焊接工艺介绍
焊接工艺流程

焊接工艺流程一、概述焊接是一种常见的金属加工技术,用于将两个或多个金属材料连接在一起。
焊接工艺流程是完成一次焊接的具体步骤和操作流程的总称。
本文将介绍焊接工艺流程的基本步骤和常见技术,帮助读者了解焊接过程的要点和注意事项。
二、焊接工艺流程的基本步骤1.准备工作:–确定焊接的材料和焊接方法;–检查焊接设备和工具,确保其正常运行;–清洁焊接表面,去除油污、锈蚀和其他污物。
2.暖机预热:–根据焊接材料的类型和厚度,设置合适的预热温度;–打开焊接设备的电源,进行预热。
3.设置焊接参数:–根据焊接材料的类型和厚度,设置合适的电流、电压和速度等参数。
4.进行焊接:–将焊条或焊丝放入焊枪或焊头,并调整合适的电流;–将焊枪或焊头与焊缝对齐,并开始焊接;–控制焊接速度和角度,保持焊缝的均匀和稳定。
5.焊后处理:–关闭焊接设备,清理焊接工具和残留焊接材料;–进行焊缝的修整和磨光、抛光等处理。
三、常见的焊接工艺技术1. 电弧焊接电弧焊接是目前最常用的焊接技术,适用于各种金属材料的连接。
其工艺流程主要包括:•准备工作:检查设备和清洁焊接表面;•电弧点火:将焊枪或电焊机的电极靠近焊接表面,产生电弧点火;•进行焊接:焊条或焊丝熔化形成焊缝,并保持焊枪或电焊机的移动速度和角度;•焊后处理:清理设备和焊缝处理。
2. 气体保护焊接气体保护焊接主要用于焊接不易氧化的金属材料,如铝、铜等。
其工艺流程如下:•准备工作:检查设备和清洁焊接表面;•将电极和喷嘴接入氩气和惰性气体瓶;•进行焊接:将焊枪或焊头与工件对齐,产生气体保护焊接;•焊后处理:清理设备和焊缝处理。
3. 点焊和脉冲焊接点焊和脉冲焊接适用于薄板焊接和精细零件的连接。
其工艺流程包括:•准备工作:检查设备和清洁焊接表面;•设置焊接参数:根据工件材料和厚度设置合适的焊接参数;•进行焊接:将电极接触工件,产生电流通过点焊或脉冲焊接;•焊后处理:清理设备和焊缝处理。
四、焊接工艺流程中的注意事项1.安全:在进行焊接工作时,应佩戴防护眼镜、手套和防火服等个人防护装备。
焊接工艺的基本内容

焊接工艺的基本内容
焊接工艺的基本内容包括以下几个方面:
1. 焊接方法:常见的焊接方法包括电弧焊、气体保护焊(如氩弧焊、氩气保护焊)、电阻焊、激光焊等。
不同的焊接方法适用于不同的工件材料和焊接要求。
2. 焊接材料:焊接材料通常包括焊材和填充材料。
焊材是指用于连接工件的金属材料,填充材料则是在焊缝中添加的材料,以提高焊接强度和密封性。
3. 焊接设备:焊接设备包括焊接机、电源、焊接枪、气瓶等。
根据焊接方法的不同,设备和工具的要求也不同。
4. 焊接参数:焊接参数是指在焊接过程中需要控制的参数,如焊接电流、电压、焊接速度、焊接时间等。
合理的焊接参数选择可以保证焊接质量和效率。
5. 焊接工艺规程:焊接工艺规程是指根据具体的焊接任务,制定的一套操作指导文件,包括焊接工艺参数、焊接顺序、焊接工序等。
焊接工艺规程的制定是确保焊接质量和安全的重要依据。
6. 焊接质量控制:焊接质量控制包括焊接前的质量准备、焊接过程中的监控与检验,以及焊接后的质量评定与处理。
焊接质量控制的目标是确保焊接接头的质量和性能满足设计要求。
