《概率论与数理统计》期末考试题(附答案)
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
(完整word版)《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________。
答案:0.3解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P 。
2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。
答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一. 填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ===,则=)B -A (p 0.4 、=)B A (p 0.7 、=)B A (p 1/3 ,)(B A P ⋅= 0.3 。
2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 8/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量X 服从参数为6的泊松分布,则{}=≥1X p 1- 6-e4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X +服从 B (10,0. 6) 分布,=+)(Y X E 6 。
5、设二维随机向量),(Y X 的分布律是有则=a _0.3_,X 的数学期=)(X E ___0.5_______,Y X 与的相关系数=xy ρ___0.1_______。
第 1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p --;7、(1)若随机变量X )3,1(~U ,则{}=20〈〈X p 0.5;=)(2X E _13/3, =+)12(X D 3/4 .(2)若随机变量X ~)4 ,1(N 且8413.0)1(=Φ则=<<-}31{X P 0.6826 ,(~,12N Y X Y 则+= 3 , 16 )。
8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=+)2(Y X E 5 ,=+)2(Y X D 17 。
概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论与数理统计期末考试试题及答案

解:因为 是单调可导,故可用公式法计算………….1分
当 时, ………….2分
由 , 得…………4分
从而 密度函数为 …………..5分
=…………..6分
六、〔8分〕 随机变量 与 概率分布为
而且 .
(1)求随机变量 与 联合分布;
(2)判断 与 是否相互独立
解:因为 ,所以
概率论与数理统计期末考试试题〔A〕
专业、班级:姓名:学号:
题 号
一
二
三
四
五
六
七
八
九
十
十一
十二
总成绩
得 分
一、单项选择题(每题3分 共18分)
1.D 2.A 3.B 4.A 5.A 6.B
〔1〕
〔2〕设随机变量X其概率分布为 X -1 0 1 2
P 0.2 0.3 0.1 0.4
那么 〔 〕。
(A)(B) 1(C) 0 (D)
1. 2. , 3. 4.
〔1〕如果 ,那么 .
〔2〕设随机变量 分布函数为
那么 密度函数 , .
〔3〕
〔4〕 设总体 与 相互独立,且都服从 , 是来自总体
样本, 是来自总体 样本,那么统计量
服从 分布〔要求给出自由度〕。
三、(6分)设 相互独立, , ,求 .
解: 0.88=
= (因为 相互独立)……..2分
解:用 表示第 户居民用电量,那么
………2分
那么1000户居民用电量为,由独立同分布中心极限定理
………3分
= ………4分
……….6分
= ………7分
十一、〔7分〕设 是取自总体 一组样本值, 密度函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》期末考试题
一. 填空题(每小题2分,共计60分)
1、A、B 是两个随机事件,已知,则
0.4 、 0.7 、 1/3
0.3 。
2、一个袋子中有大小相同的红球4只黑球2只,
(1)从中不放回地任取2只,则第一、二次取到球颜色不同的
概率为: 8/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放
入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .
3、设随机变量X服从参数为6的泊松分布,则 1-
4、设随机变量X服从B(2,0. 6)的二项分布,则
0.36 , Y服从B(8,0. 6)的二项分布, 且X与Y相
互独立,则服从 B(10,0. 6)分布,
6 。
有
5、设二维随机向量的分布律是
则_0.3_,的数学期望
0 1
1
0.3 0.2
0.2
0.5,的相关系数0.1。
6、三个可靠性为p>0的电子元件独立工作,
(1)若把它们串联成一个系统,则系统的可靠性为:;
(2)若把它们并联成一个系统,则系统的可靠性为:;
7、(1)若随机变量,则 0.5;_13/3,
3/4 .
(2)若随机变量~且则
0.6826 , 3 , 16 )。
8、随机变量X、Y的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,
D(Y)=2, 且X、Y相互独立,则: 5 ,
17 。
9、设及分别是总体的容量为10,15的两个
独立样本,分别为样本均值,分别为样本方差。
则: N(20,3/5) , N(0,1) ,=
0.3174 ,
, F(9,14) 。
此题中。
10、在假设检验中,显著性水平a是用来控制犯第一类错误的概率,第一类错误
是指: H0成立的条件下拒绝H0的错误。
二、(6分)已知随机变量X的密度函数
求:(1)常数,(2)(3)X的分布函数F
(X)。
解:(1)由
2’
(2) = 2’
(3) 2’
三、(6分)设随机变量X,Y的概率密度分别为:
,,且随机变量X,Y
相互独立(1)求(X,Y)的联合概率密度为:
(2)计算概率值。
解:(1) X,Y的边缘密度分别为:
X,Y相互独立,可见(X,Y)的联合概率密度为
,
2’
4
四、(8分)从总体~中抽取容量为25的一个样本,样本均值和样本方差分别是:,
求u的置信度为0.95的置信区间和的置信度为0.95的置信区间。
解: (1)25,置信水平,
由此u的置信水平为0.95的置信区间为:
, 即
4’
(2) 25,置信水平,
由此的置信水平为0.95的置信区间为:
4’
五、(10分)设总体X服从未知。
是X 的一个样本,求的矩估计量,并证明它为的无偏估计。
解: 样本的似然函数为:
2’
而
1’
令: , 1’
解得:的最大似然估量
2’
, 它为的无偏估计量. 2’
六、(5分)一工厂生产化学制品的日产量(以吨计)近似服从正
态分布,当设备正常时一天产800吨, 现测得最近5天的产量分
别为:785,805,790,790,802,问是否可以认为日产量显著不为
800吨。
(取),此题中。
解: 按题意日产量未知,现取检验假设:
1’
用t检验,现有,拒绝域为:
, 1’
算得:, , 2’
t值不在拒绝域内,故接受,认为日产量没有显著变化.
1
七、(5分)设温度计制造厂商的温度计读数近似服从正态分布
,现他声称他的温度计读数的标准差为不超过0.5, 现检验了一组16只温度计,得标准0。
7度,试检验制造商的言是否正确(取),此题中。
解: 按题意温度计读数未知,现取检验假设:
1’
用检验,现有,拒绝域为:
>
1’
算得: 2’在拒绝域内,故拒绝,认为温度计读数的标准差为显著超过0.5. 1。