实验三数字基带传输系统建模和仿真
基于matlab的数字基带传输系统仿真实验设计

基于matlab的数字基带传输系统仿真实验设
计
数字基带传输系统仿真实验设计
一、实验目的
1.了解数字基带传输系统的基本结构和原理;
2.通过Matlab仿真来研究数字基带传输系统的性能特点;
3.实际操作,掌握Matlab对数字信号处理的基本方法。
二、实验内容
1.设计数字基带传输系统的仿真模型,包括信源、调制器、信道、解调器、接收端等模块;
2.模拟实现数字信号的采样、量化、编码等过程;
3.采用常用的调制方式,如BPSK、QPSK、16QAM等,进行调制处理,并观察不同调制方式下的信噪比和误码率的关系;
4.在传输过程中引入噪声,观察噪声对信号传输质量的影响;
5.实现误码率的计算和信噪比的测量;
6.结合实际情况,设计合适的信号处理算法,提高数字基带传输系统的性能。
三、实验步骤
1.根据实验要求,设计数字基带传输系统的仿真模型,包括信源、调制器、信道、解调器、接收端等模块;
2.实现数字信号的采样、量化、编码等处理过程;
3.采用常用的调制方式(如BPSK、QPSK、16QAM等),进行信号调制处理;
4.在传输过程中引入噪声,并观察噪声对信号传输质量的影响;
5.实现误码率的计算和信噪比的测量;
6.根据实验结果,设计合适的信号处理算法,提高数字基带传输系统的性能。
四、实验结果
1.实验结果应包括调制方式、误码率、信噪比等参数;
2.根据实验结果,评估数字基带传输系统的性能,提出改善方法。
五、实验总结
1.总结数字基带传输系统的基本结构和原理;
2.分析数字基带传输系统的性能特点,包括误码率、信噪比等;
3.掌握Matlab对数字信号处理的基本方法。
模拟通信、数字基带通信系统的建模仿真

院系班级姓名学号实验名称模拟通信、数字基带通信系统的建模仿真实验日期一、实验目的及原理1、学会使用System View、Simulink软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步观察了解各种数字基带信号的功率频谱密度和带宽,并对他们进行比较说明。
3、根据通信理论,以解调输出信噪比衡量的同步相干解调性能总是优于包络检波性能。
在输入高信噪比条件下,包络检波接近同步相干解调的性能,而随着输入信噪比逐渐降低,包络检波性能也逐渐变坏,当输入信噪比下降到某一值时,包络检波输出信噪比将急剧下降,这种现象称为包络检波的门限效应。
二、实验内容1、调幅的包络检波与相干解调性能仿真比较以中波调幅广播传输系统仿真模型为传输模型,在不同输入信噪比条件下仿真测量包络检波解调和同步相干解调对调幅波的解调输出信噪比,观察包络检波解调的门限效应。
(1)解调输出信噪比近似量子系统“SNR Detection”的内部结构1、输入噪声信号为0.5Hz时的实验结果2、输入噪声信号为1Hz时的实验结果结果:在输入高信噪比的情况下,相干解调方法下的输出解调信噪比大致比包络检波好。
2、数字基带传输基本码型分析及结果用System View构造一个数字基带信号产生电路,使其能够产生三种码型信号:单极性不归零码,单极性归零码(占空比为50%)和双极性归零码(占空比为50%)。
一、实验原理图(1)单极性不归零码波形(2)单极性归零码波形(占空比50%)(3)、双极性归零码波形(占空比50%)(4)、单极性归零码的功率谱(5)、单极性归零码的功率谱(占空比为50%)三、实验小结1、单极性不归零码的带宽为50Hz,零点频率一次为50 Hz、100 Hz、150 Hz、200 Hz……2、单极性归零码和双极性归零码的带宽为100HZ,零点频率依次100HZ,200HZ,300HZ……3、单极性归零码中有同步信号,即f=50 Hz处有冲激响应。
实验三数字基带传输系统建模和仿真