以上是焊接工艺的基本内容,焊接工艺涉及广泛,根据不同的焊接项目和要求,具体内容可能有所差异。
焊接工艺分类及应用介绍

焊接工艺分类及应用介绍焊接是将两个或多个金属材料通过熔化,使其相互连接,成为一个整体的工艺过程。
通过不同的焊接工艺,可以实现不同种类的焊接任务。
本文将介绍常见的焊接工艺分类及其应用。
一、焊接工艺分类1. 电弧焊接电弧焊接是指通过产生和维持电弧加热,使金属材料熔化并形成连接的焊接工艺。
主要包括手工电弧焊、埋弧焊、氩弧焊等。
电弧焊接广泛应用于钢结构、船舶、桥梁、管道以及汽车制造等领域。
2. 气体焊接气体焊接是指利用燃气燃烧产生高温火焰,将金属材料熔化并相互连接的焊接工艺。
常见的气体焊接包括氧乙炔焊、氧气焊、氮气焊等。
气体焊接在轻工、电子、航空航天等行业中得到广泛应用。
3. 电阻焊接电阻焊接是利用电流通过工件接触面产生的热量,使金属材料熔化并连接的焊接工艺。
常见的电阻焊接包括点焊、缝焊、接触焊等。
电阻焊接主要应用于汽车制造、家电制造、建筑结构等领域。
4. 摩擦焊接摩擦焊接是利用摩擦热产生的热量将材料加热至熔点,然后施加压力使其相互连接的焊接工艺。
摩擦焊接广泛应用于铝合金、镁合金、钛合金等材料的焊接。
5. 激光焊接激光焊接是利用高能激光束将金属材料局部加热至熔点,实现焊接的工艺。
激光焊接具有焊接速度快、熔深浅可控等优点,广泛应用于电子、汽车制造、航空航天等领域。
二、焊接工艺应用介绍1. 管道焊接管道焊接是指将金属管道进行连接或修复的焊接工艺。
常见的管道焊接包括对接焊、角焊、埋弧焊等。
管道焊接应用广泛,主要用于石油、天然气、化工等工业领域。
2. 金属结构焊接金属结构焊接是将金属材料进行连接,用于建筑、船舶、桥梁等领域。
常见的金属结构焊接包括电弧焊接、气体焊接以及激光焊接等。
3. 汽车制造焊接汽车制造中需要对不同部件进行焊接,如车身焊接、发动机焊接等。
常用的焊接工艺包括点焊、激光焊接、摩擦焊接等。
4. 电子设备焊接电子领域中需要对电子元器件、电路板等进行焊接。
常见的电子设备焊接工艺包括表面贴装技术(SMT)、波峰焊接等。
焊接工艺及原理

焊接工艺及原理一、焊接基本原理焊接是一种通过加热或加压,或两者并用,使两个分离的物体产生原子间结合的方法。
其基本原理是利用高温或高压使两个工件产生塑性变形,以实现连接。
二、焊接方法与分类1.熔焊:将工件加热至熔点,形成熔池,冷却凝固后形成连接。
常见的熔焊方法包括电弧焊、气体保护焊、激光焊等。
2.压焊:通过施加压力,使两个工件在固态下产生塑性变形,实现连接。
常见的压焊方法包括电阻焊、超声波焊、摩擦焊等。
3.钎焊:使用比母材熔点低的金属作为钎料,将工件加热至钎料熔化,填充接头间隙,实现连接。
常见的钎焊方法包括火焰钎焊、烙铁钎焊等。
三、焊接材料1.母材:被焊接的金属材料。
2.填充金属:用于填充接头间隙的金属材料,可根据母材和焊接方法选择。
3.钎料:用于钎焊的金属材料,其熔点应低于母材。
四、焊接工艺参数1.焊接电流:焊接过程中通过的电流大小,直接影响焊接质量和效率。
2.焊接电压:电弧焊中电弧两端的电压,影响电弧的稳定性和焊接质量。
3.焊接速度:焊接过程中单位时间内完成的焊缝长度,影响焊接效率和接头质量。
