放大电路的动态分析放大电路的频率特性
31. 第二章第四节:放大电路的频率特性

2.4 放大电路的频率特性由于放大电路中存在电抗元件(如管子的极间电容,电路的负载电容、分布电容、耦合电容、射极旁路电容等),使得放大器可能对不同频率信号分量的放大倍数和相移不同。
耦合电容和旁路电容影响放大器的低频特性;晶体管的结电容和分布电容影响放大器的高频特性。
而且它们的容抗随频率变化,故当输入信号幅值固定而信号频率不同时,放大电路的输出电压相对于输入电压的幅值和相位都将发生变化。
幅频特性:电压放大倍数的模|A u |与频率 f 的关系。
相频特性:输出电压相对于输入电压的相位移 ϕ 与频率 f 的关系。
O0.707 A A A u £££££(b)相频特性图29 放大电路的幅频特性和相频特性一.幅频特性:1. 在中频段++SE bI β图30 中频段放大电路的微变等效电路由于耦合电容和发射极旁路电容的容量较大,故对中频段信号的容抗很小,可视作短路。
三极管的极间电容和导线的分布电容很小,可认为它们的等效电容C O 与负载并联。
由于C O 的电容量很小,它对中频段信号的容抗很大,可视作开路。
所以,在中频段可认为电容不影响交流信号的传送,放大电路的放大倍数与信号频率无关而保持定值,输入电压与输出电压反向。
(前面所讨论的放大倍数及输出电压相对于输入电压的相位移均是指中频段的)2. 在低频段:++SE bI β图31 低频段放大电路的微变等效电路由于信号的频率较低,耦合电容和发射极旁路电容的容抗较大,其分压作用不能忽略即不能把它们视为短路,如图31所示。
以至实际送到三极管输入端的电压比输入信号要小,故放大倍数降低,即电压放大倍数的模随频率的降低而减小,输出电压与输入电压的相移也发生变化,并使产生越前的相位移(相对于中频段),不再保持180°的关系。
所以,在低频段放大倍数降低和相位移越前的主要原因是耦合电容和发射极旁路电容的影响。
当放大倍数降到中频段电压放大倍数时所对应得频率L f 为通频带的下限频率。
教案-放大电路的基本分析方法

教案放大电路的基本分析方法第一章:放大电路概述1.1 放大电路的定义解释放大电路的基本概念强调放大电路在电子技术中的重要性1.2 放大电路的分类介绍放大电路的常见类型,如放大器、振荡器等分析不同类型放大电路的特点和应用1.3 放大电路的基本组成介绍放大电路的基本组成部分,如电源、输入电阻、输出电阻等强调各个部分在放大电路中的作用和重要性第二章:放大电路的静态分析2.1 静态分析的基本概念解释静态分析和动态分析的区别强调静态分析在放大电路中的重要性2.2 直流静态分析介绍直流静态分析的基本方法分析放大电路的直流工作点选择和稳定性2.3 交流静态分析介绍交流静态分析的基本方法分析放大电路的交流信号传输和响应特性第三章:放大电路的动态分析3.1 动态分析的基本概念解释动态分析和静态分析的区别强调动态分析在放大电路中的重要性3.2 瞬态分析介绍瞬态分析的基本方法分析放大电路在瞬态过程中的响应特性和稳定性3.3 稳态分析介绍稳态分析的基本方法分析放大电路在稳态过程中的信号传输和响应特性第四章:放大电路的频率特性分析4.1 频率特性分析的基本概念解释频率特性分析的含义和重要性强调放大电路在不同频率下的行为差异4.2 放大电路的频率特性介绍放大电路的频率特性的基本方法分析放大电路在不同频率下的增益和相位响应4.3 放大电路的带宽设计介绍放大电路的带宽设计方法和技巧强调带宽设计对放大电路性能的影响和重要性第五章:放大电路的误差分析和补偿5.1 误差分析的基本概念解释误差分析的含义和重要性强调放大电路中误差来源和影响因素5.2 放大电路的误差分析方法介绍放大电路的误差分析的基本方法分析放大电路中的静态误差、动态误差和温度误差等5.3 