侧扫声呐测量技术要求

合集下载

侧扫声呐的工作范围

侧扫声呐的工作范围

侧扫声呐的工作范围
侧扫声呐是一种用于海洋探测和测绘的设备,它的工作范围可以从多个角度来解释。

首先,从技术角度来看,侧扫声呐的工作范围取决于其发射功率、接收灵敏度和传感器的性能。

一般来说,侧扫声呐可以在水下探测几百米到数千米的范围内进行测绘,具体的工作范围取决于设备的规格和型号。

其次,从应用角度来看,侧扫声呐通常用于海洋地质勘探、海底地形测绘、水下遗迹发现等领域。

在海洋地质勘探中,侧扫声呐可以扫描大范围的海底地形,帮助科研人员理解海底地质特征;在水下考古领域,侧扫声呐可以帮助寻找沉船、水下遗迹等目标,因此其工作范围也涵盖了水下文物的探测和保护。

此外,从环境角度来看,侧扫声呐的工作范围还受到海洋环境的影响。

例如,海水的盐度、温度、悬浮物含量等因素都会对声波在水中的传播产生影响,从而影响侧扫声呐的工作范围。

综上所述,侧扫声呐的工作范围是一个综合性的概念,包括了
技术性能、应用领域和海洋环境等多个方面的因素。

通过综合考虑这些因素,可以更全面地理解侧扫声呐的工作范围。

侧扫声纳

侧扫声纳

侧扫声纳技术。

侧扫声纳技术起源于20 世纪50 年代末,现在已成为广泛应用的海底成像技术。

自60 年代英国海洋研究所推出第一个实用型侧扫声纳系统以来,各种类型的侧扫声纳系统(魏建江等, 1997 ; Flemming , 1982 ; Asplin et al. , 1998 ; Klein , 1985 ; Reedl et al. , 1989) 纷纷问世。

侧扫声纳技术运用海底地物对入射声波反向散射的原理来探测海底形态,侧扫声呐技术能直观地提供海底形态的声成像,在海底测绘、海底地质勘测、海底工程施工、海底障碍物和沉积物的探测,以及海底矿产勘测等方面得到广泛应用。

根据声学探头安装位置的不同,侧扫声纳可以分为船载和拖体两类。

船载型声学换能器安装在船体的两侧,该类侧扫声纳工作频率一般较低(10 kHz 以下),扫幅较宽。

探头安装在拖体内的侧扫声纳系统根据拖体距海底的高度还可分为两种:离海面较近的高位拖曳型和离海底较近的深拖型。

高位拖曳型侧扫系统的拖体在水下100 m 左右拖曳,能够提供侧扫图像和测深数据,航速较快(8 kn) 。

多数拖体式侧扫声呐系统为深拖型,拖体距离海底仅有数十米,位置较低,航速较低,但获取的侧扫声纳图像质量较高,侧扫图像甚至可分辨出十几厘米的管线和体积很小的油桶等,最近有些深拖型侧扫声纳系统也开始具备高航速的作业能力,10 kn 航速下依然能获得高清晰度的海底侧扫图像。

现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。

当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi -beam Sonar System) ,后一种是测深侧扫声纳。

总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。

浅析侧扫声呐技术在海洋测绘中的应用

浅析侧扫声呐技术在海洋测绘中的应用

浅析侧扫声呐技术在海洋测绘中的应用摘要:侧扫声呐是利用回声测深原理探测海底地貌和水下物体的设备,目前广泛应用于海洋地形调查以及探测海底礁石、沉船、管道、电缆以及各种水下目标等。

侧扫声呐具有高分辨率、高效率、低成本等优点,可以提供连续的二维海底图像,对于揭示海底地形地貌的细节和特征有重要作用。

本文旨在介绍侧扫声呐的检测原理、国内外现状、在海洋测绘中的应用以及发展趋势,为后续进行海洋侧扫声呐探测技术的研究打下基础。

关键词:侧扫声呐技术,海洋测绘,海底地形地貌探测1侧扫声呐检测原理侧扫声呐技术利用海底地物对入射声波反向散射的原理来探测海底信息,它能直观地提供海底地形地貌的声成像。

