数字基带信号实验
数字基带信号实验

数字基带信号实验一、实验目的:学会利用MATLAB软件对数字基带信号的仿真。
通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。
二、实验内容:利用MATLAB软件编写数字基带信号程序,进一步加强对数字基带信号的理解。
(1)单极性不归零数字基带信号(2)双极性不归零数字基带信号(3)单极性归零数字基带信号(4)双极性归零数字基带信号三、程序(1) 单极性不归零数字基带信号程序function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0y((i-1)*t0+j)=1;endelsefor j=1:t0y((i-1)*t0+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');(2) 双极性不归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0y((i-1)*t0+j)=1;endelsefor j=1:t0y((i-1)*t0+j)=-1;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');(3)单极性归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0/2y((2*i-2)*t0/2+j)=1;y((2*i-1)*t0/2+j)=0;endelsefor j=1:t0y((i-1)*t0+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1')(4)双极性归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0/2y((2*i-2)*t0/2+j)=1;y((2*i-1)*t0/2+j)=0;endelsefor j=1:t0/2y((2*i-2)*t0/2+j)=-1;y((2*i-1)*t0/2+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');四、实验结果以及分析:(1)结果图1单极性不归零图2双极性不归零图3单极性归零图4双极性归零(2)分析由于此次实验是本次的第一次实验,实验内容比较简单,代码编写不是太复杂,只需要理解老师所给的单极性不归零码编程的含义结合理论课所讲的原理,可以很快的在单极性不归零码的基础上加以修改编写出其他三个代码,但此次实验中也遇到一些问题在于循环结束之后要不要给y再加上一个值(y=[y,x(i)];),此问题只要出自于t的长度比y的长度多1,因此给y再赋上一个值是肯定的,不加怎结果中会少一个值。
实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。
二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。
其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。
在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。
通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。
希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。
数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。
通信原理硬件实验报告(最新-哈工程)

实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。
c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。
d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。
归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。
单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。
实验8 数字基带信号的码型变换

图8-9 码型变换结构组成框图
译码模块:完成码型变换实验。其结构组成框图如下图8-10
四、实验任务
1.当输入8位码为全“0”、全“1”、伪随机码、任意码时,分折各种 变换结果。 2.观测各种码型变换波形,验证你的分析结果。
五、测量点说明
TP301:原始数字基带信号;TP302:编码时钟;TP303:正极性 码型变换; TP304:负极性码型变换;TP305:码型变换输出;TP306:选择 0010-1000时无波形。
六、实验报告要求
1.根据实验结果,画出各种码型变换的测量点波形图。 2.写出各种码型变换的工作过程。
E
1
0
1
0
0
1
1
0
0
E
图 8-6 CMI码
密勒码 密勒码又称延迟调制码,它是曼彻斯特码的一种变形,编码规则: “1”码用码元间隔中心点出现跃变来表示,即用“10”或“01”表示。 “0”码有两种情况:单个“0”码时,在码元间隔内不出现电平跃变, 且相邻码元的边界处也不跃变;连“0”时,在两个“0”码边界处出现 电平跃变,即“00”与“11”交替。 例如: 消息代码:1 1 0 1 0 0 1 0… 密勒码: 10 10 00 01 11 00 01 11… 或: 01 01 11 10 00 11 10 00…
PST码能够提供的定时分量,且无直流成分,编码过程也简单,在接 收识别时需要提供“分组”信息,即需要建立帧同步,在接收识别时, 因为在“分组”编码时不可能出现00、++和—的情况,如果接收识 别时,出现上述的情况,说明帧没有同步,需要重新建立帧同步。
数字基带信号实验及数字调制与解调实验

硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。
(2)掌握AMI,HDB3的编码规则。
(3)掌握从HDB3码信号中提取位同步信号的方法。
(4)掌握集中插入帧同步码时分复用信号的帧结构特点。
(5)了解HDB3(AMI)编译码集成电路CD22103。
(6)掌握绝对码,相对码概念及他们之间的变换关系。
(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。
(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。
(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。
(10)掌握2DPSK相干解调原理。
(11)掌握2FSK过零检测解调原理。
三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。
2.接通数字信号源模块的电源。
用示波器观察熟悉信源模块上的各种信号波形。
(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。
3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。
用示波器观察AMI(HDB3)编译单元的各种波形。
(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。
数字基带传输系统实验报告

数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。
本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。
通过实验,我们可以更好地理解数字基带传输系统的原理和应用。
一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。
二、实验原理数字基带传输系统由发送端、信道和接收端组成。
发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。
在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。
三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。
四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。
我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。
同时,不同调制方式对传输性能也有一定的影响。
例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。
五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。
我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。
同时,我们也探究了不同调制方式对传输性能的影响。
通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。
六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。
《通信原理实验》AMI、HDB3等实验报告

