菱形矩形正方形梯形及中心对称图形(原创)
平行四边形的性质和判定 菱形梯形等腰梯形矩形正方形性质和判定

平行四边形的性质和判定菱形梯形等腰梯形矩形正方形性质和判定平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 .判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:顺次连接菱形各边中点为矩形正方形是特殊的菱形梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。
一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等等腰梯形的两条对角线相等等腰梯形判定:1两腰相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形.梯形的体积计算公式:V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
中心对称图形

轴对称图形与中心对称 图形有怎样的异同呢?
M
B' A'
A O C
A
B C N C'
B'
C' B
A'
轴对称图形:
中心对称图形:
每对对应点所连 成的线段都被对称 轴垂直平分。
每对对应点所 连成的线段都被 对称中心平分。
轴对称图形与中心对称图形的比较
对 图 形 称
轴对称图形
图形 对称轴条数
中心对称图形
(B )
4、下列图形中不是中心对称图形的是: A.两条相交直线 C.矩形
⑴
⑵
巩固练习
选择题:
1.下列图形中既是轴对称图形又是中心对称 图形的是(
C
).
A 角
C 线段
B 等边三角形
D 平行四边形
2.下列多边形中,是中心对称图形而不是
轴对称图形的是( A ).
A 平行四边形 B 矩形
C 菱形
D 正方形
3、填空题: (1)线段是中心对称图形,它的对称中心 是 线段的中点 。 B.等边三角形 D.正方形
复 习 回 顾
关于中心对称的两个图形,对称点
所连接线段都经过对称中心,而且被对
称中心所平分。
关于中心对称的两个图形是全等图形。
观 察
将下面的图形绕O点旋转180°,你有 什么发现?
A O B o (2)圆 O (4) 正方形
(1)线段O (3)平行四边形概 NhomakorabeaA
念
D
O
B
C
把一个图形绕着某一个点旋转180°, 如果旋转后的图形能够与原来的图形重合, 那么这个图形叫做中心对称图形,这个点就 是它的对称中心.
第22讲 菱形、矩形、正方形

一半.
菱形的性质和判别
◆中考指数:★★☆☆☆
1.菱形的性质: (1)菱形的对角线将菱形分成四个全等的直角三角形,可将 菱形的问题转化为直角三角形去解决. (2)有一个内角为60°(或120°)的菱形,连结对角线可构成 等边三角形,可将菱形问题转化到等边三角形中去解决. (3)巧用菱形的对称性可解决一些求线段和最小值的问题. 2.菱形的判别的两个思路: (1)若四边形为(或可证明为)平行四边形,则再证一组邻边 相等或对角线互相垂直. (2)若相等的边较多(或容易证出)时,可证四条边相等.
形的对角线相等且互相平分.
6.(2012·盐城中考)如图,在四边形ABCD中,已知AB∥DC,AB=DC. 在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再
加上的一个条件是_______.(填上你认为正确的一个答案即可)
【解析】由题知四边形ABCD为平行四边形,再根据有一角为 90°的平行四边形为矩形可得结论. 答案:∠A=90°(或∠A=∠B或∠A+∠C=180°,答案不惟一)
1.(2012·长沙中考)如图,菱形ABCD中, 对角线AC与BD相交于点O,OE∥DC且交 BC于E,AD=6 cm,则OE的长为( (A)6 cm (C)3 cm (B)4 cm (D)2 cm )
【解析】选C.由于四边形ABCD为菱形, 所以AD=AB=6 cm, OC 1 .
AC 2 由于OE∥AB,所以 OC OE , AC AB
知 识 点 睛
特 别 提 醒
当已知中出现对角线的相关条件时,常用“对角线相等且
互相垂直平分的四边形是正方形”来证.
【例3】(2012·黄冈中考)如图,在 正方形ABCD中,对角线AC,BD相交于 点O,E,F分别在OD,OC上,且DE=CF, 连结DF,AE,AE的延长线交DF于点M. 求证:AM⊥DF. 【思路点拨】正方形的性质→△AOE≌△DOF→
菱形、矩形、正方形

C
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠5=∠6=∠7=∠8
等腰三角形有: △ABC △ DBC △ACD △ABD 直角三角形有:Rt△AOB Rt△BOC Rt△COD Rt△DOA
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA △ABD≌△BCD △ABC≌△ACD
A
解:∵ ∴∠BAC=600 又∵ AB =B C ∴ △ BAC是等边三角形 B ∴ AC = 4cm ∴B O = 2 √ 3 ∴B D = 4√ 3 1 S AC BD= 8√ 3 2
∠BAD=1200
D O C
变式:已知菱形ABCD中,E是BC的中点,且 AE⊥BC,AB=4.