放大电路的补偿方法介绍放大电路的补偿方法和技巧强调补偿对放大电路性能的改善和稳定性的重要性第六章:放大电路的实际问题分析6.1 热噪声分析解释热噪声的产生原因及其对放大电路的影响介绍热噪声分析的基本方法6.2 闪烁噪声分析解释闪烁噪声的产生原因及其对放大电路的影响介绍闪烁噪声分析的基本方法6.3 非线性失真分析解释非线性失真产生的原因及其对放大电路的影响介绍非线性失真分析的基本方法第七章:放大电路的测试与调整7.1 放大电路的测试方法介绍放大电路的测试方法,如直流参数测试、交流参数测试等强调测试方法在放大电路调试中的重要性7.2 放大电路的调整技巧介绍放大电路调整的基本方法及技巧强调调整对放大电路性能的影响和重要性7.3 放大电路的性能评估介绍放大电路性能评估的基本方法分析评估结果对放大电路性能改进的指导意义第八章:放大电路的设计与应用实例8.1 放大电路的设计流程介绍放大电路设计的基本流程,如需求分析、电路设计、仿真与测试等强调设计流程在放大电路开发中的重要性8.2 放大电路应用实例分析分析放大电路在不同应用领域的实例,如音频放大器、无线通信放大器等强调应用实例在放大电路实际应用中的作用和重要性8.3 放大电路的优化与改进介绍放大电路优化与改进的方法和技巧强调优化与改进对放大电路性能提升的必要性第九章:放大电路的故障诊断与维修9.1 放大电路故障诊断的基本方法介绍放大电路故障诊断的基本方法,如观测法、信号注入法等强调故障诊断方法在放大电路维护中的重要性9.2 放大电路常见故障分析与维修分析放大电路常见故障的原因及其维修方法强调维修对放大电路正常运行的保障作用9.3 放大电路的可靠性提升介绍放大电路可靠性提升的方法和技巧强调可靠性提升对放大电路长期稳定运行的意义第十章:放大电路的未来发展趋势10.1 放大电路技术的发展趋势分析放大电路技术的未来发展趋势,如集成电路、新型材料等强调技术发展趋势对放大电路行业的影响和重要性10.2 放大电路应用领域的拓展分析放大电路在不同应用领域的拓展情况,如物联网、等强调应用领域拓展对放大电路市场需求的影响和重要性10.3 放大电路产业的机遇与挑战分析放大电路产业面临的机遇与挑战,如市场竞争、政策法规等强调应对策略对放大电路产业可持续发展的重要性重点和难点解析一、放大电路的分类及特点理解不同类型放大电路的原理和应用分析放大电路的优缺点二、放大电路的基本组成了解放大电路各组成部分的作用掌握各个元件参数对电路性能的影响三、静态分析和动态分析的方法学会静态和动态分析的基本步骤理解放大电路的工作点和频率响应四、频率特性分析分析放大电路的截止频率和带宽掌握滤波器和补偿技术五、误差分析和补偿方法识别放大电路中的主要误差源学会误差分析和补偿的技术六、实际问题分析探讨放大电路中的噪声问题和失真分析理解非线性失真的影响和测试方法七、测试与调整技巧学习放大电路的测试方法和参数掌握调整技巧以优化电路性能八、设计与应用实例分析分析实际应用中的放大电路设计探讨放大电路在不同领域的应用案例九、故障诊断与维修学习放大电路的故障诊断方法掌握维修技巧以提高电路可靠性十、未来发展趋势探讨放大电路技术的未来发展方向分析新兴应用领域对放大电路的影响本教案围绕放大电路的基本分析方法展开,从放大电路的基本概念、分类、组成到静态和动态分析,再到频率特性、误差分析、测试与调整、设计应用实例、故障诊断与维修,展望未来发展趋势。
放大电路的频率特性

基本电路的频率特性
共源极
FOM越大越好,表明:用尽量小的电流ID获得尽量大的增 益带宽积GBW,并能够驱动足够大的电容负载CL
共源极频率特性
零点
零点的产生是由于信号有两个路徂 可由输入端到达输出端
两个路徂中,一个通过电容耦合,另一个不 通过电容
零点出现在右半平面,原因在于两 个路徂的信号到达输出端后相位相 反
不稳定系统
稳定性与零极点位置