实验三 数字基带传输系统的建模与仿真一. 实验目的1. 了解数字基带传输系统的建模过程2. 了解数字基带传输系统的仿真过程二. 实验内容建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,信道为加性高斯信道,接收滤波器与发送滤波器相匹配,接收机能自行恢复系统同步信号。
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
三. 实验原理数字基带传输系统框图如图5-1所示,它主要由脉冲形成器、发送滤波器、信道、接收滤波器和抽样判决器等部件组成为保证数字基带。
系统正常工作,通常还应有同步系统。
图中各部分原理及作用如下:脉冲形成器:输入的是由电传机、计算机等终端设备发送来的二进制数据序列或是经模/数转换后的二进制脉冲序列,用{}k d 表示,它们一般是脉冲宽度为T 的单极性码。
脉冲形成器的作用是将{}k d 变换成比较适合信道传输的码型,并提供同步定时信息,使信号适合信道传输,保证收发双方同步工作。
发送滤波器:发送滤波器的传输函数为()T G ω,其作用是将输入的矩形脉冲变换成适合信道传输的波形。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
信道:信道传输函数为()C ω。
基带传输的信道通常为有线信道,如市话电缆和架空明线等,信道的传输特性通常是变化的,信道中还会引入噪声。
在通信系统的分析中,常常把噪声等效,集中在信道引入。
这是由于信号经过信道传输,受到很大衰减,在信道的输图5-1 数字基带传输系统出端信噪比最低,噪声的影响最为严重,以它为代表最能反映噪声干扰影响的实际情况。
但如果认为只有信道才引入噪声,其他部件不引入噪声,是不正确的。
G ,它的主要作用是滤除带外噪声,对信道接收滤波器:接收滤波器的传输函数为()R特性进行均衡,使输出信噪比尽可能大并使输出的波形最有利于抽样判决。
抽样判决器:它的作用是在信道特性不理想及有噪声干扰的情况下,正确恢复出原来的基带信号。
实验数字基带传输系统仿真研究

试验三数字基带传输系统仿真研究一、试验目1.观察数字基带传输系统中各模块信号波形, 深入了解奈奎斯特第一定理;2.观察发送端和接收端眼图, 了解眼图在数字基带传输系统中作用;二、试验原理(一)、数字基带传输系统模型前面我们介绍数字基带信号常见码型形状常常画成矩形, 而矩形脉冲频谱在整个频域是无穷延伸。
因为实际信道频带是有限而且有噪声, 用矩形脉冲作传输码型会使接收到信号波形发生畸变, 所以这一节我们寻求能使差错率最小传输系统传输特征。
如图1所表示一个经典数字基带信号传输系统模型。
图1 数字基带信号传输系统模型图图1中, 基带码型编码电路输出是携带着基带传输经典码型信息δ脉冲或窄脉冲序列}{a, 我们仅仅关注取值: 0、1或±1; 发送滤波器又叫信道信号形成网n络, 它限制发送信号频带, 同时将}{a转换为适合信道传输基带波形; 信道能够n是电缆等狭义信道也能够是带调制器广义信道, 信道中窄带高斯噪声会给传输波形造成畸变; 接收滤波器作用是滤除混在接收信号中带外噪声和由信道引入噪声, 对失真波形进行尽可能赔偿(均衡); 抽样判决器是一个识别电路, 它把接收滤波器输出信号波形)(t y放大、限幅、整形后再加以识别, 深入提升信噪比; 码型译码将抽样判决器送出信号还原成原始信码。
(二)、基带传输中码间串扰数字通信关键质量指标是传输速率和误码率, 二者之间亲密相关、相互影响。
当信道一定时, 传输速率越高, 误码率越大。
假如传输速率一定, 那么误码率就成为数字信号传输中最关键性能指标。
从数字基带信号传输物理过程看, 误码是由接收机抽样判决器错误判决所致, 而造成误判关键原因是码间串扰和信道噪声。
码间串扰定义: 因为系统传输特征不良或加性噪声影响, 使信号波形发生畸变, 造成收端判决上困难, 所以造成误码, 这种现象称为码间串扰。
发生码间串扰时, 脉冲会被展宽, 甚至重迭(串扰)到邻近时隙中去成为干扰。
数字基带传输系统实验报告

数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。
本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。
通过实验,我们可以更好地理解数字基带传输系统的原理和应用。
一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。
二、实验原理数字基带传输系统由发送端、信道和接收端组成。
发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。
在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。
三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。
四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。
我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。
同时,不同调制方式对传输性能也有一定的影响。
例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。
五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。
我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。
同时,我们也探究了不同调制方式对传输性能的影响。
通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。
六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。
数字基带传输系统仿真实验