求:⑴∠ABC的度数 ⑵对角线AC的长
∴ ∠AOB=Rt∠, ∴AC⊥BD.
B
(2)∵ 四边形ABCD是平行四边形,
∵AC⊥BD ∴四边形ABCD是菱形.
例题解析:
例3、已知: ABCD的对角线AC的垂直平分线 与边AD 、BC分别交于E、F E A 求证:四边形AFCE是菱形。
O
D
分析: (1)利用定义判定 (2) 由已知可知
B
OA=OC,EF⊥AC.
X X X
(7)对角线相等,且有一个角是直角的四边形是矩形; X
(8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形; (10)一组邻边垂直,一组对边平行且相等的四边形是 矩形;
例2、谁正确? 一位很有名望的木工师傅,招收了两名徒弟。一 天,师傅有事外出,两徒弟就自已在家练习用两块四 边形的废料各做了一扇矩形式的门,完事之后,两人 都说对方的门不是矩形,而自已的是矩形。 甲的理由是:“我用角尺量我的门任意三个角, 发现它们都是直角。所以我这个四边形门就是矩形” 乙的理由是:“我用直尺量这个门的两条对角线, 发现它们的长度相等,所以我这个四边形门就是矩 形”。 根据它们的对话,你能肯定谁的门一定是矩形。
人教版中考数学复习《第21讲:矩形、菱形、正方形》课件

x=
10
,所以
5
3 10
,即
5
3x=
BF=
3 10
.
5
18
考点梳理自清
考法1
考法2
考题体验感悟
考法互动研析
考法3
3.(2017·江苏徐州)如图,在平行四边形ABCD中,点O是边BC的中点,
连接DO并延长,交AB延长线于点E连接EC.
一半
5
考点梳理自清
考点一
考点二
考点三
考题体验感悟
考法互动研析
考点四
考点三正方形(高频)
正方形
的定义
正方形
的性质
正方形
的判定
有一组邻边相等,且有一个角是直角的平行四边形叫
做正方形
(1)正方形的对边平行
(2)正方形的四条边相等
(3)正方形的四个角都是直角
(4)正方形的对角线相等,互相垂直平分 ,每条对角线
( C )
A.2 5
B.3 5
C.5
D.6
10
考点梳理自清
命题点1
命题点2
考题体验感悟
考法互动研析
命题点3
解析 如图,连接EF交AC于点O,根据菱形性质有FE⊥AC,OG=OH,
易证OA=OC.由四边形ABCD是矩形,得∠B=90°,根据勾股定理得
AC=
4 5
42
+
82 =4
5,OA=2 5,易证△AOE∽△ABC,则
考法3
考法1矩形的相关证明与计算
例1(2017·山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向
2018中考数学知识点:几种常见的轴对称图形和中心对称图形

2018中考数学知识点:几种常见的轴对称图形和中心对称图形新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:几种常见的轴对称图形和中心对称图形》,仅供参考!
几种常见的轴对称图形和中心对称图形:
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
人教版中考数学专题课件:矩形、菱形、正方形、梯形
皖考解读
考点聚焦
皖考探究
当堂检测
矩形、菱形、正方形、梯形
延长梯形的两腰交于一点, 得到两 延长 个三角形,如果是等腰梯形,则得 到两个分别以梯形两底为底的等 两腰 腰三角形. 连接梯形一顶点与一腰的中点并 连接顶 延长与另一底边的延长线相交, 可 点与一 得一个三角形, 将梯形的面积转化 腰的中 为三角形的面积,将梯形的上、下 点并延长 底转移到同一直线上.
皖考解读
考点聚焦
皖考探究
当堂检测
矩形、菱形、正方形、梯形
考点6 等腰梯形的性质与判定
定 有两腰________ 相等 的梯形叫做等腰梯形. 义 性 1.等腰梯形在同一底边上的两个底角________ 相等 ; 质 2.等腰梯形的两条对角线________. 相等 1.定义法; 判 2.同一底上的两个底角相等的梯形是等腰梯形; 定 3.对角线________ 相等 的梯形是等腰梯形.