4.预热温度:对于某些高强度钢或铸铁等材料,焊接前需要进行预热以提高接头质量。
5.后热温度:焊接完成后对工件进行后热处理,以促进接头组织转变和消除残余应力。
6.保温时间:后热处理过程中保持工件温度的时间,影响接头组织和性能。
五、焊接变形与控制1.热变形:由于焊接过程中局部加热和不均匀冷却导致的变形。
控制方法包括选择合适的焊接顺序、采用对称焊接、局部散热等措施。
2.残余应力变形:焊接过程中产生的残余应力在工件内部造成的变形。
控制方法包括合理安排焊接顺序、采用振动消除应力等方法。
3.收缩变形:由于焊接过程中熔池的液态金属凝固后体积收缩导致的变形。
控制方法包括减小焊接电流和焊接速度、增加填充金属等措施。
六、焊接缺陷及防止1.气孔:由于保护不良或母材有锈等原因导致的气体未及时逸出形成的空穴。
防止方法包括加强保护、清理母材表面等措施。
常见焊接工艺

常见焊接工艺焊接是一种将两个或多个工件连接在一起的加工方法,广泛应用于制造业和建筑领域。
常见焊接工艺包括电弧焊、气体保护焊、激光焊和摩擦焊等。
本文将对这些常见焊接工艺进行介绍。
一、电弧焊电弧焊是利用电弧产生的高温熔化工件并形成焊缝的方法。
常见的电弧焊包括手工电弧焊、氩弧焊和等离子焊。
手工电弧焊是最常见的焊接方法,操作简单,适用于各种材料的焊接。
氩弧焊使用惰性气体保护焊缝,焊接质量高,常用于不锈钢和铝合金的焊接。
等离子焊是在氩弧焊的基础上进一步改进的焊接方法,适用于焊接厚度较大的工件。
二、气体保护焊气体保护焊是在焊接过程中使用气体保护焊缝,防止氧气和其他杂质的侵入,提高焊接质量。
常见的气体保护焊有氩弧焊、惰性气体保护焊和半自动焊。
氩弧焊已经在上面提到过,适用于不锈钢和铝合金的焊接。
惰性气体保护焊使用惰性气体(如氩气)保护焊缝,适用于焊接不锈钢、铜和镍合金等材料。
半自动焊是通过焊丝自动送进焊缝,减少操作难度,提高效率。
三、激光焊激光焊是利用激光束的高能量将工件熔化并形成焊缝的方法。
激光焊具有高精度、高效率和无需接触的优点,适用于焊接薄壁材料和高反射材料。
激光焊分为传统激光焊和激光深熔焊。
传统激光焊适用于较薄的材料,焊缝较窄,适用于汽车和电子行业。
激光深熔焊适用于较厚的材料,焊缝较宽,适用于航空航天和能源行业。
四、摩擦焊摩擦焊是利用摩擦热产生的高温将工件熔化并形成焊缝的方法。
摩擦焊不需要外部热源和填充材料,适用于焊接铝合金、镁合金和铜等材料。
常见的摩擦焊包括摩擦搅拌焊和摩擦搅拌摩擦焊。
摩擦搅拌焊通过摩擦热将工件熔化,并通过机械搅拌来形成焊缝。
摩擦搅拌摩擦焊在摩擦搅拌焊的基础上增加了摩擦摩擦焊,进一步提高了焊接质量。
总结而言,常见的焊接工艺包括电弧焊、气体保护焊、激光焊和摩擦焊等。
每种焊接工艺都有其适用的材料和场景,选择合适的焊接工艺可以提高焊接质量和效率。
在实际应用中,还需要根据具体情况选择焊接参数和设备,以确保焊接的稳定性和可靠性。
焊接工艺基础知识

➢ 焊接加热过程对焊缝质量的影响:
影响熔池金属的理化反应,造成不完全偏析,形 成气孔、夹杂等缺陷。
由于热传导过程,使焊缝区域金属产生淬硬、脆 化、软化等。
由于不均匀加热及冷却,产生不均匀应力状态和 变形,导致裂纹。
