七年级数学动点问题专题训练

合集下载

七年级数学专项练习全等中的动点问题(含答案解析)

七年级数学专项练习全等中的动点问题(含答案解析)

1. 如图,在△ABC 中∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D 七年级数学专项习题——全等中的动点问题(含答案解析),如果AC =3cm ,那么AE +DE 等于 .2. 如图,将一个长方形纸片ABCD 沿着BE 折叠,使C ,D 点分别落在点C 1,D 1处.若∠C 1BA =50°,则∠AB E 的度数为( )A .15°B .20°C .25°D .30°3. 如图a 是长方形纸带,∠BFE =15°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .4. 如图,在3×3的网格中,以AB 为一边,点P 在格点处,则使△ABP 为等腰三角形的点P 有 个.5. 如图,矩形ABCD中,AB=2,AD=4,点E是边AD上的一个动点;把△BAE沿BE折叠,点A落在A'处,如果A'恰在矩形的对称轴上,则AE的长为.6. 如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5cm.⑴求证:△AOD≌△COE;⑵求AB的长.1. 解:∵∠ACB =90°,∴EC ⊥CB ,又BE 平分∠ABC ,DE ⊥AB ,∴CE =DE ,∴AE +DE =AE +CE =AC =3cm .2. 解:设∠ABE =x ,根据折叠前后角相等可知,∠C 1BE =∠CBE =50°+x , 所以50°+x +x =90°,解得x =20°.故选:B .3. 解:解:∵∠DEF =22°,长方形ABCD 的对边AD ∥BC , ∴∠EFB =∠DEF =22°,由折叠,∠EFB 处重叠了3层,∴∠CFE =180°-3∠EFB =180°-3×22°=114°.故选:B .4. 解:如图所示,以AB 为腰的等腰三角形的点P 有2个, 以AB 为底边的等腰三角形的点P 有3个,∴△ABP 为等腰三角形的点P 有5个.5. 解:分两种情况:①过点A ′作MN ∥CD 交AD 于点M ,交BC 于点N , 则直线MN 是矩形ABCD 的对称轴,∴AM =BN =21AD =2, ∵△ABC 沿直线BE 折叠得到△A ′BE ,∴AE =A ′E ,AB =A ′B =2,∴A ′N = =0,即A ′和N 重合, ∴A ′M =2=A ′E ,∴AE =2;②过点A ′作PQ ∥AD 交AB 于点P ,交CD 于点Q , 则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP =PB ,AD ∥PQ ∥BC ,∴A ′B =2PB ,∴∠P A ′B =30°,∴∠A ′BC =30°, ∴∠EBA ′=30°,设A ′E =x ,则BE =2x ,∴(2x )2=x 2+22,6.解:⑴全等易证.⑵根据折叠的性质可知∠BAC=∠EAC,∵四边形ABCD为矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,AD=4cm,=3(cm),∴AB=CD=CO+OD=3+5=8(cm).。

