上,HG=CD,连接HA、HC,求证:∠AHC=60°;(3)在(2)的条件下,若AD=2BD,FH=9,求AF长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD,即可证得结论;(2)根据角平分线的性质定理证得CM=CN,利用∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,得出∠CEM=∠CGN,然后根据AAS 证得△ECM≌△GCN,得出CG=CE,EM=GN,∠ECM=∠GCN,进而证得△AMC ≌△HNC,得出∠ACM=∠HCN,AC=HC,从而证得△ACH是等边三角形,证得∠AHC=60°;(3)在FH上截取FK=FC,得出△FCK是等边三角形,进一步得出FC=KC=FK,∠ACF=∠HCK,证得△AFC≌△HKC得出AF=HK,从而得到HF=AF+FC=9,由AD=2BD可知AG=2CG,再由=,根据等高三角形面积比等于底的比得出===2,再由AF+FC=9求得.【解答】解:(1)如图1,∵△ABC是等边三角形,∴∠B=∠ACE=60°BC=AC,∵∠AFD=∠CAE+∠ACD=60°∠BCD+∠ACD=∠ACB=60°,∴∠BCD=∠CAE,在△ABE和△BCD中,∴△ABE≌△BCD(ASA),∴BD=CE;(2)如图2,作CM⊥AE交AE的延长线于M,作CN⊥HF于N,∵∠EFC=∠AFD=60°∴∠AFC=120°,∵FG为△AFC的角平分线,∴∠CFH=∠AFH=60°,∴∠CFH=∠CFE=60°,∵CM⊥AE,CN⊥HF,∴CM=CN,∵∠CEM=∠ACE+∠CAE=60°+∠CAE,∠CGN=∠AFH+∠CAE=60°+∠CAE,∴∠CEM=∠CGN,在△ECM和△GCN中∴△ECM≌△GCN(AAS),∴CE=CG,EM=GN,∠ECM=∠GCN,∴∠MCN=∠ECG=60°,∵△ABE≌△BCD,∵AE=CD,∵HG=CD,∴AE=HG,∴AE+EM=HG+GN,即AM=HN,在△AMC和△HNC中∴△AMC≌△HNC(SAS),∴∠ACM=∠HCN,AC=HC,∴∠ACM﹣∠ECM=∠HCN﹣∠GCN,即∠ACE=∠HCG=60°,∴△ACH是等边三角形,∴∠AHC=60°;(3)如图3,在FH上截取FK=FC,∵∠HFC=60°,∴△FCK是等边三角形,∴∠FKC=60°,FC=KC=FK,∵∠ACH=60°,∴∠ACF=∠HCK,在△AFC和△HKC中∴△AFC≌△HKC(SAS),∴AF=HK,∴HF=AF+FC=9,∵AD=2BD,BD=CE=CG,AB=AC,∴AG=2CG,∴==,作GW⊥AE于W,GQ⊥DC于Q,∵FG为△AFC的角平分线,∴GW=GQ,∵===,∴AF=2CF,∴AF=6.2017年3月19日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年重庆市合川区八年级上期末考试数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)
1.在中,分式的个数为()A.1B.2C.3D.4
2.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()
A.1个B.2个C.3个D.4个
3.已知a m=2,a n=3,则a3m+2n的值是()
A.6B.24C.36D.72
4.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()
A.50°B.60°C.65°D.75°
5.下列说法中正确的是()
A.全等三角形是指形状相同的两个三角形
B.全等三角形的面积相等
C.全等三角形是指面积相等的两个三角形
D.等边三角形都全等
6.计算(2x﹣3)(3x+4)的结果,与下列哪一个式子相同?()
A.﹣7x+4B.﹣7x﹣12C.6x2﹣12D.6x2﹣x﹣12
7.如图.在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于D,DE是BC的垂直平分线,点E为垂足,ED的延长线与BA的延长线相交于点F,连结AE,已知DC=5,AD=3,则图中长为4的线段有()
A.5条B.4条C.3条D.2条
8.一条公路修到湖边时,需拐弯绕道而过,在点A向右拐过的度数为α,在点B向左拐过的度数为β,到了点C后需要继续拐弯,拐弯后与第一次拐弯之前的道路平行,则在点C处需要向左拐过的度数为()
A.α﹣βB.180﹣β+αC.360﹣β﹣αD.β﹣α
9.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是()A.=+1B.=+1
C.=﹣1D.=﹣1
10.如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P 在线段BC上以3厘米/秒的速度由B向C点运动,同时,点Q在线段CA上由C点向A 点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()
A.2B.3C.3或4D.2或3
11.如图,在△ABC中,点D,E在BC边上,点F在AC边上,将△ABD沿着AD翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,
②DE=EF,③∠B=2∠C,④AB=EC,正确的有()。

相关文档
最新文档