胶体知识点
高中胶体知识点

高中胶体知识点胶体作为物理化学领域中一个重要的分支,涉及的内容非常广泛。
在高中化学学科中,胶体也是一个重要的知识点。
本文将从胶体的定义、性质、分类、应用等方面进行介绍,以期帮助大家更好地掌握高中化学中的胶体知识。
一、胶体的定义胶体是指由两相间具有一定规则性结构,相互之间具有机械稳定性和透明度的混合物。
其中一个相是连续相,另一个相是分散相。
连续相是指占据整个混合物总体积的相,通常为液相或气相;分散相是指离散分布在连续相中的相,通常为固体、液体或气体。
根据分散相粒子的大小,胶体可以分为溶胶、胶体和泡沫三类。
其中溶胶是分散相粒子直径在1纳米以下的胶体,不具有明显的界面;胶体是分散相粒子直径在1到100纳米之间的胶体,具有明显的界面;泡沫是分散相粒子直径在100纳米以上的胶体,由多个气泡组成。
二、胶体的性质(一)稳定性:胶体是由连续相和分散相组成的混合物,其中分散相与连续相之间存在相互作用力。
这种相互作用力使得分散相颗粒分散在连续相中,不易沉降或沉淀,具有稳定性。
(二)透明度:与悬浮液不同,胶体具有良好的透明度。
胶体中的分散相颗粒尺寸较小,散射光线的能力较弱,因此胶体呈现出透明的特点。
(三)表面活性:胶体的分散相颗粒具有一定的表面活性,能够吸附表面活性剂、离子、小分子等物质,从而改变颗粒表面的性质。
这种表面活性对于胶体的稳定性具有重要影响。
(四)可逆性:胶体的一些性质具有可逆性。
例如,当胶体中加入电解质时,会发生凝聚,胶体分散体系破坏,变为混合物体系。
当电解质浓度降低或去除电解质时,胶体分散体系会重新恢复。
三、胶体的分类(一)按照分散相状态分类1.固体胶体:分散相为固体,连续相为液体或气体,例如黄色胶体和胶体银等。
2.液体胶体:分散相为液体,连续相为液体或气体,例如烟雾和着色液体等。
3.气体胶体:分散相为气体,连续相为液体或固体,例如泡沫和灰尘等。
(二)按照分散相颗粒电荷状态分类1.正胶体:分散相颗粒带正电荷,连续相带负电荷,例如银溶液。
高中化学:胶体的性质知识点

高中化学:胶体的性质知识点1.胶体的性质与作用:(1)丁达尔效应:由于胶体粒子直径在1~100nm之间,会使光发生散射,可以使一束直射的光在胶体中显示出光路.(2)布朗运动:①定义:胶体粒子在做无规则的运动.②水分子从个方向撞击胶体粒子,而每一瞬间胶体粒子在不同方向受的力是不同的.(3)电泳现象:①定义:在外加电场的作用下,胶体粒子在分散剂里向电极作定向移动的现象.②解释:胶体粒子具有相对较大的表面积,能吸附离子而带电荷.扬斯规则表明:与胶体粒子有相同化学元素的离子优先被吸附.以AgI胶体为例,AgNO3与KI反应,生成AgI溶胶,若KI过量,则胶核AgI吸附过量的I-而带负电,若AgNO3过量,则AgI吸附过量的Ag+而带正电.而蛋白质胶体吸附水而不带电.③带电规律:1°一般来说,金属氧化物、金属氢氧化物等胶体微粒吸附阳离子而带正电;2°非金属氧化物、金属硫化物、硅酸、土壤等胶体带负电;3°蛋白质分子一端有-COOH,一端有-NH2,因电离常数不同而带电;4°淀粉胶体不吸附阴阳离子不带电,无电泳现象,加少量电解质难凝聚.④应用:1°生物化学中常利用来分离各种氨基酸和蛋白质.2°医学上利用血清的纸上电泳来诊断某些疾病.3°电镀业采用电泳将油漆、乳胶、橡胶等均匀的沉积在金属、布匹和木材上.4°陶瓷工业精练高岭土.