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。

初一动点考试试题及答案

初一动点考试试题及答案

初一动点考试试题及答案一、选择题(每题2分,共10分)1. 动点P在直线y=2x+3上运动,当x=1时,y的值为()。

A. 5B. 4C. 3D. 22. 若动点M在直线y=-x+1上运动,且M的坐标为(a,b),则a+b的值为()。

A. 1B. 0C. -1D. 23. 动点N在直线y=x-2上运动,当y=0时,x的值为()。

A. 2B. -2C. 0D. 14. 动点Q在直线y=3x+4上运动,当x=-1时,y的值为()。

A. -1B. 1C. -5D. 55. 若动点R在直线y=-2x+5上运动,且R的坐标为(m,n),则2m+n的值为()。

A. 5B. 3C. 1D. 0二、填空题(每题3分,共15分)6. 动点S在直线y=4x-1上运动,当x=2时,y的值为______。

7. 动点T在直线y=-3x+6上运动,当y=0时,x的值为______。

8. 动点U在直线y=5x+2上运动,当x=-1时,y的值为______。

9. 动点V在直线y=-4x+7上运动,当x=1时,y的值为______。

10. 动点W在直线y=2x-3上运动,当y=-1时,x的值为______。

三、解答题(每题10分,共40分)11. 动点X在直线y=6x-7上运动,求当x=3时,y的值。

12. 动点Y在直线y=-5x+8上运动,求当y=-2时,x的值。

13. 动点Z在直线y=3x+1上运动,求当x=-2时,y的值。

14. 动点A在直线y=-x+4上运动,求当x=-1时,y的值。

四、综合题(每题15分,共30分)15. 动点B在直线y=2x+1上运动,动点C在直线y=-x+3上运动。

若B和C的横坐标相同,求此时B和C的纵坐标之和。

16. 动点D在直线y=4x-2上运动,动点E在直线y=-2x+6上运动。

若D和E的纵坐标相同,求此时D和E的横坐标之差。

答案:一、选择题1. A2. A3. B4. C5. D二、填空题6. 77. 28. -39. 310. 1三、解答题11. 将x=3代入y=6x-7,得到y=6×3-7=18-7=11。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

七年级数学动点问题试卷

七年级数学动点问题试卷

一、选择题(每题3分,共15分)1. 下列关于动点的说法,正确的是()A. 动点在直线上的运动是直线运动B. 动点在平面内的运动是平面运动C. 动点在空间内的运动是空间运动D. 动点的运动轨迹可以是直线,也可以是曲线2. 一个动点在平面直角坐标系中,如果它的横坐标和纵坐标都随时间均匀增加,那么这个动点的运动轨迹是()A. 线性函数的图像B. 抛物线的图像C. 双曲线的图像D. 椭圆的图像3. 在平面直角坐标系中,动点P的坐标为(x,y),如果x=2t+1,y=t^2,那么动点P的运动轨迹是()A. 抛物线B. 直线C. 圆D. 双曲线4. 一个动点在平面直角坐标系中,从原点出发,先向x轴正方向运动2个单位,然后向上运动3个单位,最后向左运动4个单位,那么这个动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 正方形5. 一个动点在平面直角坐标系中,如果它的横坐标和纵坐标的比值为常数k,那么这个动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线二、填空题(每题5分,共25分)6. 在平面直角坐标系中,动点A的坐标为(2,3),如果动点A沿x轴正方向移动3个单位,那么它的新坐标是______。

