初一数学动点问题答题技巧与方法

合集下载

初一动点问题解题技巧

初一动点问题解题技巧

初一动点问题解题技巧摘要:一、动点问题概述二、初一动点问题解题技巧1.分类讨论解决动点问题2.化动为静,寻找破题点3.建立等量代数式4.动点问题定点化三、学习数学的方法和建议正文:初一动点问题解题技巧初一动点问题主要涉及到几何、代数等方面的知识,要求学生具备一定的逻辑思维和分析能力。

在解决动点问题时,可以运用以下解题技巧:一、动点问题概述动点问题是指在平面或空间中,某个点或线段随着某个条件的改变而运动的问题。

这类问题具有较强的综合性,需要运用几何、代数、三角等方面的知识进行求解。

二、初一动点问题解题技巧1.分类讨论解决动点问题在解决动点问题时,首先要对问题进行分类讨论。

根据题目的条件,分析动点可能存在的位置和运动轨迹,从而确定解题思路。

2.化动为静,寻找破题点将动点问题转化为静止点问题,关键在于寻找破题点。

这需要观察题目中给出的条件,如边长、动点速度、角度等,寻找能建立等量关系的关键信息。

3.建立等量代数式根据题目条件和分类讨论的结果,建立所求的等量代数式。

这有助于将问题转化为数学方程,便于求解。

4.动点问题定点化动点问题定点化是解决动点问题的主要思想。

通过分析动点在运动过程中的规律,将其转化为静止点问题,从而简化问题求解过程。

三、学习数学的方法和建议1.课前预习,认真听讲在学习数学时,首先要做好课前预习,提前了解知识点,以便在课堂上更好地消化吸收。

上课时要认真听讲,弄懂老师讲解的内容。

2.掌握数学公式,灵活运用熟练掌握数学公式,并能推导出其由来。

在解决问题时,要善于运用公式,灵活变形,举一反三。

3.注重理解,培养数学思维数学学习重在理解,要弄懂知识的来龙去脉。

在解题过程中,要学会分析问题,培养自己的数学思维能力。

4.脚踏实地,持之以恒学好数学需要沉下心来,不能浮躁。

踏实做题,积累经验,不断提高自己的解题能力。

5.勇于挑战,克服困难遇到难题时,不要退缩,要勇于挑战。

通过研究难题,提高自己的数学素养。

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。

1. 用字母表示动点。

- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。

如果向左运动,距离为-vt;如果向右运动,距离为vt。

2. 表示两点间的距离。

- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。

3. 分析运动过程中的等量关系。

- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。

二、题目及解析。

1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 求t秒后点P表示的数。

- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。

- 求t秒后点Q表示的数。

- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。

- 求t秒后PQ的距离。

- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。

2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。

点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。

- 求点C表示的数。

- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。

- 求t秒后点M表示的数。

- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。

初一动点问题解题技巧和方法

初一动点问题解题技巧和方法

初一动点问题解题技巧和方法初一动点问题解题技巧和引言初一动点问题是初中数学中的一个重要知识点,也是初中数学解题中常见的问题类型之一。

在解决初一动点问题时,我们需要运用一些特定的技巧和方法。

本文将介绍几种常见的初一动点问题解题技巧和方法。

方法一:坐标法1.首先,我们需要给问题中的物体设定坐标系。

通常可以选择平面直角坐标系或平面极坐标系。

2.接着,根据题意,确定物体的初始位置和移动规律。

3.运用坐标变换公式,计算出物体在不同时刻的坐标。

4.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。

方法二:速度法1.首先,我们需要设定物体的初始速度和加速度等关键信息。

2.根据物体的初始速度和加速度,运用运动学公式计算物体在不同时刻的速度和位移。

3.利用速度-时间图像或位移-时间图像分析问题,找出物体在某个特定时刻的位置和状态。

方法三:速度图像法1.通过绘制物体的速度-时间图像,观察图像的特点。

2.根据图像的形状,判断物体的运动状态,如匀速、匀加速、等速变速等。

3.运用速度-时间图像的面积计算方法,求解问题中的相关量。

方法四:位移图像法1.通过绘制物体的位移-时间图像,观察图像的特点。

2.根据图像的形状,判断物体的运动状态,如匀速、匀变速、反向运动等。

3.运用位移-时间图像的斜率计算方法,求解问题中的相关量。

方法五:等效距离法1.根据问题中的条件,把复杂的运动形式化简为等效距离的运动。

2.运用等效距离的运动规律,计算出物体在不同时刻的位置和状态。

3.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。

方法六:代数法1.根据问题中的条件,设定物体的初始位置和移动规律。

2.利用方程组或代数方程表示物体的运动状态。

3.运用代数方法解方程组或代数方程,求解问题中的相关量。