《通信原理》实验报告一、实验目的1、了解几种常用的数字基带信号的特征和作用。
2、掌握AMI码的编译规则。
3、掌握HDB3码的编译规则。
4、了解滤波法位同步在码变换过程中的作用。
二、实验器材1、主控&信号源模块,2号、3号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、AMI编译码实验原理框图2、HDB3编译码实验原理框图四、实验步骤实验项目一AMI编译码(归零码实验)1、用示波器分别观测编码输入的数据TH3和编码输出的数据TH11(AMI输出),观察记录波形,有数字示波器的可以观测编码输出信号频谱,验证AMI编码规则。
时域波形:编码输出信号频谱:注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为编码输出的数据。
2、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP5(AMI-A1),观察基带码元的奇数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-A1。
3、保持示波器测量编码输入数据TH3的通道不变,另一通道测量中间测试点TP6(AMI-B1),观察基带码元的偶数位的变换波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为AMI-B1。
4、用示波器减法功能观察AMI-A1与AMI-B1相减后的波形情况,并与AMI编码输出波形相比较。
注:CH1(上面的波形)为AMI-A1,CH2(下面的波形)为AMI-B1,中间的波形为AMI-A1与AMI-B1相减后的情况。
5、用示波器对比观测编码输入的数据和译码输出的数据,观察记录AMI译码波形与输入信号波形。
注:CH1(上面的波形)为编码输入的数据,CH2(下面的波形)为译码输出的数据。
思考:译码过后的信号波形与输入信号波形相比延时多少?1个码元6、用示波器分别观测TP9(AMI-A2)和TP11(AMI-B2),从时域或频域角度了解AMI码经电平变换后的波形情况。
通信原理实验数字基带传输仿真实验

通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。
这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。
实验步骤:第一步:实现数字基带信号的产生。
我们采用MATLAB编写代码来产生数字基带信号。
具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。
第二步:实现数字基带信号的传输。
我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。
具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。
第三步:实现数字基带信号的调制。
我们采用调制器进行数字信号的调制。
常见的数字调制方式有AM调制、FM调制、PM调制等。
此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。
第四步:实现数字基带信号的解调。
我们采用解调器来实现数字基带信号的解调。
常见的数字解调方式有包络检测法、抑制互调法等。
此处我们选择了直接判决法来进行数字基带信号的解调。
第五步:实现数字基带信号的重构。
我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。
此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。
实验结果:通过对仿真实验的分析,我们得出了一些结论。
首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。
其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。
第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。
最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字基带信号实验
一、实验目的:
学会利用MATLAB软件对数字基带信号的仿真。
通过实验提高学生实际动手
能力和编程能力,为日后从事通信工作奠定良好的基础。
二、实验内容:利用MATLAB软件编写数字基带信号程序,进一步加强对数字基
带信号的理解。
(1)单极性不归零数字基带信号
(2)双极性不归零数字基带信号
(3)单极性归零数字基带信号
(4)双极性归零数字基带信号
三、程序
(1) 单极性不归零数字基带信号程序
function y=zhou(x)
t0=200;
t=0:1/t0:length(x);
for i=1:length(x)
if(x(i)==1)
for j=1:t0
y((i-1)*t0+j)=1;
end
else
for j=1:t0
y((i-1)*t0+j)=0;
end
end
end
y=[y,x(i)]; M=max(y);
m=min(y);
subplot(1,1,1)
plot(t,y);grid on;
axis([0,i,m-0.1,M+0.1]);
title('1 0 0 1 1 0 0 0 0 1 0 1');
(2) 双极性不归零数字基带信号
function y=zhou(x)
t0=200;
t=0:1/t0:length(x);
for i=1:length(x)
if(x(i)==1)
for j=1:t0
y((i-1)*t0+j)=1;
end
else
for j=1:t0
y((i-1)*t0+j)=-1;
end
end
end
y=[y,x(i)]; M=max(y);
m=min(y);
subplot(1,1,1)
plot(t,y);grid on;
axis([0,i,m-0.1,M+0.1]);
title('1 0 0 1 1 0 0 0 0 1 0 1');
(3)单极性归零数字基带信号
function y=zhou(x)
t0=200;
t=0:1/t0:length(x);
for i=1:length(x)
if(x(i)==1)
for j=1:t0/2
y((2*i-2)*t0/2+j)=1;
y((2*i-1)*t0/2+j)=0;
end
else
for j=1:t0
y((i-1)*t0+j)=0;
end
end
end
y=[y,x(i)]; M=max(y);
m=min(y);
subplot(1,1,1)
plot(t,y);grid on;
axis([0,i,m-0.1,M+0.1]);
title('1 0 0 1 1 0 0 0 0 1 0 1')
(4)双极性归零数字基带信号
function y=zhou(x)
t0=200;
t=0:1/t0:length(x);
for i=1:length(x)
if(x(i)==1)
for j=1:t0/2
y((2*i-2)*t0/2+j)=1;
y((2*i-1)*t0/2+j)=0;
end
else
for j=1:t0/2
y((2*i-2)*t0/2+j)=-1;
y((2*i-1)*t0/2+j)=0;
end
end
end
y=[y,x(i)]; M=max(y);
m=min(y);
subplot(1,1,1)
plot(t,y);grid on;
axis([0,i,m-0.1,M+0.1]);
title('1 0 0 1 1 0 0 0 0 1 0 1');
四、实验结果以及分析:
(1)结果
图1单极性不归零
图2双极性不归零
图3单极性归零
图4双极性归零
(2)分析
由于此次实验是本次的第一次实验,实验内容比较简单,代码编写不是太复杂,只需要理解老师所给的单极性不归零码编程的含义结合理论课所讲的原理,可以很快的在单极性不归零码的基础上加以修改编写出其他三个代码,但此次实验中也遇到一些问题在于循环结束之后要不要给y再加上一个值(y=[y,x(i)];),此问题只要出自于t的长度比y的长度多1,因此给y再赋上一个值是肯定的,不加怎结果中会少一个值。