除去杂质氧化铁.5°石油工业中,将天然石油乳状液中油水分离.6°工业和工程中泥土和泥炭的脱水,水泥和冶金工业中的除尘等.(4)胶体的聚沉:①定义:胶体粒子在一定条件下聚集起来的现象.在此过程中分散质改变成凝胶状物质或颗粒较大的沉淀从分散剂中分离出来..②胶粒凝聚的原因:外界条件的改变1°加热:加速胶粒运动,减弱胶粒对离子的吸附作用.2°加强电解质:中和胶粒所带电荷,减弱电性斥力.3°加带相反电荷胶粒的胶体:相互中和,减小同种电性的排斥作用.通常离子所带荷越高,聚沉能力越大.③应用:制作豆腐;不同型号的墨水不能混用;三角洲的形成.2.胶体的制备:1)物理法:如研磨(制豆浆、研墨),直接分散(制蛋白胶体)2)水解法:Fe(OH)3胶体:向20mL沸蒸馏水中滴加1mL~2mL FeCl3饱和溶液,继续煮沸一会儿,得红褐色的Fe(OH)3胶体.离子方程式为:Fe3++3H2O=Fe(OH)3(胶体)+3H+3)复分解法:AgI胶体:向盛10mL 0.01mol•L-1KI的试管中,滴加8~10滴0.01mol•L-1AgNO3,边滴边振荡,得浅黄色AgI胶体.硅酸胶体:在一大试管里装入5mL~10mL 1mol•L-1HCl,加入1mL水玻璃,然后用力振荡即得.离子方程式分别为:Ag++I-=AgI(胶体)↓SiO32-+2H++2H2O=H4SiO4(胶体)↓复分解法配制胶体时溶液的浓度不宜过大,以免生成沉淀.3.常见胶体的带电情况:(1)胶粒带正电荷的胶体有:金属氧化物、金属氢氧化物.例如Fe(OH)3、Al(OH)3等;(2)胶粒带负电荷的胶体有:非金属氧化物、金属硫化物、硅酸胶体、土壤胶体;(3)胶粒不带电的胶体有:淀粉胶体.特殊的,AgI胶粒随着AgNO3和KI相对量不同,而带正电或负电.若KI过量,则AgI胶粒吸附较多I-而带负电;若AgNO3过量,则因吸附较多Ag+而带正电。
高考常考胶体知识点

高考常考胶体知识点胶体是化学中一个重要的概念,也是高考化学考试的重点内容之一。
胶体是指由两种或两种以上的物质组成的均匀分散体系,其中一个物质呈胶状或胶体状态。
胶体在日常生活中随处可见,比如牛奶、胶水、乳液等。
在本文中,我们将深入探讨高考常考的胶体知识点。
一、胶体的基本特征胶体由两部分组成:分散相和分散介质。
其中,分散相是指在胶体中存在的固体颗粒或液滴,而分散介质则是指分散相所处的物质。
胶体的基本特征包括:1. 均匀性:胶体是一种均匀分散的体系,其中分散相均匀分布在分散介质中,形成一个连续的整体。
2. 不可见性:由于分散相颗粒或液滴的微小尺寸,胶体在光学上呈现为透明或半透明的状态,无法通过肉眼观察到其中的分散相。
3. 稳定性:胶体具有较高的稳定性,分散相能够长期保持在分散介质中的悬浮状态。
4. 灵敏性:胶体对外界环境变化(如温度、浓度等)较为敏感,其性质和特点会随着环境的改变而发生相应的变化。
二、胶体的分类按照分散相的不同性质和状态,胶体可以分为几个不同的类别。
1. 溶胶:溶胶是指由固体颗粒分散在液体中形成的胶体。
这种胶体中,分散相的颗粒尺寸通常在1纳米到100纳米之间。
2. 凝胶:凝胶是指由固体网状结构的分散相分散在液体介质中形成的胶体。
凝胶的分散相具有一定的弹性和稳定性,如煤矸石凝胶、硅胶等。