结论初一动点问题的解题方法有很多种,本文介绍了几种常见的方法,包括坐标法、速度法、速度图像法、位移图像法、等效距离法和代数法。

在解题过程中,我们可以根据具体问题的要求选择合适的方法进行计算和分析,提高解题效率。

七年级下册数学动点问题解题技巧

七年级下册数学动点问题解题技巧

七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。

1. 分析动点的运动轨迹。

- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。

例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。

2. 用含时间t(或其他变量)的代数式表示相关线段的长度。

- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。

- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。

对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。

3. 根据题目中的等量关系列方程求解。

- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。

例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。

二、题目及解析。

1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。

- 若点P到点A、点B的距离相等,求点P对应的数x。

- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。

当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。

- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。

- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。

初一几何动点问题的解题技巧

初一几何动点问题的解题技巧

初一几何动点问题的解题技巧解决初一几何动点问题的关键在于理解动点的概念并熟练运用相关的几何性质和解题技巧。

以下是几个常用的解题技巧:1. 确定动点的位置:首先,要明确问题中动点的位置信息。

通过观察题目中的几何图形,确定动点所在的线段、圆弧或多边形等位置。

2. 使用变量表示:用变量来表示动点的坐标或长度。

常见的表示方式可以使用字母如"A"、"B"等来表示动点,使用"x"、"y"等来表示坐标。

3. 利用几何性质:根据几何图形的性质,运用传统的几何知识来推导和解决问题。

例如,利用直角三角形的性质、相似三角形的性质、平行线的性质等。

4. 延长线和引出辅助线:有时候,延长线或引出辅助线可以帮助我们更好地理解问题和得出结论。

通过引出合适的辅助线,可以简化或改变问题的形式,使得解题更容易。

5. 利用相关定理和公式:了解和掌握基本的几何定理和公式,如勾股定理、正弦定理、余弦定理等。

在解决动点问题时,这些定理和公式常常可以提供有用的信息和关键的方程式。

6. 理清逻辑关系和方向:动点问题往往涉及到几何图形之间的相对方向和关系,如垂直、平行、相交等。

在解题过程中,要仔细分析这些关系,并据此推导出正确的结论。

7. 尝试特殊情况:有时候,特殊情况下的解法能够启发我们找到普遍情况下的解法。

可以尝试选择特殊的数值或角度,验证一些猜想,从而推导出一般情况的结论。

8. 画图辅助解题:通过绘制几何图形,可以更直观地理解问题,并更好地分析和推导解题过程。

要善于利用图形和图形性质来辅助解题。

以上是一些初一几何动点问题的解题技巧,希望能对您有所帮助。

请记住,多多练习和思考,通过实践来提高解题能力。

七年级上数学动点题型归纳

七年级上数学动点题型归纳

七年级上数学动点题型归纳一、动点题型的基本概念动点题型呢,就是在七年级上的数学里,那些点不是固定的,而是会根据一定的条件动来动去的题目类型。

这种题型超有趣的,就像是点在一个数学的大舞台上跳舞一样。

比如说在数轴上,一个点可能按照某种速度向左或者向右移动,这时候我们就要根据它的移动规则来计算各种相关的数学量啦,像它最终的位置、移动的距离之类的。

二、常见的动点题型分类1. 数轴上的动点在数轴上,我们会遇到这样的动点问题。

例如,已知点A在数轴上表示的数是2,它以每秒3个单位长度的速度向右移动,问经过t秒后点A表示的数是多少。

那我们就可以根据向右移动是做加法的原则,得出这个点表示的数就是2 + 3t啦。

还有那种多个点在数轴上同时移动的情况,这就更复杂一些。

像点A从 - 5开始,以每秒2个单位长度向右移动,点B从3开始,以每秒1个单位长度向左移动,问什么时候它们之间的距离是某个值。

这时候我们就得先表示出t秒后点A和点B的位置,再根据距离公式来求解。

2. 平面直角坐标系中的动点在平面直角坐标系里的动点也很常见哦。

比如一个点在第一象限里,它的横纵坐标都按照一定的规律变化。

可能横坐标按照x = t + 1的规律变化,纵坐标按照y = 2t - 1的规律变化,然后让我们求这个点的运动轨迹是什么形状的。

我们就可以通过消去t来找到x和y的关系,从而判断轨迹形状。

三、解决动点题型的小技巧1. 建立合适的模型当遇到动点问题的时候,我们要根据题目情况建立合适的模型。

如果是数轴上的问题,那数轴就是我们的模型,如果是平面直角坐标系里的,那这个坐标系就是模型。

在模型里,我们把已知条件都标清楚,这样就能更直观地看到点的运动情况啦。

2. 找出等量关系这是解决动点题型的关键哦。

不管是求点的位置,还是求点运动过程中的某个特殊时刻,都要找到等量关系。

比如说在求两个动点相遇的时刻,那它们走过的路程之和等于它们最初的距离就是等量关系。