数字基带传输系统仿真实验一、系统框图一个数字通信系统的模型可由下图表示:信源信道数字信源编码器调制器编码器数字信源噪声信道信道数字信源信宿译码器解调器译码器数字信宿编码信道数字通信系统模型从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。
在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。
称为基带传输系统。
与之对应,把包括了载波调制和解调过程的传输系统称为频带传输系统。
无论是基带传输还是频带传输,基带信号处理是必须的组成部分。
因此掌握数字基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。
二、编程原理1. 带限信道的基带系统模型(连续域分析)X(t) y(t){}a, 输入符号序列―― lL,1dtatlT()(),,,T, 发送信号―― ――比特周期,二进制,lbbl,0码元周期,jft2,, 发送滤波器―― G(),或Gf()或gtGfedf()(), TT,TT,,, 发送滤波器输出――L,1xtdtgtatlTgt()()*()()*(),,,,,TlbTl,0 L,1=()agtlT,,lTsl,0, 信道输出信号或接收滤波器输入信号(信道特性为1) ytxtnt()()(),,,jft2,G(),Gf()gtGfedf()(),, 接收滤波器―― 或或 RR,RR,,, 接收滤波器的输出信号rtytgtdtgtgtntgt()()*()()*()*()()*(),,,RTRR,1L ()(),,,agtlTnt,lbR,0l,jft2,gtGfCfGfedf()()()(), 其中 ,TR,,(画出眼图)lTlL,,, 01, 如果位同步理想,则抽样时刻为 brlTlL() 01,,,, 抽样点数值为 (画出星座图) b,{}a, 判决为 l2. 升余弦滚降滤波器(1),,,Tf,||,s,T2s,,TT1(1)(1),,,,,,,,,ss Hfff()1cos(||),||,,,,,,,,TTT2222,,,ss,,(1),,f0,||,,T2s,1式中,称为滚降系数,取值为, 是常数。
数字基带信号传输系统仿真方案