3. 乳胶:乳胶是指由液滴分散在液体介质中形成的胶体。
乳胶具有乳白色或淡黄色的外观,如牛奶就是一种常见的乳胶。
4. 气溶胶:气溶胶是指由固体或液滴分散在气体介质中形成的胶体。
这种胶体呈现为气状或雾状,如烟雾和大气中的尘埃等。
三、胶体的制备和应用胶体的制备方法多种多样,常见的制备方法包括:溶胶凝胶法、共沉淀法、乳化法等。
胶体在日常生活和工业生产中有着广泛的应用。
以下是一些典型的胶体应用:1. 医药领域:胶体作为药物的载体,常用于制备纳米药物和控释药物等。
胶体药物可以有效改善药物的生物利用度和疗效。
2. 日化产品:乳液、皂液等日化产品就是胶体的应用。
胶体知识点详解

★胶体的本质特征:分散质微粒的直径在1nm ~ 100nm之间。
胶体是以分散质粒子大小为特征的,它只是物质的一种存在形式,如NaCl溶于水形成溶液,如果分散在酒精中可形成胶体。
可见,同种分散质在不同的分散剂中可以得到不同的分散系。
胶体★胶体结构:一般认为在胶体粒子的中心,是一个由许多分子聚集而成的固体颗粒,叫做胶核。
在胶核的表面常常吸附一层组成类似的、带相同电荷的离子。
当胶核表面吸附了离子而带电后,在它周围的液体中,带相反电性的离子会扩散到胶核附近,并与胶核表面电荷形成扩散双电层。
扩散双电层由两部分构成:(1)吸附层:胶核表面吸附着的离子,由于静电引力,又吸引了一部分带相反电荷的离子(简称反离子),形成吸附层。
(2)扩散层:除吸附层中的反离子外,其余的反离子扩散分布在吸附层的外围。
距离吸附层的界面越远,反离子浓度越小,到了胶核表面电荷影响不到之处,反离子浓度就等于零。
从吸附层界面(图中虚线)到反离子浓度为零的区域叫做扩散层。
吸附层的离子紧挨着胶核,跟胶核吸附得比较牢固,它跟随胶核一起运动。
扩散层跟胶核距离远一些,容易扩散。
通常把胶核和吸附层共同组成的粒子称为胶粒,把胶核、吸附层和扩散层统称为胶团。
★胶体带电的原因:是由于胶体是高分散的多相体系,具有巨大的界面(总表面积),因而有很强的吸附能力。
它能有选择地吸附介质中的某种离子,而形成带电的胶粒。
这里以AgI胶体为例来说明。
包围着AgI胶核的是扩散双电层(吸附层和扩散层),胶核和吸附层构成了胶粒,胶粒和扩散层形成的整体为胶团,在胶团中吸附离子的电荷数与反离子的电荷数相等,因此胶粒是带电的,而整个胶团是电中性的。
式中的m是AgI分子数,m的值常常很大,n的数值比m小得多;(n-x)是包含在吸附层中的反离子数;x为扩散层中的反离子数。
由于胶核对吸附层的吸引能力较强,对扩散层的吸引能力弱,因此在外加电场(如通直流电)作用下,胶团会从吸附层与扩散层之间分裂,形成带电荷的胶粒而发生电泳现象。
胶体的性质及应用知识点及练习题及其答案

胶体的性质及应用知识点及练习题及其答案胶体的性质和应用一、分散系相关概念1.集中系则:一种物质(或几种物质)以粒子形式集中至另一种物质里所构成的混合物,泛称为集中系则。
2.集中质:集中系则中集中成粒子的物质。
3.分散剂:集中质集中在其中的物质。
4、集中系则的分类:当分散剂就是水或其他液体时,如果按照集中质粒子的大小去分类,可以把集中系则分成:溶液、胶体和浊液。
集中质粒子直径大于1nm的集中系则叫做溶液,在1nm-100nm之间的集中系则称作胶体,而集中质粒子直径大于100nm的集中系则叫作浊液。