临界系统
稳定性与零极点位置
零点
稳定性与零极点位置
系统函数中的零点,只影响时域函数的幅度和相 位,不影响时域波形的形式
系统函数中的零点,只影响时域函数的幅度和相位, 不影响时域波形的形式
多个负实极点
稳定性与零极点位置
主极点决定系统带宽
找到放大电路中的高电阻阻抗 节点,这个结点上的电容往往 决定了整个放大器的带宽 找到每个电容两端的开路电阻, 开路电阻最大的那个电容决定 带宽
单极点运放
增益带宽积
反馈与稳定性
增益每下降20dB,带宽就增加10 倍,这两者之间是简单的互换关系
增益带宽积始终不变
两极点运放
两极点运放
反馈与稳定性
闭环反馈系统的极点始终在左半平面
环路增益LG(=AF)的相位<180度 系统始终是稳定的 稳定就够了吗?
两极点运放
较小的反馈
反馈与稳定性
两极点运放
fp2=3GBw: Bessel 三负实极点运放极点配置方案 fp2=3GBw, fp3=7GBw 至少 fp2=4GBw, fp3=4GBw: 近
Butterworth fp2=6GBw, fp3=6GBw 至少 fp2=4GBw, fp3=8GBw: 近
Bessel
高频电子电路_5.3_高频功率放大器的动态分析

动态曲线:
-UBB
ic gd (uce Uo )
C
•
•BZ U
ub
• • •• • gd
ubemax
gd
Uo
EC
uce
C
• Q•
uce
Ubm
ubemax
ucemin 可见动态特性曲线的斜率和负载 R P 有关, 放大器的工作状态将随负载的不同而变 U b 不变时,动态特性曲线与负载 RP 化。下面讨论当EC 、 E B 、 的关系。 u
若设: b
u Ub cost
输入端: uBE
EB Ub cost
+ ub + uBE
_
ic
+ uCE C Rp
t 输出端: uce EC Uc cos
由上两式消除cos t 可得: EC uce uBE EB U b Uc
EC uce , ic gc E U E b b B Uc U b Eb, EB gc U uce EC U c ( U ) gd uce U o b c
•
返回
二、高频功率放大器的负载特性
临 研究的问题: 界 区 Ic1
c1
当 ECU , UBB, Ubm 不变, PD
Ico
c
临 界 区
ubemax
, UPC I C 1 , I C 0P o 1 c P D , Po , Pc 而 RP 变化时,与 的关系。 Rp R pc 欠压区 过压区 欠压区 过压区
注意:
ic
uce
Po Pocr ,效率 (1) 欠压区: ①临界状态输出功率最大 ( 2) 过压区: 也较高,可以说是最佳工作状态,常选此 状态为末级功放输出状态。过压状态,效 ic max 进 R PP 由小 IC下 入 过 压几乎不变 区 余 (略减少) 弦 脉 冲 顶 部 凹 , 0 , IC 1 几乎 率高,但输出功率较小。 i c max I C 0 , I U C1I c1 I c 1 R P 几乎不变(略有上 U R P EC IC0 几 乎 不 变 c1 c1 P D 不 变 ②在欠压状态 I C 0 , IC 1 几乎不变,功放相当于一个恒流源,而 1 1 IC1 U C1 P E I P U I I U 1 升) 1 C C 0 o C1 C 变化缓 c1 1 c1 c 2 2 I U C 0 C 0 P U I U c o C 1 C 1 PC PD Po C1 几乎不变,相当于一个恒压源。 过压状态 2 I E 2 co C 慢, PC PD Po 变化缓慢。
第二章:放大电路分析基础

放大电路分析基础在我们的生活中,经常会把一些微弱的信号放大到便于测量和利用的程度。
这就要用到放大电路,它是我们这门课程的重点。