7. 一个动点在平面直角坐标系中,如果它的横坐标是纵坐标的两倍,那么它的运动轨迹是______。

8. 一个动点在平面直角坐标系中,从原点出发,先向x轴负方向运动4个单位,然后向上运动5个单位,那么这个动点的运动轨迹是______。

9. 在平面直角坐标系中,动点P的坐标满足方程x^2+y^2=25,那么动点P的运动轨迹是______。

10. 一个动点在平面直角坐标系中,如果它的横坐标和纵坐标的和为常数,那么这个动点的运动轨迹是______。

三、解答题(每题10分,共30分)11. 在平面直角坐标系中,点A(1,2)为动点,求动点A在坐标系中运动的轨迹方程。

12. 动点P在平面直角坐标系中,满足方程x+y=5,求动点P的运动轨迹。

完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题

完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。

1) 若点P到点A和点B的距离相等,求点P对应的数。

解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。

解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。

由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。

1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。

解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。

2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。

解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。

3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。

解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。

七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。

(1)当t = 1时,求PQ的长度。

(2)求经过多少秒后,PQ = 5。

解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。

所以公式。

(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。

则公式。

当公式时,即公式。

则公式或公式。

当公式时,公式,公式(舍去,因为时间不能为负)。

当公式时,公式,公式。

2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。

解析:因为点C在点A、B之间,公式,公式。

又因为公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式。

解得公式。

3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。

(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。

解析:(1)点P表示的数为公式。

当点P到点B的距离为2时,公式。

则公式或公式。

解得公式或公式。

(2)点Q表示的数为公式,公式。

当公式时,公式。

即公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。

(1)求t秒后,点M表示的数和点N表示的数。

(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。

(2)当点M与点N相距4个单位长度时,公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

初一数学动点经典例题20道

初一数学动点经典例题20道1.如果一个角的度数是60度,则这个角的补角和余角分别是多少度?答:补角为30度,余角为150度。

2.如果一个直角三角形的斜边长是10,那么它的两腰长分别是多少?答:每个腰长都是根号50(即约为7.07)。

3.如果一个圆的直径是12,那么这个圆的周长是多少?答:这个圆的周长是约37.68。

4.如果一个正方形的边长是5,那么这个正方形的面积是多少?答:这个正方形的面积是25。

5.如果一个三角形的底边长是6,高为4,那么这个三角形的面积是多少?答:这个三角形的面积为12。

6.如果一个长方形的长为7,宽为3,那么这个长方形的面积是多少?答:这个长方形的面积是21。

7.如果一个正方体的边长是4,那么这个正方体的体积是多少?答:这个正方体的体积是64。

8.如果一个等腰三角形的两底边长均为8,那么这个三角形的高是多少?答:这个三角形的高为约6.93。

9.如果一个矩形的长为9,宽为2,那么这个矩形的周长是多少?答:这个矩形的周长是22。

10.如果一个圆的半径是5,那么这个圆的面积是多少?答:这个圆的面积是约78.5。

11.如果一个正方体的表面积为96,那么这个正方体的边长是多少?答:这个正方体的边长是4。

12.如果一个三角形的三个内角分别为50度、60度和70度,那么这个三角形的角平分线的交点在哪里?答:这个三角形的角平分线的交点距离三角形的各顶点均等。

13.如果一个梯形的底边长为7,顶边长为3,高为4,那么这个梯形的面积是多少?答:这个梯形的面积为20。

14.如果一个球的直径是8,那么这个球的体积是多少?答:这个球的体积是约268.08。

15.如果一条线段的长度为10,那么在这个线段上任意取一点,那么这个点距离线段两个端点的距离差是多少?答:这个点距离线段两个端点的距离差不超过5。

16.如果一个等边三角形的边长为3,那么这个等边三角形的面积是多少?答:这个等边三角形的面积为约3.9。

第5讲 初识数轴上动点问题 培优训练 2024-2025学年人教版七年级数学上册

第5讲初识数轴上动点问题专题1 动点问题(1)——画图分类讨论法题型一距离倍分问题——画图→分类→设未知数列方程如图,三点A,B,C在数轴上,点A,B在数轴上表示的数分别为—12,16.(规定:数轴上两点A,B之间的距离记为AB)【典例】若点C在数轴上,满足AC: BC=1:3,求点C对应的数.方法小结:结合数轴画图分类讨论,注意设未知数,列方程.题型二距离和差问题——画图→分类→设未知数列方程变式1.若点C 在数轴上,满足AC+BC=32..求点C 对应的数.变式2.若点C 在数轴上,满足AC--BC=12.求点C 对应的数.专题2 动点问题(2)——距离绝对值法模型绝对值距离法在数轴上点P 到—1的距离是到3的距离的3倍.求P点对应的数.题型一距离和差问题【典例】如图,数轴上点C 表示的数为x,点A 和点B 表示的数分别为a,b,且a=—7,b=2,回答下列问题:(1)A,B两点间的距离AB= ;(2)①若AC=1,求x的值;②若点C在点B 的右边,且AC+BC=12,求x的值;(3)点C到A,B两点间所有表示整数的点(不含A,B两点)的距离之和为40.则x的值为.