溶液?分散质??粒子胶体:分子胶体分散系??胶体??分散剂??气溶胶;液溶胶;固溶胶??悬浊液??浊液乳浊液?二、下面比较几种分散系的不同:分散系分散质的直径分散质粒子实例性质外观稳定性能否透过滤纸能否透过半透膜鉴别溶液<1nm(粒子直径小于10-9m)单个小分子或离子溶液酒精、氯化钠等均一、透明稳定能能无丁达尔效应胶体1nm-100nm(粒子直径在10-9~10-7m)许多小分子集合体或高分子淀粉胶体、氢氧化铁胶体等均一、透明较稳定能不能有丁达尔效应浊液>100nm(粒子直径大于10-7m)巨大数目的分子集合体石灰乳、油水等不均一、不透明不稳定不能不能静置分层注意:三种分散系的本质区别:分散质粒子的大小不同。
三、胶体1、胶体的定义:集中质粒子直径大小在10-9~10-7m之间的集中系则。
2、胶体的分类:①.根据分散质微粒组成的状况分类:例如:fe(oh)3胶体胶粒就是由许多fe(oh)3等小分子涌入一起构成的微粒,其直径在1nm~100nm之间,这样的胶体叫做粒子胶体。
又例如:淀粉属于高分子化合物,其单个分子的直径在1nm~100nm范围之内,这样的胶体叫做分子胶体。
②.根据分散剂的状态分割:如:烟、云、雾等的分散剂为气体,这样的胶体叫做气溶胶;agi溶胶、fe(oh)3溶胶、al(oh)3溶胶,其分散剂为水,分散剂为液体的胶体叫做液溶胶;有色玻璃、烟水晶均以固体为分散剂,这样的1胶体叫做固溶胶。
高一化学胶体的知识点归纳

高一化学胶体的知识点归纳在高一化学学习中,胶体是一个重要的知识点。
胶体是指由两种或多种物质组成的混合体系,其中一种物质以微小颗粒的形式悬浮在另一种物质中。
下面将对胶体的定义、性质以及应用进行归纳总结。
一、胶体的定义胶体是介于溶液与悬浮液之间的一种混合体系。
它的特点是悬浮的微粒大于分子,但又小于机械混合物的粒径。
胶体的形成是由于相互作用力的存在导致溶质不能完全溶解于溶剂中,而形成微小颗粒悬浮在溶剂中,形成胶体。
二、胶体的性质1. 可见性:胶体的微粒大小在10-9到10-6m之间,透过显微镜可以观察到。
2. 不稳定性:胶体由于微粒之间存在相互作用力,导致胶体不稳定,容易发生凝聚和沉淀现象。
3. 混浊性:胶体在光线的照射下呈现混浊状态,散射光使得胶体呈现浑浊的外观。
4. 过滤性:胶体可以通过一次普通滤纸进行过滤,不通过超微滤膜。
三、胶体的分类根据胶体的组成和性质,胶体可以分为溶胶、凝胶和胶体溶液三类。
1. 溶胶:溶胶是指胶体中溶质颗粒多分散且呈无定形结构的胶体,如烟雾、煤粉等。
2. 凝胶:凝胶是指胶体中溶质颗粒呈现有规律的立体结构的胶体,如明胶等。
3. 胶体溶液:胶体溶液是指胶体中溶质颗粒保持在溶液中的胶体,如乳液、胶束等。
四、胶体的应用1. 工业上的应用:胶体在工业生产中有广泛的应用,例如纺织、造纸、涂料、医药等行业中常用的乳液和胶束都是胶体的应用。
2. 日常生活中的应用:胶体在日常生活中也有一些重要的应用,如牙膏、洗洁精等产品中的凝胶胶体,以及乳化液体、奶粉等产品都是胶体的应用。
3. 环境保护中的应用:胶体的特性使其在环境保护方面具有重要作用,如胶束能够帮助清洁污染物,减少环境污染。
总结:高一化学中胶体的知识点主要包括胶体的定义、性质、分类以及应用。
胶体是由两种或多种物质组成的混合体系,具有可见性、不稳定性、混浊性以及过滤性等特点。