焊接工艺基础知识
➢ 焊缝熔池的一次结晶:在焊接过程中,当焊接 热源离开后金属有液体转变成固体的过程为一次结 晶;特点为:
设计措施:
✓ 合理选择结构的截面形状和尺寸。
✓ 合理选择焊缝尺寸和形式:在保证焊缝强度、满足 焊接工艺条件下,尽可能采用较小的焊缝尺寸。对于 受力较大的丁字接头和十字接头,在保证强度相同的 条件下,采用开坡口角焊缝可减少变形。在薄板结构 中如果没有密封性等要求,则可用点焊或塞焊来代替 长缝的熔化焊。
✓ 非熔化极有钨极氩弧焊(TIG)、等离子弧焊 等。
焊接工艺基础知识
➢ 压焊:在焊接过程中,必须对焊件施加压力(加热或不 加热),以完成焊接的方法,称为压焊。
加热压焊有电阻焊、气压焊、高频焊、锻焊、接触焊、 摩擦焊等;
不加热压焊有的方法有冷压焊、超声波焊、爆炸焊等。 ➢ 钎焊:是硬钎焊和软钎焊的总称,是采用比母材熔点低 的金属作填充材料,将焊件和钎料加热到高于钎料熔点,低 于母材熔点的温度,利用液态钎料湿润母材,并填充接头间 隙并与母材相互扩散实现连接焊件的方法。
搭接接头:分为I形坡口、圆孔内塞焊及长孔内角焊 三种形式。
卷边接头
焊接工艺基础知识
➢ 接头的设计和选择原则: 根据产品的结构形状、尺寸、材质、技术要求等。 根据采用的焊接方法及接头的基本特性。 根据承载荷的性质、大小(如拉伸、压缩、弯曲、冲击等)。 根据工作环境要求。 根据变形与控制及施焊的难易程度。 根据接头的焊前准备和焊接费用等。 ➢ 坡口的选择原则: 保证焊件的焊接质量、焊缝能焊透。 坡口容易加工(如U型坡口比V型坡口加工困难,费用高)。 尽可能减少金属填充量。 减少焊接变形。 保证焊接可达性(如不能两面焊接的可选用单面V型或U型坡口) 不同位置的焊接操作要求:(平焊、立焊、横焊、仰焊等四种操作 方法)。
常见的焊接工艺

常见的焊接工艺
焊接是一种将两个或多个金属材料连接在一起的方法。
它是制造业中最常用的连接技术之一。
焊接工艺有很多种,每种工艺都有其独特的优点和适用范围。
下面介绍几种常见的焊接工艺。
1. 电弧焊接
电弧焊接是一种通过电弧加热金属材料并使其熔化的焊接方法。
在电弧焊接中,电极和工件之间形成一条电弧,电弧的高温使金属材料熔化并形成焊缝。
电弧焊接适用于焊接厚度较大的金属材料,如钢板、钢管等。
2. 气体保护焊接
气体保护焊接是一种在焊接过程中使用惰性气体保护焊缝的方法。
惰性气体可以防止焊缝受到空气中的氧气和水蒸气的污染,从而保证焊缝的质量。
气体保护焊接适用于焊接不锈钢、铝合金等材料。
3. 熔覆焊接
熔覆焊接是一种将金属粉末或线材加热熔化后喷射到工件表面形成涂层的方法。
熔覆焊接可以改善工件表面的性能,如耐磨性、耐腐蚀性等。
熔覆焊接适用于修复和加强工件表面。
4. 激光焊接
激光焊接是一种使用激光束将金属材料熔化并形成焊缝的方法。
激光焊接具有高精度、高效率、无污染等优点。
激光焊接适用于焊接薄板、小型零件等。
5. 焊锡焊接
焊锡焊接是一种使用焊锡将两个金属材料连接在一起的方法。
焊锡焊接适用于焊接电子元器件、小型零件等。
不同的焊接工艺适用于不同的材料和应用场景。
在选择焊接工艺时,需要根据具体情况进行选择,以保证焊接质量和效率。