放大的基础就是能量转换。
在学习时我们把这一章的课程分为六节,它们分别是:§2、1 放大电路工作原理§2、2 放大电路的直流工作状态§2、3 放大电路的动态分析§2、4 静态工作点的稳定及其偏置电路§2、5 多级放大电路§2、6放大电路的频率特性§2、1放大电路工作原理我们知道三极管可以通过控制基极的电流来控制集电极的电流,来达到放大的目的。
放大电路就是利用三极管的这种特性来组成放大电路。
我们下面以共发射极的接法为例来说明一下。
一:放大电路的组成原理放大电路的组成原理(应具备的条件)(1):放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置)(2):输入信号能输送至放大器件的输入端(三极管的发射结)(3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
例1:判断图(1)电路是否具有放大作用不满足条件(1),所解:图(1)a不能放大,因为是NPN三极管,所加的电压UBE以不具有放大作用。
图(1)b具有放大作用。
二:直流通路和交流通路在分析放大电路时有两类问题:直流问题和交流问题。
(1)直流通路:将放大电路中的电容视为开路,电感视为短路即得。
它又被称为静态分析。
(2)交流通路:将放大电路中的电容视为短路,电感视为开路,直流电源视为短路即得。
它又被称为动态分析。
例2:试画出图(2)所示电路的直流通路和交流通路。
解:图(2)所示电路的直流通路如图(3)所示:交流通路如图(4)所示:§2、2 放大电路的直流工作状态这一节是本章的重点内容,在这一节中我们要掌握公式法计算Q点和图形法计算Q点在学习之前,我们先来了解一个概念:什麽是Q点?它就是直流工作点,又称为静态工作点,简称Q点。
第三章 放大电路的频率特性

Po • 功率增益 Ap (dB ) = 10 lg P (dB ) i
• 式中, lg是以 为底的对数。 式中, 是以10为底的对数。 是以 为底的对数
• 值得指出的是,如果仅取以10为底的对数,例 值得指出的是,如果仅取以 为底的对数 为底的对数, 无单位”的 必须再乘以20后 如: = lg U o ,是“无单位 的,必须再乘以 后, 无单位 A
• 在横坐标采用 在横坐标采用Lgf时,对数频率特性的主要优点是 时 可以扩宽视野, 可以扩宽视野,在较小的坐标内表示宽广的频率 范围的变化情况, 范围的变化情况,同时将低频段和高频段的特性 都表示得很清楚,而且作图方便, 都表示得很清楚,而且作图方便,尤其对于多级 放大电路更是如此。 放大电路更是如此。因为多级放大电路的放大倍 数是各级放大倍数的乘积,故画对数幅频特性时 数是各级放大倍数的乘积, 只需将各级对数增益相加即可。 ,只需将各级对数增益相加即可。多级放大电路 总的相移等于各级相移之和, 总的相移等于各级相移之和,故对数相频特性的 纵坐标不再取对数。 纵坐标不再取对数。
3.1 频率特性的一般概念
• 3.1.1频率特性的概念 频率特性的概念
– 1.幅频特性和相频特性 幅频特性和相频特性 • 由于电抗性元件的作用,使正弦波信号通过放大 由于电抗性元件的作用, 电路时,不仅信号的幅度得到了放大, 电路时,不仅信号的幅度得到了放大,而且还将 产生一个相位移。此时,电压放大倍数A 产生一个相位移。此时,电压放大倍数 u可表示 为: • Au = Au (f)∠ϕ ( f ) )
• RC高通电路的对数相频特性如图 高通电路的对数相频特性如图3.1.3(b)所示, 高通电路的对数相频特性如图 ( )所示, 0 的直线; 在 f ≠ f ( f > 10 f L)时, ϕ 是一条 0 的直线;在 f = f L L 的直线; ( f < 0.1 f L)时,ϕ 是一条900 的直线;在 0.1 f L 之间, 与10 f L 之间,可用一条斜率为 −450 十倍频的直线 来表示。 来表示。由3条直线组成的折线就是它的相频特性 条直线组成的折线就是它的相频特性 曲线,图中的粗线也是加以修正后的实际相频特 曲线, 性曲线。 性曲线。