根据组成和性质的不同,胶体可以分为溶胶、凝胶和胶体溶液三类。
胶体在工业生产、日常生活以及环境保护中都有广泛的应用。
食品胶体知识点总结高中

食品胶体知识点总结高中一、食品胶体概述食品胶体是指在食品中形成的具有胶凝、黏稠等特性的分散系统,由两种或两种以上的物质组成,其中一种物质以细小颗粒或分子的形式分散在另一种物质中。
食品胶体是食品中的一种重要组成部分,能够影响食品的质地、口感、稳定性等性质。
二、食品胶体的形成和特性1. 食品胶体的形成食品胶体的形成是由于物质在溶液或悬浮体系中的分散状态产生的。
在食品加工中,常见的形成食品胶体的方法包括凝胶、乳化、溶胶等。
其中,凝胶是通过溶液或浆液中的多糖或蛋白质分子之间的交联作用形成的;乳化是由于两种不相溶的液体混合形成的胶体系统;溶胶是指固体颗粒分散在水或有机溶剂中形成的胶体系统。
2. 食品胶体的特性食品胶体具有多种特性,包括黏度、弹性、稳定性等。
其中,黏度是指食品胶体的粘稠程度,可以影响食品的口感;弹性是指食品胶体在受到外力作用后能够恢复原状的能力;稳定性是指食品胶体在储存或加工过程中能够保持其形态和性质不发生改变。
三、食品胶体的应用1. 食品胶体在食品加工中的应用食品胶体在食品加工中有着广泛的应用,常见的包括增稠剂、乳化剂和稳定剂等。
增稠剂可以改善食品的口感和质地,常见的增稠剂有明胶、果胶等;乳化剂可以使油和水等不相溶的物质混合均匀,常见的乳化剂有大豆异黄酮等;稳定剂可以帮助食品维持良好的外观和口感,常见的稳定剂有明胶和果胶等。
2. 食品胶体在食品营养中的应用食品胶体不仅可以提高食品的口感和稳定性,还可以对人体的健康有益。
例如,果胶是一种常见的增稠剂,它可以有效地帮助降低胆固醇和血糖,有益于心血管健康;大豆异黄酮是一种常见的乳化剂,它可以降低痛经和更年期综合征等妇女相关疾病。
因此,食品胶体在食品营养中也有着重要的应用价值。
四、食品胶体的质量安全1. 食品胶体的合法使用食品胶体的使用需要符合相关法律法规的规定,包括食品添加剂的使用标准和限量。
食品生产企业在使用食品胶体时,需要确保其来源合法,符合食品安全标准,并在使用过程中对食品胶体进行必要的检测和监控。
胶体化学核心知识点

1.胶体的定义及分类胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。
分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1~100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。
按照分散剂状态不同分为:气溶胶——以气体作为分散剂的分散体系。
其分散质可以是液态或固态。
(如烟、雾等)液溶胶——以液体作为分散剂的分散体系。
其分散质可以是气态、液胶体)态或固态。
(如Fe(OH)3固溶胶——以固体作为分散剂的分散体系。
其分散质可以是气态、液态或固态。
(如有色玻璃、烟水晶)按分散质的不同可分为:粒子胶体、分子胶体。
如:烟,云,雾是气溶胶,烟水晶,有色玻璃、水晶是固溶胶,蛋白溶液,淀粉溶液是液溶胶;淀粉胶体,蛋白质胶体是分子胶体,土壤是粒子胶体。
2.胶体的不同表征方式胶体分散体系分为单分散体系和多分散体系。