焊接工艺有哪些

焊接工艺有哪些焊接工艺是将工件通过加热和熔化金属材料,然后冷却形成连接的一种方法。
常见的焊接工艺包括电弧焊、氩弧焊、氩弧焊、激光焊、电阻焊等。
下面将详细介绍这些焊接工艺。
一、电弧焊电弧焊是利用电弧将工件熔化并形成连接的一种焊接工艺。
常见的电弧焊有手工电弧焊、埋弧焊、自动焊、气体保护焊等。
手工电弧焊是一种简单、灵活的焊接方法,适用于各种材料和工件的焊接。
埋弧焊是一种高效、高质量的焊接方法,主要用于厚板、大型结构的焊接。
自动焊可在定制焊接机器人或自动焊接设备配合下进行自动焊接。
气体保护焊是利用惰性气体(如氩气)来保护焊接过程中的电弧和熔池,以提高焊接质量。
二、氩弧焊氩弧焊是利用氩气作为保护气体的一种焊接工艺,主要用于焊接不锈钢、铝和镍合金等材料。
氩弧焊有钨极氩弧焊和氩弧焊两种形式。
钨极氩弧焊使用钨极作为电极,通常通过手工进行。
氩弧焊使用金属电极作为电极,可通过手工或自动焊接。
三、激光焊激光焊是利用高能激光束熔化工件并形成连接的一种焊接工艺。
其特点是焊接速度快、焊接热影响区小、焊缝质量高。
激光焊可以分为传统激光焊和激光深熔焊。
传统激光焊适用于较薄的金属板材,激光深熔焊适用于较厚的金属板材。
四、电阻焊电阻焊是利用通过工件中通电产生的电阻热将工件加热熔化并形成连接的一种焊接工艺。
电阻焊可分为点焊和缝焊两种形式。
点焊主要用于焊接薄板的接头,缝焊主要用于焊接较厚工件或接头。
五、等离子焊等离子焊是利用等离子体产生的高温熔化工件并形成连接的一种焊接工艺。
等离子焊具有高焊接速度、大焊接深度、无需熔化电极等优点,适用于焊接各种材料。
六、摩擦焊摩擦焊是利用摩擦热将工件表面熔化并形成连接的一种焊接工艺。
摩擦焊可分为摩擦搅拌焊和摩擦熔焊两种形式。
摩擦搅拌焊适用于焊接铝合金等材料,摩擦熔焊适用于焊接不锈钢等材料。
七、爆炸焊爆炸焊是利用爆炸产生的高温和压力将工件形成连接的一种焊接工艺。
爆炸焊主要用于焊接铝和铜等材料。
八、电子束焊电子束焊是利用电子束将工件熔化并形成连接的一种焊接工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接工艺介绍一、概述二、CO2气体保护焊三、点焊四、电极一、概述1、焊接工艺的基本概念焊接工艺是根据产品的生产性质、图样和技术要求,结合现有条件,运用现代焊接技术知识和先进生产经验,确定出的产品加工方法和程序,是焊接过程中的一整套技术规定。
包括焊前准备、焊接材料、焊接设备、焊接方法、焊接顺序、焊接操作的最佳选择以及焊后处理等。
制订焊接工艺是焊接生产的关键环节,其合理与否直接影响产品制造质量、劳动生产率和制造成本,而且是管理生产、设计焊接工装和焊接车间的主要依据。
焊接结构生产的一船工艺过程如图所示。
焊接是整个过程中的核心丁序,焊前准备和焊后处理的各个工序都是围绕着获得符合焊接质量要求的产品而做的工作。
质量检验贯穿于整个生产过程,以控制和保证焊接生产的质量。
每个工序的具体内容,由产品的结构特点、复杂程度、技术要求和生产量的大小等因素决定。
2 焊接工艺的发展概况焊接方法是焊接工艺的核心内容,其发展过程代表了焊接工艺的进展情况。