皖考解读
考点聚焦
皖考探究
当堂检测
矩形、菱形、正方形、梯形
判定
面积
1.定义法; 相等 的四边形是菱形; 2.四条边________ 垂直 的平行四边形是菱形. 3.对角线互相________ 1.由于菱形是平行四边形,所以菱形的面积= 底×高; 一半 2.菱形的面积等于两对角线乘积的________.
定义 有一个角是________ 直角 的平行四边形叫做矩形.
1.矩形的两条对角线把矩形分成四个面积相等的的等腰三角形; 2.矩形的面积等于两邻边的积. 1.定义法; 判定 2.有三个角是直角的四边形是矩形;
相等 的平行四边形是矩形. 3.对角线________
皖考解读 考点聚焦 皖考探究 当堂检测
图 22-1
初中数学菱形与正方形
特殊的平行四边形中考要求知识点睛1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.中点中点平行中点定理:三角形的中位线平行第三边且长度等于第三边的一半.5.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.6.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:①边的性质:对边平行,四条边都相等.②角的性质:四个角都是直角.③对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.④对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)正方形菱形矩形平行四边形7.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.例题精讲模块一 菱形的定义【例1】 菱形的定义:__________________的平行四边形叫做菱形. 【答案】一组邻边相等.【例2】 菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的______:还有:菱形的四条边______;菱形的对角线______,并且每一条对角线平分______;菱形的面积等于__________________,它的对称轴是______________________________.【答案】所有性质,都相等;互相垂直,平分一组对角;底乘以高的一半或两条对角线之积的一半;对角线所在的直线.【例3】 菱形的判定:一组邻边相等的______是菱形;四条边______的四边形是菱形;对角线___ ___的平行四边形是菱形.【答案】平行四边形;相等,互相垂直.板块二 菱形的性质及判定【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【解析】省略 【答案】4【例5】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .E F DBCA图1HO DC BA【解析】省略 【答案】3【例6】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为 【解析】省略EDCBA【例7】 菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于 . 【答案】12【例8】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA【解析】由题意可知:构成三角形为等边三角形 【答案】120︒【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为 【解析】省略 【答案】5【例10】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【解析】省略 【答案】D【例11】 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________. 【解析】省略 【答案】2或6【例12】 如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为DB【解析】A C ,关于BD 对称,连AE 交BD 于P ,且30AE BC BAE PE PC AE ⊥∠=︒+==,,为最小值【答案】【例13】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【解析】AB AD AC BD =⊥,等; 【答案】AB AD AC BD =⊥,【例14】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCBA E【解析】省略【答案】根据题意可知 'CDE C DE ∆≅∆则'''CD C D C DE CDE CE C E =∠=∠=,,. ∵//AD BC , ∴C DE CDE '∠=∠. ∴CDE CED ∠=∠, ∴CD CE =.∴CD C D C E CE ''===, ∴四边形CDC E '为菱形.模块三 中位线与平行四边形【例15】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【解析】理由:由中位线得12EF FG GH HE AD ====即可. 【答案】AD BC =.【例16】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【解析】理由:由中位线得12EF FG GH HE AD ====即可. 【答案】AD BC =.【例17】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( ) A .2AD BC EF +> B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ABDFEC【解析】连结BD ,取BD 的中点P ,连结FP EP ,,由三角形的中位线可知选B 【答案】BCEFPDB A【例18】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH,相互垂直平分CDH GFEBA【解析】连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以EG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直【答案】见解析ABEFGHD C【例19】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【解析】取AB 中点P ,连结MP 、NP .