动点题型虽然有点小复杂,但只要我们掌握了这些小窍门,就可以轻松应对啦。

七年级数学动点题解题技巧

七年级数学动点题解题技巧

七年级数学动点题解题技巧
动点问题在七年级数学中是一个相对较难的部分,但掌握了一些技巧后,可以更有效地解决这类问题。

以下是一些解题技巧:
1. 理解题意:首先,要确保完全理解题目的要求和条件。

如果有不明白的地方,应该重新阅读题目,或者请求老师和同学的帮助。

2. 设定变量和方程:对于涉及动点的问题,通常需要设定一些变量来表示动点的位置。

然后,根据题目描述,建立这些变量之间的关系方程。

3. 数形结合:利用数形结合的方法,将问题转化为图形或图表,这样可以帮助更好地理解问题,并找出解决问题的线索。

4. 找出关键点:在解决动点问题时,找出关键点(如速度、时间等)是非常重要的。

这些关键点可以帮助确定动点的移动路径和方向。

5. 建立数学模型:根据题目的描述和已知条件,建立数学模型。

这可能涉及到代数、几何等知识。

6. 求解方程:一旦建立了数学模型,就可以开始求解方程了。

这可能涉及到一些复杂的计算,所以需要细心和耐心。

7. 检查结果:最后,检查结果是否符合题目的要求和条件。

如果有任何不一致的地方,需要重新检查解题过程。

通过以上步骤,可以更有效地解决七年级数学中的动点问题。

当然,这需要大量的练习和经验积累,才能真正掌握这些技巧。

初一几何动点问题解题技巧和方法

初一几何动点问题解题技巧和方法

初一几何动点问题解题技巧和方法
1. 哎呀呀,动点问题可别吓着你呀!比如在一个三角形里,有个点在那不停地动,你得跟着它的节奏来解题呢!要时刻关注它的位置变化,这就像是追着一只调皮的小猫咪,可有意思啦!
2. 嘿,一定要学会分类讨论哦!像走着走着遇到岔路口,你得想想不同的情况呀。

比如那个动点在不同线段上时会咋样,这不就跟选择走哪条路一样嘛!
3. 哇塞,找等量关系超重要的呀!就好像寻宝一样,找到那个关键的等量才能解开谜题呢。

比如说两个图形的面积相等,这就是打开解题大门的钥匙呀!
4. 注意啦,画个图会让你豁然开朗哟!这就如同有了一张地图,清楚地看到动点的轨迹和各种关系。

画出来后,哇,一下子就明白多啦!
5. 千万别死脑筋,要灵活运用知识呀!别像只呆呆的小熊。

比如看到角度问题,就赶紧想想跟哪些定理能挂上钩,这可是解题的妙招哇!
6. 哎呀呀,多做题才能越来越厉害呀!就像练功一样,练得多了自然就熟能生巧啦。

每次做动点题都是一次挑战和成长呢!
7. 记住哦,信心满满地去面对动点问题吧!别害怕它,把它当成一个有趣的对手,勇敢地去击败它呀!
我觉得初一几何动点问题只要掌握好这些技巧和方法,就一点也不可怕,反而很有趣呢,能让我们在解题过程中收获满满!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学动点问题答题技巧与方法关键:化动为静,分类讨论。

解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。

动点问题定点化是主要思想。

比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,P尽量用G来表示,可以把该点当成动点,来计算。

步骤:①画图形;②表线段;③列方程;④求正解。

数轴上动点问题问题引入:如图,有一数轴原点为0,点A所对应的数是-1丄,点A沿数轴匀速平移经过原点到达点B . (1)如果0A=0B,那么点B所对应的数是什么?(2) 从点A到达点B所用时间是3秒,求该点的运动速度.(3) 从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA分别求点K和点C所对应的数.Oi i II i ■i、J Q 1练习:1?动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1 : 4 (速度单位:单位长度/秒).(1) 求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2) 若A、B两点从(1 ) 中标出的位置同时向数轴负方向运动,几秒时,A、B两点到原点的距离恰好相等?-12-9 -6 -3 0 3 6~9 12* 例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24,-10 ,10, 两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

例2.如图,已知A B分别为数轴上两点,A点对应的数为-20, B点对应的数为100。

⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。

A-20 1 da例3.已知数轴上两点A、B对应的数分别为-1 , 3 ,点P为数轴上一动点,其对应的数为G。

⑴若点P到点A、点B的距离相等,求点P寸应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5 ?若存在,请求出G的值。

若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从0点向左运动时,点A以每分钟5个单位长度向左运动,点B—每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距A O P 3 ------- 1」」-4 -3 -2 -1 0 1 2 3 41. A1, A 2, A 3, --A n (n 为正整数)都在数轴上,点A1在原点O的左边,且A1O=1 ;点A2在点A1的右边,且A2A1=2;点A3在A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4 ??依照上述规律,点 A 2015, A 2016所表示的数分别为()A. 1007,- 1008;B. - 1007, 1008;C. 1008,- 1008; D . -1008, 1008 。