焊接方法的发明年代及发明国家见表2.1.1。
按照焊接过程的特点,焊接分为熔焊、压焊和钎焊三大类,每一类根据工艺特点又分为若干不同方法,见图2.1.2。
目前许多新的焊接工艺正逐步用于焊接生产,极大地提高了焊接生产率和焊接质量。
在重型机械、冶金矿山机械、工程机械、电站锅炉压力容器、石油化工、机车车辆、汽车等行业中普遍采用了数控切割技术、埋弧自动焊、电渣焊、CO2气体保护焊、TIG焊、MIG焊、电阻焊和钎焊等焊接方法并具有成套的焊接工艺装备。
尤其是汽车生产线中采用了co 2气体保护焊、TIG焊、MIG焊等焊接机器人、电阻焊机器人和自动生产线,大大提高了焊接质量和生产效率,焊接机械化、自动化水平己达到总焊接工作量的35%一45%。
与工业发达国家相比,我国的焊接机械化和自动化水平还较低,按熔化焊来计算,目前日本为67%,德国为80%.美国为56%,原苏联为40%,而我国还不到20%,其主要原因是我国焊接生产主要还靠手工电弧焊,自动化水平高的气体保护焊和埋弧自动焊应用少。
从焊接生产工艺装备水平来看,我国近年来,生产了成套的焊接工艺装备和焊接生产线,也有的厂家从国外引进了自动化水平较高的焊接辅助装置、焊接质量和生产效率有了很大提高。
计算机控制系统在焊接生产工艺中的应用、在国外已经比较普遍,除用于焊接工艺参数的控制之外,还可用于整条生产线、焊机的群控。
它还可以根据材料厚度自动选择并预置焊接工艺参数.对焊接过程实现自适应控制、最佳控制以及智能控制等。
研究开发具有智能的焊接机器人,特别是具有自动路径规划,自动校正轨迹,自动控制熔深的机器人将是近期和21世纪的重点方向。
电子束、激光、等离子等高能束流用于焊接,可以完成难熔合金和难焊材料的焊接,焊接熔深大、热影响区小、焊缝性能好、焊接变形小、精度高,并具有较高的生产率。
必将在核、航空、航天、汽车等工业中得到广泛的应用,推进焊接工艺的进步。
采用复合热源焊接是焊接工艺的又一发展动向。
利用复合热源焊接不仅可以降低焊接成本,而且可以扩大焊接的材料。
目前激光加电弧的复合热源已在国外开始采用,采用等离子和位于工件背面的TIG电弧复合热源也有效地增大了熔深,为大厚度工件的焊接开辟了新途径。
焊接结构生产的一般结构过程二、 CO2气体保护焊1、二氧化碳气体保护焊的特点及分类二氧化碳气体保护焊是利用二氧化碳作保护气体,以燃烧于工件与焊丝间的电弧作热源种焊接方法,简称Co2焊。
由于二氧化碳具有一定的氧化性,因此,二氧化碳焊一般采一定脱氧元素的专用二氧化碳焊丝。
2、二氧化碳气体保护焊的特点及应用(1)优点1)焊接成本低 Co 2气体及Co 2焊焊丝价格便宜,焊接能耗低,因此,二氧化碳气体保护焊的使用成本很低,只有埋弧焊及手工电弧焊的30%一50%。
2)焊缝质量好二氧化碳气体保护焊抗锈能力强,焊缝含氢量低,抗裂性能好。
3)生产效率高二氧化碳气体保护焊的电弧集中,熔透能力强,熔敷速度快,因此生产效率高;半自动二氧化碳焊的效率比手工电弧焊高1—2倍,自动二氧化碳焊比手工电弧焊高2—5倍。
4)适用范围广适用于各种位置的焊接、而且既可用于薄板的焊接又可用于厚板的焊接。
5)便于实现自动化二氧化碳焊是明弧焊,便于监视及控制,而且焊后无需清渣,有利于实现焊接过程机械化及自动化。