其工作原理主要包括以下几个过程:(1)声波的发射:侧扫声呐由拖鱼和船载仪器组成,拖鱼内装有发射换能器和接收换能器阵列,通过电缆与船载仪器相连。

发射换能器向左右两侧发射扇型波束,覆盖一定范围的水体和海底。

(2)声波的接收:接收换能器阵列按一定时间间隔接收水体和海底反射回来的声波信号,并将其转换为电信号传输到船载仪器。

(3)声波的处理:船载仪器对接收到的电信号进行放大、滤波、增益补偿、信噪比提高等处理,以提高信号的质量和可识别性。

(4)声波的显示:船载仪器将处理后的信号按照一定的灰度或颜色编码显示在屏幕上,形成侧扫声呐图像。

声呐图像上的每一行代表一次发射和接收的结果,每一列代表一定距离范围内的回波强度,从而反映海底地形地貌的变化。

2侧扫声呐在海洋测绘中的应用侧扫声呐由于成像分辨率高、对目标区域海底实现全覆盖扫侧,据此对海底地形地貌等进行定性分析,被广泛应用于目标探测,沉船及失事飞机等海底残骸的搜索,海底表层沉积物属性的确定以及海底地震、火山、地层的监测、水下实体结构查勘等。

下面具体介绍一下侧扫声呐在海洋测绘中的应用。

2.1海底地形地貌测量侧扫声呐可以提供连续的二维海底图像,对于揭示海底地形地貌的细节和特征有重要作用。

通过对声呐图像的解译和分析,可以识别出海底的不同类型和形态,如沙纹、基岩、岩石、锚沟等。

侧扫声呐-69页精品文档

侧扫声呐-69页精品文档
1、反射类型
强反射 弱反射 正常反射 反射阴影
22
2、形成原因 2019/9/21
物质组成的影响 地形影响
23
•物质组成的影响
海面
海水
声呐拖体
海底
沉积物
Ar RAi
R 2V 2 1V 1 2V 2 1V 1
发射的声波在到达海底前,穿过的 是水体。若水体均匀,无声阻抗界 面,则无反射波。
垂 直 波 束 角
覆盖宽度太小,探测效率低
具有较高的工作频率 (几十KHz——几千KHz)
水体相对均匀,对波的吸收也较少 频率高的波探测分辨率较高
防止泥面下地层回波的干扰
三、侧扫声呐图谱内容
直达波 海面线 海底线 海底反射
海面上物体 水体中物体 甚至近海底地层中的物体
21
四、图谱的识别 2019/9/21
测线方向
测线组数量
设计的依据:工作目的、海底情况、调查区形态等 设计的原则:准确、高效、易操作性等
测线间距
平行测线间的距离
设计原则:满足规程或实现目标要求,高效。
设计依据:规程或实现目标要求,设备情况、水深情况、水体混浊度等。
•拖曳方式的选择
调查船固 定安装
适应的环境 浅水
优点 安全
侧拖
浅水
安全
尾拖
难度较大
•探测规范
地质调查 物体寻找
下达的技术要求 国家规范 行业规程
特殊现象探查
没有规范
•测线布设
测线:实现探测目的(一般为测区全覆盖探测),探测设备所需
要的航行探测路径。
计划测线:实现探测目的(一般为测区全覆盖探测),规划
的探测设备应航行的探测路径。

侧扫声纳标准

侧扫声纳标准

侧扫声纳标准《侧扫声纳标准,探索海洋的秘密法宝!》嘿,朋友们!你们知道吗?在那广阔神秘的海洋世界里,侧扫声纳就像是一位超级侦探,而侧扫声纳标准呢,那就是这位侦探的行动指南!要是没有它,那可就像在茫茫大海中没有指南针的船只,晕头转向还不知道要驶向何方呢!不了解这个侧扫声纳标准,你对海洋的探索就像没头苍蝇一样,到处乱撞还找不到宝藏的影子!“声纳精度大作战:分毫必究才是真”在声纳精度的世界里,可不能有一丝马虎呀!就像射击比赛一样,差之毫厘谬以千里。

侧扫声纳的精度就如同我们手中的武器,必须要精益求精,分毫必究!这可不是开玩笑的,想象一下,如果声纳精度不准确,那我们就像是戴着模糊眼镜看世界,看到的东西都是模模糊糊的,还怎么能准确找到我们想要的海洋信息呢?比如说在探测海底地形的时候,如果精度不够,可能就会把一个小山丘看成平地,那可就闹大笑话啦!所以呀,一定要保证声纳精度,这才是探索海洋的正确打开方式嘛!“频率选择有诀窍:高低搭配才完美”哎呀呀,这频率选择可真是一门大学问呢!就好像我们听音乐,高音低音要搭配得恰到好处,才能奏出美妙的乐章。

侧扫声纳的频率也是如此呀!高频率就像是海洋中的“千里眼”,能看清细小的物体和细节;低频率呢,则像“广角镜”,能覆盖更大的范围。

你可不能只偏爱其中一个,要高低搭配才完美呢!比如说在寻找沉船的时候,先用低频率大致确定范围,再用高频率去仔细搜索,这样才能事半功倍呀!不然的话,就像只拿着放大镜或者只拿着望远镜,都不能全面地了解海洋的秘密呢!“数据处理要细心:马虎一点都不行”嘿,这数据处理可不能马虎呀!就像拼图一样,每一块都要放对位置,才能呈现出完整的画面。