放大电路的频率特性

(3)因各级均为共射放大电路,所以在中频段输出电压与输入 电压相位相反。则整个三级放大增益80dB,即放大倍数为 10000。
电压放大倍数
13 104
Au
1
10 jf
1
j
f 2 105
3
*2.7 电路仿真实例
【例2.8】分析共发射极放大电路
解:利用 Multisim 软件仿真如图2.61所示电路。
(3)高频段
耦合电容和旁路电容的容量较大,视为短路;
极间分布电容(含PN结结电容)容抗减小,不能视为开路。
高频源电压放大倍数为:
1
Aush
Uo Us
U
' s
Ub'e
Uo
Us
U
' s
Ub'e
Ri rb'e jRC'
Rs Ri
rbe
1
1 j RC'
gm RL'
Байду номын сангаас
Ausm
1
1 jRC
Ausm 1 1 j
f
fH
在高频段,电压放大倍数随频率升高而减小,相移也发生
变化。其幅频特性基本与低通电路幅频特性相同。
源电压放大倍数的全频率范围表达式为:
jf
Aus
Ausm 1
j
f fL
fL 1
j
f fL
Ausm 1
j
fL f
1
1
j
f fH
单管放大电路的波特图
综上所述,单管放大电路在低频段主要受耦合电容的影 响,表现在放大倍数随频率降低而降低,相移也增大;中频 段可认为其放大倍数和相移都基本为常数(这是放大电路工 作的频段)。在高频段其特性主要受极间电容的影响,表 现在放大倍数随频率升高而下降,相移也随之增大。
第4节 放大电路的动态分析

2、3 放大电路的动态分析一:图解法分析动态特性1.交流负载线的画法解:画微变等效电路.u o.i u解:交流负载线的特点:必须通过静态工作点交流负载线的斜率由R"L表示(R"L=Rc//R L) 交流负载线的画法(有两种):(1)先作出直流负载线,找出Q点;作出一条斜率为R"L 的辅助线,然后过Q点作它的平行线即得。
(此法为点斜式)(2)先求出U C E坐标的截距(通过方程U"C C=U C E+I C R"L)连接Q点和U"C C点即为交流负载线。
(此法为两点式)例1:作出图(1)所示电路的交流负载线。
已知特性曲线如图(2)所示,Ucc=12V,Rc=3千欧,R L=3千欧,Rb=280千欧。
解:(1)作出直流负载线,求出点Q。
(2)求出点U"cc。
U"cc=Uce+IcR"L=6+1.5*2=9V (3)连接点Q和点U"cc即得交流负载线(图中黑线即为所求)二.放大电路的非线性失真作为对放大电路的要求,应使输出电压尽可能的大,但它受到三极管非线性的限制。
当信号过大或者工作点选择不合适,输出电压波形将产生失真。
由于是三极管非线性引起的失真,所以称为非线性失真。
1.由三极管特性曲线非线性引起的失真这主要表现在输入特性的起始弯曲部分,输出特性的间距不匀当输入又比较大时,就会使Ib、Uce和Ic的正负半周不对称,即产生非线性失真。
如图(1)所示2.工作点不合适引起的失真(1)工作点Q点设置偏高会产生饱和失真若工作点Q点设置偏高,虽然基极动态电流ib为不失真的正弦波,但是由于在输入信号正半周,靠近峰值的某段时间内晶体管进入了饱和区,导致集电极动态电流iC产生顶部失真,集电由于输出电压v o与R c上电压的变化相位相反,极电阻Rc上的电压波形必然随之产生同样的失真。
从而导致v由于晶体管进入饱和区工作而产生的失真现象称为饱和失o波形产生底部失真,此种真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