(2)缺点1)焊缝成形较粗糙,飞溅较大。
2)劳动条件较差.二氧化碳焊弧光强度及紫外线强度分别为手工电弧焊的2——3倍和20一40倍,而且操作环境中cO 2的含量较大,对工人的健康不利。
(3)二氧化碳焊的应用目前,二氧化碳焊已广泛用于机车车辆业,汽车、摩托车、船舶、煤矿机械及锅炉制造,主要用于焊接低碳钢及低合金钢。
此外补焊以及电铆焊等方面。
二氧化碳焊还用于耐磨零件的堆焊、铸钢件的焊接。
3、二氮化碳焊设备的组成及分类(1)二氧化碳焊设备的组成二氧化碳焊设备由弧焊电源、控制箱、送丝机构、焊炬及供气系统组成。
自动Co 2焊设备还配有行走小车或悬管梁等,而送丝机构及焊炬均安装在小车上或悬臂梁的机头上。
大电流CO2:焊设备还配有水冷系统。
半自动二氧化碳焊机通常由电源、控制盒、送丝机构、焊炬等组成,其典型配置图如图3.6.I所示。
电源与送丝机构分离的二氧化碳焊机称为分体式焊机;电源与送丝机构安装在一个机箱中的焊机称为一体化焊机。
半自动二氧化碳设备—般用细焊丝进行焊接。
由于细丝焊接时电弧具有很强的自调节作用,因此,通常选用平特性或缓降特性的电源,配等速送丝机构。
这种匹配可保证在受到外界干扰时,弧长迅速恢复到原来的长度,保证焊接规范参数的稳定。
通过改变送丝速度可调节电流,改变电源外特性可改变电压,因此,规范参数的调节方便。
1)电源粗丝二氧化碳焊设备要求使用陡降外特性的电源.采用弧压反馈调节来保持弧长的稳定。
细丝二氧化碳焊设备要求使用具有缓降外特性或平特性的弧焊电源,采用自调节作用来保持弧长的稳定。
二氧化碳焊设备仅采用直流电源,焊接时一般采用反极性接法。
2)控制箱控制箱中装有焊接时序控制电路。
其主要用途是控制焊丝的自动送进、提前运气、滞后停气、引弧、电流通断、电流衰减、冷却水流的通断等。
对于自动焊机,还要控制小车或其他行走机构的行走。
3)送丝机构及焊炬二氧化碳焊设备的送丝机构和焊炬与熔化极氩弧焊相同4)气路和水路①气路系统除了一般气体保护焊气路系统中必须有的气瓶、减压阀氧化碳焊机的气路系统有时还需安装预热器及干燥器。
安装预热器是为了防止二氧化碳中的水分在钢瓶出气口处或减压阀中结冰而堵塞气路。
焊接过程中钢瓶内的液态二氧化碳不断气化,气化过程中要吸收大量的热,而且钢瓶中的二氧化碳是高压的,经过减压阀减压后,也会使气体温度下降;气体流量越大,温度下降越明显。
因此,气体流量较大时(大于10L/min),在减压阀之前必须安装加热器,以防止气体中的水分结冰。
通常采用电热式加热器,其结构比较简单,只需将套有绝缘瓷管的加热电阻丝套在通二氧化碳气体的紫铜管上即可。
气路中安装干燥器是为了减少焊缝中的含氢量。
一般市售的二氧化碳气体中含有一定量的水分,因此需在气路中安装干燥器,以去除水分,减少焊缝中的合氢量。
干燥器有两种:高压干燥器和低压干燥器。
高压干燥器安装在减压阀前,低压干燥器安装在减压阀之后。
一般情况下,只需安装高压干燥器。
如果对焊缝质量的要求不高,也可不加干燥器。
②水路系统水路系统通以冷却水,用于冷却焊炬及电缆。
通常水路中设有水压开关,当水压太低或断水时,水压开关将断开控制系统电源,使焊机停止工作,保护焊炬不被损坏。