侧扫声纳的数据处理就是要把那些杂乱无章的数据整理得井井有条,找出其中的规律和信息。

这可不是随随便便就能做好的,需要我们细心再细心!如果数据处理出了差错,那可就像是搭积木的时候放错了一块,整个结构都可能会倒塌呢!比如说在分析海底地貌的时候,一个错误的数据可能会让我们误以为那里有一座山,结果跑过去一看,啥都没有,那不是白跑一趟嘛!好啦,这就是侧扫声纳标准的几个关键要点啦!朋友们,一定要记住这些标准呀,它们可是我们探索海洋的秘密武器呢!有了它们,我们就能在海洋世界里畅游无阻,发现更多的奥秘和惊喜!让我们一起朝着这些标准努力吧,成为海洋探索的“超级英雄”,去征服那片广阔而神秘的蓝色领域!绝绝子呀,相信我们一定可以做到的!。

基于声呐技术的水下探测与成像方法

基于声呐技术的水下探测与成像方法

基于声呐技术的水下探测与成像方法随着科技的不断发展,人们对于水下探测与成像技术的要求越来越高。

而声呐技术在这些领域中起到了至关重要的作用。

本文旨在介绍基于声呐技术的水下探测与成像方法,探讨其优缺点以及未来发展方向。

一、声呐技术的基本原理声呐技术是利用声波在水中传播的特性,探测水下物体并获取相关信息的技术。

其基本原理是利用声波在水中传播时与物体间的反射、透射、折射等现象,从而实现水下物体探测和成像。

声呐技术包括传统的单波束声呐和现代的多波束声呐,两者在应用场合和性能方面存在一定的差异。

二、基于声呐技术的水下探测方法1. 侧扫声呐侧扫声呐是一种广泛应用于水下测量的声学探测系统,它可以产生水下立体图像,对于水下环境的探测和成像非常有用。

侧扫声呐安装在船只上,通过发射声波,记录可达区域的反射信号,并根据反射信号重建水下物体的三维模型。

2. 雷达声呐雷达声呐是一种高频声波探测系统,主要用于水下目标的探测和识别。

雷达声呐工作时,通过向水下发射一定频率和强度的声波,并通过接受反射回来的信号来获取水下目标的位置、形状和特征等信息。

3. 声纳测深声纳测深是以声波反射原理为基础的一种水下测量技术,主要用于水深的测量和海底地形的探测。

通过测量声波从水面到海底并反射回来所花费的时间,并根据声波传播速度计算出水深,从而实现对水深的准确掌握。

三、基于声呐技术的水下成像方法1. 声频成像声频成像是一种利用声波反射成像的技术,主要用于海底沉积物、水下生态环境等方面的观测和研究。

声频成像器通过发射高频声波,记录回波信号,并利用这些信号生成高分辨率的声学图像,从而显示出水下物体的形状和结构。

2. 态勘探测态勘探测是一种利用声波散射成像的技术,主要用于水下建筑物、沉船、神秘物体等方面的探测和研究。

态勘探测器通过发射短脉冲声波,利用目标对声波散射的特性,实现对目标的探测和成像。

四、声呐技术的优缺点及未来发展方向1. 优点声呐技术具有探测距离远、精度高、响应速度快、成本低等优点,能够较好地满足水下探测与成像领域的需要。

侧扫声呐测量技术要求

侧扫声呐测量技术要求

侧扫声呐测量技术要求
侧扫声呐测量技术需要满足以下要求:
1. 高精度:侧扫声呐需要能够提供高精度的测量结果,测量误差应小于一定范围,以满足不同应用的精度要求。

2. 高分辨率:侧扫声呐需要能够提供高分辨率的海底地形信息,以便对复杂的海底地形进行精确地定位和识别。

3. 可靠性:侧扫声呐需要具备高度可靠性,能够在恶劣海况下正常工作,而且需要能够顺利完成长时间的海洋测量任务。

4. 实时性:侧扫声呐需要具备较高的实时性,能够实时反馈海底地形信息,在实时监测、海底勘探和紧急救援等领域有重要应用。

5. 灵敏度:侧扫声呐需要具备高灵敏度,能够检测到低反射率的海底物体,如浅海地形、障碍物等。

6. 易于安装和操作:侧扫声呐需要具备方便安装和操作的特点,以便在各种环境条件下快速启动和使用。

侧扫声纳使用操作规定

侧扫声纳使用操作规定

侧扫声纳使用安全操作规程1.日常维护1.1 作为一种精密的测量仪器,磁力仪应该放在干燥阴凉的仪器房内,以确保仪器的电子不受潮。

1.2 仪器通电前注意电源电压,保证电源电压的正常。