题型二距离倍分问题变式1.如图,A,B 在数轴上分别对应的数为10和—10,点P 对应的数为x,且PB=4PA,求x 的值.变式2.(1)如图1,在数轴上动点P 到A,B 的距离之和为6,即PA+PB=6,求点P 对应的数;(2)如图2,在数轴上点O为原点,点A 对应的数为24,点P 在数轴上,且PA=3PO求点P 对应的数.专题3 动点问题(3)——单动点问题题型一用坐标表示动点位置,距离注意带绝对值【典例】如图,动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动到点B,然后以原速返回A 点,点P 运动的时间为t秒.(1)当t≤5时,P点表示的数为;(2)当5<t≤10时,P 点表示的数为;(3)若OP=2,求t的值.方法:①在数轴上表示P₁,P₂的坐标,. x P1=x A+2t,x P2=x B−2(t−5);circle2OP=|x P−x0|;;③分情况,列方程求解.题型二用坐标表示数轴上两点间距离变式.如图,已知a,b分别对应数轴上A,B两点,并且满足|a−2|+(3a+2b)²=0,点P 为数轴上一个动点,它对应的数是x.(1)填空: a=,b=,AB=;(2)若P 为线段AB 上一点,并且. PA=3PB,,求x的值;(3)若P 点从A 点出发以每秒2个单位长度的速度运动,那么出发几秒钟后,使得. PA=4PB?* 注意|a|=|b|分两种情形:( a=b或a=−b.方法小结:( (1)PA=|x−2|,PB=|x+3|;(2)结合距离关系列方程.专题4 动点问题(4)----双动点问题b|;模型二已知数轴上两点A,B对应的数为-1,3,点P 为数轴上一动点,其对应的数为x.(1)PA=|x+1|,PB=|x-3|;(2)若PA+PB=5,则|x+1|+|x-3|=5,结合图形知.x=-32或x= 72题型一点的位置未定,距离带绝对值【典例】如图,数轴上点A,B分别表示-7,1,点P,Q分别从点A,B同时沿数轴的正方向运动,点P 的速度是每秒2个单位长度,点Q 的速度是每秒1个单位长度,设运动的时间为t秒.(1)在运动过程中,请用含t 的代数式表示点P,Q在数轴上表示的数;(2)当t为何值时,P,Q两点的距离等于2个单位长度?题型二方程法(画图讨论),绝对值法(列绝对值方程)变式.如图,在数轴上点A 表示的数为-4,B表示的数为10,点P,Q分别从点B,A同时出发,相向运动,且在原点相遇.设它们运动的时间为t秒,点P 运动的速度为每秒2.5个单位长度.(1)直接写出点P 对应的数是,点Q对应的数是(用含t 的式子表示);(2)当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.。

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。

在数轴上,数与点是一一对应的关系。

2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。

例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。

3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。

二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。

(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。

解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。

又因为公式,所以公式。

当公式时,方程无解。

当公式时,公式,公式,解得公式。

所以点公式对应的数为公式。

(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。

解析:因为公式,公式,且公式,所以公式。

因为点公式在公式、公式之间,即公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式,解得公式。

所以点公式对应的数为公式。

(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。

问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。

根据公式,公式。

当公式时,即公式。

当公式时,公式,公式,解得公式。

当公式时,公式,公式,公式,解得公式。

2. 数轴上点公式表示的数为公式,点公式表示的数为公式。

(1)求线段公式的长。

解析:根据两点间距离公式公式。

(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专题训练
1、如图,已知△ABC中, AB=AC=10厘米, BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与 CQP△是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇
2、直线y=-3/4+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A 点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出AB点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S=48/5时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
3、在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的
速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ 于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是;
(2)在点P从C向A运动的过程中,求△APQ 的面积S与 t的函数关系式;(不必写出t 的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
4, 如图,在梯形ABCD中, AD已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4。

如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B’,设OB’=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B’,且使BD∥OB,求此时点C的坐标.
6.如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。

动点P 从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。

设运动的时间为t(秒)。

(1)设△DPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形PCDQ是平行四边形
(3)分别求出出当t为何值时,① PD=PQ,② DQ=PQ。

相关文档
最新文档