2. 已知数轴上A、B 两点对应数分别为-2, 4, P 为数轴上一动点,对应数为G⑴若P为线段AB 的三等分点,求P点对应的数。

⑵数轴上是否存在P点,使P点到A、B距离和为10?若存在,求出G的值;若不存在,请说明理由⑶若点A、点B和P点(P点在原点)同时向左运动。

它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P为AB的中点?3. 电子跳蚤落在数轴上的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3跳4个单位到K4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K100所表示的数恰是20,试求电子跳蚤的初始位置K0点所表示的数.124. 如图,已知数轴上有三点A,B,C,AB= AC,点C对应的数是200.(1 )若BC=300 ,求点A对应的数;ABC------ 9 ------------ * -------------- < ---(2)在(1)的条件下,动点P、Q分别从A C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN (不考虑点R与点Q相遇之后的情形);AJ £? * U r --------------- £--------------------------------------------- L(3) 在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,说明理由?32 QC-AM的值是否发生变化?若不变,求其值;若不变,请离相等?当堂练习:^严L 口?-—s 00O 2005.动点A从原点出发向数轴负方向运动,同时动占B也从原点出发向数轴正方向运动,3秒八、、后,两点相距15个单位长度,已知动点A、B的速度比是1:4 (速度单位:单位长度/秒)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(2) 若A 、B 两点从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点 的正中间?(3) 在⑵中A B 两点同时向数轴负方向运动时,另一动点C 和点B 同时从B 点位置出发向A运动,当遇到A 后,立即返回向B 点运动,遇到B 点后又立即返回向 A 点运动,如此往返,直 到B 追 上A 时,C 立即停止运动?若点C 一直以20单位长度/秒的速度匀速运动, 那么点C 从开始 运动到停止 运动,行驶的路程是多少个单位长度 ?g (5 -20~~2~4 6 S 10 12变式1:已知,如图,A 、B 分别为数轴上的两点, A 点对应的数为-20, B 点对应的数为100.(1 )贝9 AB 中点M 对应的数是 ___________ ; ( M 点使AM=BM ) (2)现有一只电子蚂蚁 P 从B 点出发,以6单位/秒的速度向左运动, 同时另一只电子蚂蚁②设两只电子蚂蚁在数轴上的C 点相遇,你知道AB•20100变式2:已知数轴上两点 A 、B 对应的数分别为- Q 恰好从A 点出发,以4单位/秒的速度向右运动;① 为G. (1) 若点P 到点A 、点B 的距离相等,请直接 写出点 P 对应的数G;(2) 数轴上是否存在点P,使点P 到点A 、点B 的距离之和为18?若存在,请直接写出 G 的值;若不 存在,说明理由.(3)点A 、点B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点 P 以18个单位长 度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点 A 与 点B 之间,求当点A 与点B 重合时,点P 所经过的总路程是多少?0 1' 24?如图1,已知数轴上有三点 A 、B 、C, AB=;-AC ,点C 对应的数是200. (1 )若BC=30Q 则点A 对应的数是 —400 ;(2)如图2,在(1)的条件下,动点Q 、R 分别从A C 两点同时出发相向运动,且 Q 、R 的速度分别为5个单位长度每秒、2个单位长度每秒,则 —秒后Q R 会相遇;(3)如图2,在(1)的条件下,动点P 、Q 分别从A C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q R 的速度分别为10单位长度每秒、每秒,点 M 为线段PR 的中点, 点N 为线段RQ 的中点,多少秒时恰好满足 MR=4RN (不考虑点R 与点Q 相遇之后的情形); (4) 如图3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点 P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段 PQ 的中点,点Q 在从是点D 运动到点A 的过程中,一 QC- AM 的值是否发 生变化?若不变,求其值; 若不变,请说明理由.(1)C 点对应的数是多少吗?1、3,点P 为数轴上一动点,其对应的数PQ 多少秒以后相遇?-2 -14.B C■图1Q200S2£1C8000200变式:(20PP秋?苏州期末)如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后两点相距16个单位长度.己知动点A、B的速度比为1 : 3 (速度单位:单位长度/秒).(1 )求两个动点运动的速度,以及A、B两点从原点出发运动2秒后的位置所对应的数,并在数轴上标出;(2)若表示数0的点记为O, A、B两点分别从(1)中标出的位置同时向数轴负方向运动,再经过多长时间0B=20A ?(3)在(1 )中A B两点同时向数轴负方向运动时,另一动点C和点B同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A 时,C立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?I -16-12 八8 -4 0〜A8 12 16八。

相关文档
最新文档