1.3 仪器下水前注意检查各接头的连接,特别是水下探头接头要严格密封。

一定要注意连接在绞车上的接头,防止接头被绞车擦坏,收放电缆时务必断开仪器电源。

2.扫测准备2.1 搜集有关资料。

扫测海区的水深和地貌,障碍物,潮流的流速和流向扫测期间的气象,扫测船吃水深度,扫测船最低速度等。

2.2 设计扫测方案。

依据测区环境和扫测要求确定扫测方法、重叠带宽度、分辨率、船速、拖鱼高度及拖缆长度等;设计测线布设方向和间距;拟订扫测实施要求,资料整理要求。

2.3 检查系统的完整性;在陆上进行电测试,确定各分机的工作是否正常;检查水密部件,确保不漏水;保证侧扫声纳处于正常工作状态。

2.3 扫测实施前应进行静态和动态试验。

静态试验要求声图灰度适中且均匀,声图清晰而无噪声图象。

动态试验要求扫测船以设计方案实施扫测,检查试验设计各参数是否符合实际情况,调试施测参数,使声图灰度适中,海底地貌轮廓清晰。

系统状态符合技术指标要求方可实施扫测。

3.扫测实施3.1 扫测实施方法有两种:粗扫测和精扫测。

对大面积扫测海区,应先进行粗扫测,当发现可疑目标时,再进行精扫测。

精扫测证实目标存在,并可疑在声图上分辨目标类型和性质,位置和高度,最后应用测深仪加密探测,或潜水员下潜作业,以得到更精确的目标信息。

3.1.1 扫要求全覆盖扫测海区。

扫测趟的取向应一致,而且要相互平行;扫测趟的有效作用距离应有重叠带,不能在相邻产生遗漏区域。

当探测海底微地貌时,相邻扫测趟可采用2倍有效作用距离,而无需设计重叠带。

3.1.2 精扫测应根据粗扫测声图上目标图象确定其位置,高度,并确定扫测频率,发射脉宽,有效作用距离,扫测船船速,拖鱼入水深度,再进行扫测。

精扫测取向应尽量平行于目标走向,或于目标走向的舷角小于30或大于150。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧扫声呐测量技术要求
侧扫声呐是一种常用于测量水深和海底地形的技术。

它通过发射声波并记录被回波所反弹回来的时间和强度,可以构建出水下的三维地形图。

在进行侧扫声呐测量时,有一些技术要求需要注意,下面将详细介绍。

首先,侧扫声呐测量需要选择合适的设备。

声呐设备应具备高精度和高分辨率的特点,以便准确地捕捉水下的细节信息。

同时,设备的频率和功率也需根据实际需要进行选择。

高频率的声呐适用于较浅的水域和海底地形复杂的区域,而低频率的声呐则适用于较深的水域和海底地形简单的区域。

其次,侧扫声呐测量需要进行准确的航迹规划。

在进行声呐测量时,需确定合适的航迹,以便覆盖需要测量的区域,并确保测量数据的完整和准确性。

航迹规划要考虑到水深、海底地形和测量目的等因素,能够尽可能地横向覆盖整个测量区域,并保持一定的重叠度,以便在数据处理时进行质量控制和验证。

此外,侧扫声呐测量还需要考虑环境因素的影响。

声波传播受水温、盐度、水流等环境因素的影响,因此在测量过程中需要注意对这些因素进行测量和记录。

在数据处理时,还需要对这些环境因素进行校正,以减小其对测量结果的影响。

在进行侧扫声呐测量时,还应注意数据的采集和处理。

采集数据需要保证声呐设备的稳定和准确性,同时要注意数据的时序信息和纵深信息的捕捉。

在数据处理时,需要对原始数据进行滤波、插值和重采样等预处理操作,以提高数据质量和减小噪声干扰。

同时,还需要对数据进行校正,包括校正水深、校正航速、校正航向等,以获得准确的测量结果。

最后,在进行侧扫声呐测量时,还需遵守相关的法规和标准。

根据不
同的国家和地区,可能存在不同的法规和标准,包括声呐使用的频率范围、功率限制、测量速度和测量精度等。

在进行测量之前,需要对相关法规和
标准进行了解,并遵守其要求,以保证测量的合法性和可靠性。

综上所述,侧扫声呐测量技术要求包括选择合适的设备、进行准确的
航迹规划、考虑环境因素的影响、注意数据的采集和处理,以及遵守相关
法规和标准。

通过满足这些技术要求,可以获得准确、可靠的测量结果,
为水下地形的研究和应用提供有力的支持。

相关文档
最新文档