愈多。
总目录 章目录 返回 上一页 下一页
3.非线性失真分析
非线性失真:信号(电压或电流)波形被放大后幅 度增大,而形状应保持原状。如发生不对称或局部 变形现象都称为波形失真。由于三极管非线性特性 而引起的失真,称为非线性失真。
非线性失真包括饱和失真和截止失真两种。 饱和失真:是由于放大电路的工作点到达了三 极管的饱和区而引起的; 截止失真:是由于放大电路的工作点到达了三 极管的截止区而引起的。 放大器要求输出信号与输入信号之间是线性关 系,应尽量避免失真现象出现。
ri
U i Ii
U i IRB
Ib
- RB // rbe
当RB rbe时,
ri 例2: Ii B Ib
Ic C
RS
+
IRB
βIb
rbe
E S-+ Ui
RB E
RC
RE Ie
-
ri
+ RL Uo
-
ri rbe
U i Ibrbe Ie RE
放大电路对信号源(或对前级放大电路)来说,是
一个负载,可用一个电阻来等效代替。这个电阻是信
号源的负载电阻,也就是放大电路的输入电阻。
RS Ii
输入电阻是对交
E +-S
U+- i
Au 放大电路
流信号而言的,是 动态电阻。
信号源
定义:
输入电阻
ri
U i Ii
RS
Ii
E S+-
U+- i
总目录 章目录 返回 上一页 下一页
对交流信号(有输入信号ui时的交流分量)
+UCC
RB
RC
+C2
XC 0,C 可看作 对地短路 短路。忽略电源的内
RS +
es –
C1 +
iB
+ 短路
ui
iC + uB–E
+ T uCE
–
iE
RL
短路
+ uo –
–
阻,电源的端电压恒 定,直流电源对交流 可看作短路。
ui (即ube)
ib
iC
u0(即uce)
(2)电压和电流都含有直流分量和交流分量
uBE = UBE+ ube
iB = IBE+ ib
iC = IC+ ic
uCE = UCE+ uce
(3)输入信号电压ui和输出电压u0相位相反
(4)电压放大倍数等于图中输出正弦电压的幅值
与输入正弦电压的幅值(峰峰值)之比。RL’的阻 值愈小,交流负载线愈陡,电压放大倍数下降得也
计打基础。
总目录 章目录 返回 上一页 下一页
15.3 放大电路的动态分析
放大电路中各点的电压或电流都是在静态直 流上附加了小的交流信号。
电路中电容对交、直流的作用不同。如果电 容容量足够大,可以认为它对交流不起作用,即 对交流短路。而对直流可以看成开路,这样,交 直流所走的通道是不同的。
交流通路---只考虑交流信号的分电路。 直流通路 ---只考虑直流信号的分电路。 不同的信号可以在不同的通路进行分析。
15.3 放大电路的动态分析
动态:放大电路有信号输入(ui 0)时交流工作状态。 动态分析: 对外加的交流信号及其响应单独进行分析,即只对电路 的交流工作状态(简称动态)进行分析,称为动态分析。 分析对象:各极电压和电流的交流分量。 分析方法:微变等效电路法,图解法。 所用电路:放大电路的交流通路。 目的:找出Au、 ri、 ro与电路参数的关系,为设
3) 外加电压 U o 4) 求 Io
Ic β Ib
IRC
U o RC
Ib 0 所以 Ic 0
ro
U o Io
RC
总目录 章目录 返回 上一页 下一页
15.3.2 动态分析图解法
用图解法对放大电路进行动态分析,旨在用作图 的方法来分析各个电压和电流交流分量之间的传输情 况和相互关系,也可测出电压放大倍数。
信号源
ri
放大 电路
输入电阻是表明放大电路从信号源吸取电流大小
的参数。电路的输入电阻愈大,从信号源取得的电流
愈小,因此一般总是希望得到较大的输入电阻。
总目录 章目录 返回 上一页 下一页
例1: Ii +
RS
B Ib IRB
Ic C βIb
E
+ S-