1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
另外,对发送信号和接收信号的功率谱进行估计。
假设接收定时恢复是理想的。
2基带系统的理论分析2.1 基带系统传输模型及工作原理基带系统传输模型如图1所示。
1)系统总的传输特性为H(ω)=GT(ω)C(ω)GR(ω),n(t)是信道中的噪声。
2)基带系统的工作原理:信源是不经过调制解调的数字基带信号,信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样判决器进一步去噪恢复基带信号,从而完成基带信号的传输。
2.2 基带系统设计中的码间干扰及噪声干扰码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基带系统工作性能。
1)码间干扰及解决方案码间干扰:由于基带信号受信道传输时延的影响,信号波形将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。
解决方案:①要求基带系统的传输函数H(ω)满足奈奎斯特第一准则:若不能满足奈奎斯特第一准则,在接收端加入时域均衡,减小码间干扰。
②基带系统的系统函数H(ω)应具有升余弦滚降特性。
如图2所示。
这样对应的h(t)拖尾收敛速度快,能够减小抽样时刻对其他信号的影响即减小码间干扰。
2)噪声干扰及解决方案噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。
解决方案:①在接收端进行抽样判决;②匹配滤波,使得系统输出信噪比最大。
3基带系统设计方案3.1 信源1)常见的基带信号波形有:单极性波形、双极性波形、单极性归零波形和双极性归零波形。
双极性波形可用正负电平的脉冲分别表示二进制码“1”和“0”,故当“1”和“O”等概率出现时无直流分量,有利于在信道中传输,且在接收端恢复信号的判决电平为零,抗干扰能力较强。
通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。
这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。
实验步骤:第一步:实现数字基带信号的产生。
我们采用MATLAB编写代码来产生数字基带信号。
具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。
第二步:实现数字基带信号的传输。
我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。
具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。
第三步:实现数字基带信号的调制。
我们采用调制器进行数字信号的调制。
常见的数字调制方式有AM调制、FM调制、PM调制等。
此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。
第四步:实现数字基带信号的解调。
我们采用解调器来实现数字基带信号的解调。
常见的数字解调方式有包络检测法、抑制互调法等。
此处我们选择了直接判决法来进行数字基带信号的解调。
第五步:实现数字基带信号的重构。
我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。
此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。
实验结果:通过对仿真实验的分析,我们得出了一些结论。
首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。
其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。
第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。
最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 数字基带传输系统的建模与仿真
一. 实验目的
1. 了解数字基带传输系统的建模过程
2. 了解数字基带传输系统的仿真过程
二. 实验内容
建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,信道为加性高斯信道,接收滤波器与发送滤波器相匹配,接收机能自行恢复系统同步信号。
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
三. 实验原理
数字基带传输系统框图如图5-1所示,它主要由脉冲形成器、发送滤波器、信道、接收滤波器和抽样判决器等部件组成为保证数字基带。
系统正常工作,通常还应有同步系统。
图中各部分原理及作用如下:
脉冲形成器:输入的是由电传机、计算机等终端设备发送来的二进制数据序列或是经模/数转换后的二进制脉冲序列,用{}k d 表示,它们一般是脉冲宽度为T 的单极性码。
脉冲形成器的作用是将{}k d 变换成比较适合信道传输的码型,并提供同步定时信息,使信号适合信道传输,保证收发双方同步工作。
发送滤波器:发送滤波器的传输函数为()T G ω,其作用是将输入的矩形脉冲变换成适合信道传输的波形。
这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。
信道:信道传输函数为()C ω。
基带传输的信道通常为有线信道,如市话电缆和架空明线等,信道的传输特性通常是变化的,信道中还会引入噪声。
在通信系统的分析中,常常把噪声等效,集中在信道引入。
这是由于信号经过信道传输,受到很大衰减,在信道的输
图5-1 数字基带传输系统
出端信噪比最低,噪声的影响最为严重,以它为代表最能反映噪声干扰影响的实际情况。
但如果认为只有信道才引入噪声,其他部件不引入噪声,是不正确的。
G ,它的主要作用是滤除带外噪声,对信道
接收滤波器:接收滤波器的传输函数为()
R
特性进行均衡,使输出信噪比尽可能大并使输出的波形最有利于抽样判决。
抽样判决器:它的作用是在信道特性不理想及有噪声干扰的情况下,正确恢复出原来的基带信号。
为保证正确恢复信号,同步系统是必不可少的。
四.实验要求
1.按要求设计仿真参数;
2.按计算所得参数建立SIMULINK系统模型;
3.设置各模块参数及仿真参数后仿真系统;
4.分析仿真结果。
5.撰写实验报告。
五.实验过程及结果
3.1基带传输系统的仿真
【实例3.1】试建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配,接收机能自行恢复系统同步信号。
发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。
假设接收定时恢复是理想的。
设计系统仿真采样率为1e4Hz,滤波器采样速率等于系统仿真采样率。
数字信号速率为1000bps,故在进入发送滤波器之前需要10倍升速率,接收解码后再以10倍降速率来恢复信号传输比特率。
仿真模型如图3-1所示,其中系统分为二进制信源、发送滤波器、高斯信道、接收匹配滤波器、接收采样、判决恢复以及信号测量等7部分,子模块如图3-2所示。
二进制信源输出双极性不归零码,并向接收端提供原始数据以便对比和统计误码率。
发送滤波器和接收滤波器是相互匹配的,均为平方根升余弦滤波器,高斯信道采用简单的随机数发生器和加法器实现。
由于接收定时被假定是理想的,可用脉冲发生器实现1000Hz 的矩形脉冲作为恢复定时脉冲,以乘法器实现在最佳采样时刻对接收滤波器输出的采样。
然后对采样结果进行门限判决,最佳门限设置为零,判决输出结果在一个传输码元时隙内保持不变,最后以10倍降速率采样得出采样率为1000Hz的恢复数据。
图3-1 高斯信道下的基带传输系统测试模型
图3-2 定时提取子系统的内部结构
由于发送滤波器和接收滤波器的滤波延迟均设计为10个传输码元时隙,所以在传输中共延迟20个时隙,加上接收机采样和判决恢复部分的0个时隙的延时,接收恢复数据比发送信源数据共延迟了20个码元。
因此,在对比收发数据时需要将发送数据延迟20个采样单位(时隙)。
各部分测试仿真结果如图3-3所示。
信号测量部分对接收滤波器输出波形的眼图。
收发数据波形以及误码率进行了测量,仿真结果如图3-4所示,其中信道中噪声方差为0.00,测试误码率结果为0.00.
a)发送部分测试仿真结果 b)接收部分测试仿真结果 c) 定时子系统测试仿真结果
图3-3 各部分测试仿真结果
图3-4 高斯信道下的基带传输系统测试仿真结果
六.实验总结
本次实验熟悉了数字基带传输系统的建模和仿真过程,通过对实例3-1的实际操作更熟悉了数字基带传输系统的原理,对传输的过程有了很清楚的认识。
这次实验过程中遇到了误差很大的情况,通过认真调节延时后终于解决,得到了延时基本没有的结果,实验过程中仍然充满挑战,需要认真和仔细。