单分散系表征可以用分散度、比表面积法(不规则形状包括单参数法,双参数法和多参数法)多分散体系可以用列表法、作图法,如粒子分布图,粒子累计分布图。
用激光粒度分析仪测定。
胶体的稳定性一般用zeta电位来表征。
zeta电位为正,则胶粒带正电荷,zeta电位为负,则胶粒带负电荷。
zeta电位绝对值越高,稳定性越好,分散度越好,一般绝对值>30mV说明分散程度很好。
胶体的流变性表征—黏度。
可用毛细管黏度计,转筒黏度计测定。
3.有两种利用光学性质测定胶体溶液浓度的仪器;比色计和浊度仪,分别说明它们的检测原理比色计它是一种测量材料彩色特征的仪器。
比色计主要用途是对所测材料的颜色、色调、色值进行测定及分析。
工作原理:仪器自身带有一套从淡色到深色,分为红黄蓝三个颜色系列的标准滤色片。
仪器的工作原理是基于颜色相减混合匹配原理。
罗维朋比色计目镜筒的光学系统将光线折射成90°并将观察视场分成可同时观察的左右两个部分,其中一部分是观察样品色的视场;另一部分是观察参比色(即罗维朋色度单位标准滤色片)的视场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、
分散系:把一种物质(或多种)分散在另一种(或多种)物质中所得到的体系。
九种分散系:
分散质
分散剂
实例
气
气
空气 液
气 云/雾 固
气 灰尘 气
液 泡沫 液
液 酒、牛奶 固
液 泥水 气
固 海绵 液
固 珍珠 固
固 合金
2、当分散剂是水或其他液体时,按分散质粒子大小分类:
溶液:<1nm 稳定
胶体:1~100nm 电泳 不能通过半透膜,可以通过滤纸 聚沉 浊液:>100nm
3、胶体的性质:
丁达尔效应:当光束通过胶体时会产生光亮的“通路”。
布朗运动:胶体分散质粒子作不停的、无秩序的运动
电泳:胶体粒子带电,在外电场的作用下会在分散剂里做定向移动。
聚沉:向胶体中加入少量的电解质时,胶体会发生聚沉,因为胶体粒子带电
胶体介稳的(能稳定存在)原因:胶体粒子带同种电荷,从而相互排斥,阻碍胶粒变大;胶体粒子做布朗运动。
常见胶体的制备:Fe(OH)3胶体(制备:向煮沸的蒸馏水中,滴加饱和FeCl 3溶液,煮沸得到红褐色
Fe(OH)3胶体)
FeCl3+3H2O Fe(OH)3(胶体) +3HCl
4、了解胶体的应用:
(1)工业除杂、除尘(利用的是电泳现象,空气中的灰尘大多数带正电,静电发生器产生负电将灰尘吸附并通过
过滤装置收集)
(2)土壤的保肥作用(土壤胶粒一般带负电荷,所以可以吸附阳离子,如NH4+和K+等,这样的阳离子被土壤胶粒
吸附,就不容易随水分流失,起到一定的保肥作用,也就便于植物的根部进行吸收)
(3)豆腐的制作原理(豆腐汁是蛋白质胶体,加了石膏后,胶体沉降下来,形成豆腐脑,再压干,即可)
(4)江河入海口处形成三角洲(河流本身携带的泥沙以胶体形式存在(当然,我们伟大的黄河是悬浊液,或者是水的
泥沙溶液),由于入海口处海水中含电解质(氯化钠为主),使得胶体溶液发生聚沉,泥沙沉淀,形成三角洲.至于
为什么是三角形的,这与流体动力学有关)
(5)明矾的净水作用(明矾作为净水剂明矾溶于水后电离产生了Al3+,Al3+与水电离产生的OHˉ结合氢氧化铝胶体
粒子带有正电荷,与带负电的泥沙胶粒相遇,失去了电荷的胶粒,很快就会聚结在一起,粒子越结越大,终于
沉入水底。