U i -
RB rbe
RC
E
RL
+ U o
iC/mA 交流负载线
iB/mA
iC/mA
ic
IC
Q1
iB/mA
Q Q2
ib
IB
Q RL=
O
tO
O
O
uCE/V
tO
O
uCE/V
uBE/V uBE/V
UCE
uo
UBE ui
t
t
由uo和ui的幅值(或峰峰值)之比可得放大电路的 电压放大倍数。
总目录 章目录 返回 上一页 下一页
结论
(1)交流信号的传输情况
或 iC
1 RL'
uCE
1 RL'
(Ic RL'
UCE )
式中: RL' RL // Rc ,称为交流负载电阻。
总目录 章目录 返回 上一页 下一页
15.3.2 图解法 1. 交流负载线
交流负载线斜率 tanα 1 RL
IC/mA
C 4
A
3
2
交流负载线 80mA
60mA
Q
ube rbe
ib
uce
-
-
E 晶体管的C、E之间可用一
受控电流源ic=ib等效代替。
总目录 章目录 返回 上一页 下一页
2. 放大电路的微变等效电路
将交流通路中的晶 体管用晶体管微变等 效电路代替即可得放 大电路的微变等效电 路。
ii B ib
+
R+S eS-
ui -
RB
ic C
+
RC RL uO -
Au
β
RC rbe
负载电阻愈小,放大倍数愈小。 因rbe与IE有关,故放大倍数与静 态 IE有关。
总目录 章目录 返回 上一页 下一页
3.电压放大倍数的计算
定义:
Au
U o U i
例2: Ii +
U i Ibrbe Ie RE
Ibrbe (1 β )IbRE
大电路的微变等效电 路。
eS-
-
E
-
微变等效电路
分析时假设输入为
Ii B Ib
Ic C
正弦交流,所以等效 电路中的电压与电流
RS
可用相量表示。
E
+ S-
+ U i -
RB
βIb
rbe
RC
+ RL Uo
E
总目录 章目录 返回 上一页 下一页
3.电压放大倍数的计算
定义 : Au U i Ibrbe
三极管的微变等效模型
图三极管及其微变等效模型
总目录 章目录 返回 上一页 下一页
15.3.1 微变等效电路法
1. 晶体管的微变等效电路
晶体管的微变等效电路可从晶体管特性曲线求出。
(1) 输入电路
当信号很小时,在静态工作点附近的
IB
输入特性在小范围内可近似线性化。
Q IB
晶体管的 输入电阻
rbe
RS
E S-+ Ui
U o Ic RL Ib RL
-
B Ib
RB
Ic C βIb
rbe E RC
RE Ie
+ RL Uo
-
Au
rbe
βRL (1 β
) RE
RL RC // RL
由例1、例2可知,当电路不同时,计算电压放大 倍数 Au 的公式也不同。要根据微变等效电路找出 ui 与ib的关系、 uo与ic 的关系。
RS
E
+ S_
Au 放大 电路
+
RL _U o
动态电阻,与 负载无关。
ro
定输义出输:电出阻电是阻表:明r放o 大UI电oo 路带负载E能o_+ 力的参数。RL电_U+路o
的输出电阻愈小,负载变化时输出电压的变化愈小,
因此一般总是希望得到较小的输出电阻。
总目录 章目录 返回 上一页 下一页
0.867k
RS
RL’ = RC ∥ RL = 2kΩ
+
es
Au
RL' rbe
2 37.5
0.867
–
RB C1
+ + ui
–
+UCC
RC +C2
iB iC + + TuCE + uB–E – RL uo
iE
–
86.5
总目录 章目录 返回 上一页 下一页
4.放大电路输入电阻的计算
交流通路
+
画交流通路应遵循两条 RS
原则:①大容量的电容 视为短路;②无内阻的 直流电源视为短路。
es + –
ui –
RB
+ RC RL uO
–
总目录 章目录 返回 上一页 下一页
15.3.1 微变等效电路法