4、焊接材料选择二氧化碳气体保护焊的保护气体是二氧化碳,因此焊接材料的选择主要指焊丝的选择。
焊丝可分为实芯焊丝和药芯焊丝。
表2.3.37给出了适合于二氧化碳气体保护焊的实芯和药芯焊丝的性能及用途。
5、焊前清理二氧化碳气体保护焊采用二氧化碳作为保护气体,电弧气氛的氧化性比较强,因此对于工件表面的锈、油污等污物不太敏感,对于一些不重要的焊件,可不进行焊前清理。
焊前清理可参照手工电弧焊酸性焊条焊接时的清理要求。
6、焊接工艺参数CO 2焊的焊接工艺参数主要有焊丝直径、焊丝干伸长、焊接电流、电弧电压、焊接速度等。
焊丝直径影响熔深、焊丝熔化速度及熔滴过渡形式。
直径大于2mm的焊丝只能用于细颗粒过渡的焊接。
焊接电流相同的情况下,焊丝直径超小,熔深越大,熔化速度越高。
一般地,细丝用于焊接薄板,随着被焊板材厚度的增加,焊丝直径也应该相应增加。
表2.3.38为各种焊丝直径的适用范围,供选择焊丝直径时参考。
焊丝干伸长度也是一个重要的参数。
干伸长度越长,其电阻热越大,预热作用越强,送丝速度不变时,将降低焊接电流,容易引起未焊透和未熔合等缺陷。
干伸长度越小,若送丝速度不变时,将提高焊接电流,容易在全位置焊时引起铁水的流失,另一方面也影响观察电弧,影响焊工操作。
焊接电流影响熔敷速度及熔深.电流增加,熔敷速度和熔深都要增加。
反之,熔敷速度和熔深都要减小。
选择电流时必须根据焊丝直径,不同的焊丝直径都有一个合适的电流区间,在这一区间,焊接过程才能稳定进行。
不同焊丝直径适合的焊接电流区间。
电弧电压的大小影响焊接过程的稳定性、焊丝金属熔滴过渡形式、焊缝金属的氧化和飞溅等。
电弧电压增加,熔宽明显增加,熔深略有减少,但增加焊缝金属的氧化和飞溅、降低焊缝的力学性能。
电压和电流必须适当配合,才能获得良好的工艺性能。
由于co:气体保护焊的电弧静持性是上升特性,所以电弧电压随焊接电流的减小而降低。
CO2气体流量的大小,应根据焊接电流、焊接速度、焊丝伸出长度、喷嘴直径来选择。
三、电阻焊的方法及应用——点焊部分1、点焊点焊是依靠被焊工件接触面之间形成的焊点、将工件连接起来的电阻焊方法。
按一次形成的焊点数,可分为单点焊和多点焊;按对焊件的供电方向,可分为单面点焊和双面点焊等。
典型的点焊方法如图3.8.2所示。
最常见的点焊方法是双面点焊(电极从工件两侧供电),尤其是双面单点焊。
单面点焊主要用于电极难以从两侧接近工件或工件一侧要求压痕较浅的场合。
点焊接头的尺寸可参考表3.8.1大致确定,常用金属材料的焊接点距见表3.8.2。
点焊是一种高速、经济的连接方法,适用于制造可装配成搭接接头、接头无密封性要求的薄板构件,如汽车驾驶室、轿车车身、长机机翼、仪表壳体,也可用于焊接建筑用钢筋、电器元件引线、家用电器等。
2、点焊机(1)焊机的分类点焊机的分类见图3.8.7。
通用焊机可焊接各种不同厚度和形状的工件,专用焊机则用于焊接形状、尺寸、厚度、材质接近的一定类型的工件。
中大功率焊机重量大,一般都固定安装。
焊接外形复杂或尺寸较大的薄壁工件时,工件通常不动而使焊机(焊钳)相对工件移动。
绝大多数通用点焊机采用双面馈电,可用于焊接各种尺寸和形状、各类金属材料的工件,通常一次焊接循环获得一个焊点。