利用中位线可得 1122MP BD NP AC === ∴PMN PNM ∠=∠ ∵MP BD ∥,NP AC ∥ ∴OFE OEF ∠=∠ ∴OE OF =【答案】见解析PF E O NM D CBA【例20】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBAEN M DCBA【解析】延长CE 交AB 于点N .利用中位线的性质和直角三角形斜边中线可得()14102cm 2-=. 【答案】2板块三、正方形的性质及判定【例21】 如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1AG =,2BF =,90GEF ∠=︒,则GF 的长为 .G FED C BA【解析】省略 【答案】3【例22】 如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.EDCBA【解析】省略【答案】因为四边形ABCD 是正方形所以AB BC = ABD CBD ∠=∠又BE 是公共边 所以ABE CBE ∆∆≌ 所以AE CE =【例23】 如图所示,正方形ABCD 对角线AC 与BD 相交于O ,MN ∥AB ,且分别与AO BO 、交于M N 、.试探讨BM 与CN 之间的关系,写出你所得到的结论的证明过程.M N CDO B A【解析】省略【答案】BM 与CN 的关系是:BM CN =且BM CN ⊥∵ABCD 是正方形,∴OA OB =∵MN ∥AB ,∴OM =ON ,∴AM BN = ∵45MAB NBC ∠=∠=,AB BC =∴ABM ∆≌BCN ∆,∴BM CN =,BCN ABM ∠=∠∵ABM CBM ∠+∠=90︒,∴90BCN CBM ∠+∠=︒ ∴BM CN ⊥【例24】 如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=PDCBA【解析】省略 【答案】15︒【例25】 如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,CE CF =,30FDC ∠=︒,求BEF ∠的度数.BDCAEF【解析】省略【答案】∵CE CF =,BC CD =,BC CD ⊥,CF CD ⊥ ∴BCE ∆≌DCF ∆∴BEC DFC ∠=∠∵30FDC ∠=︒∴60BEC DFC ∠=∠=︒∵CF CD ⊥,CE CF =∴45CEF ∠=︒∴105BEF ∠=︒【例26】 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.MFEDCBA【解析】省略【答案】延长CE ,DA 交于点G可证AEG BEC △≌△及BCE CDF △≌△可得DM CE ⊥ ∴GA BC = ∵BC AD = ∴GA AD = ∴12AM GD = 又∵12AD GD = ∴AD AM =GMFEDCBA【例27】 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA【解析】省略【答案】⑴ ∵四边形ABCD 是平行四边形,∴AO CO =.又∵ACE ∆是等边三角形,∴EO AC ⊥,即DB AC ⊥. ∴平行四边形ABCD 是菱形.⑵ ∵ACE ∆是等边三角形,∴60AEC ∠=︒.∵EO AC ⊥,∴1302AEO AEC ∠=∠=︒.∵2AED EAD ∠=∠,∴15EAD ∠=︒.∴45ADO EAD AED ∠=∠+∠=︒. 四边形ABCD 是菱形,∴290ADC ADO ∠=∠=︒ ∴四边形ABCD 是正方形.【例28】 已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.M ENCDBA【解析】省略【答案】⑴ 证明:在ABC ∆中,AB AC =,AD BC ⊥∴BAD DAC ∠=∠∵AN 是ABC ∆外角CAM ∠的平分线 ∴MAE CAE ∠=∠∴1180902DAE DAC CAE ∠=∠+∠=⨯︒=︒ 又∵AD BC ⊥,CE AN ⊥ ∴90ADC CEA ∠=∠=︒ ∴四边形ADCE 为矩形. ⑵ 例如,当12AD BC =时,四边形ADCE 是正方形 证明:∵AB AC =,AD BC ⊥于D ∴12DC BC = 又12AD BC =,DC AD = 由⑴四边形ADCE 为矩形 ∴矩形ADCE 是正方形.【例29】 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE ∆ 的面积为GFEDCB A【解析】过E 作EH CD ⊥交CD 延长线于H ,CDE ADG DEH DAG EH AG S S ∆∆∆∆==≌,,【例30】 若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .图2图1ABMECFDE FMDCBA【解析】省略 【答案】125(如图1)或52(如图2). 【例31】 知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形 【解析】省略 【答案】2:1【例32】 如果点E 、F 是正方形ABCD 的对角线BD 上两点,且BE DF =,你能判断四边形AECF 的形状吗?并阐明理由.E CDFBA【解析】省略【答案】连接AC ,交BD 于O .∵四边形ABCD 为正方形,∴AC BD ⊥,AO OC =,BO OD = ∵BE DF =,∴EO FO = ∴四边形AECF 为平行四边形 ∵AC EF ⊥,∴四边形AECF 为菱形OE C DF BA。
八年级数学下册第9章中心对称图形—平行四边形9.4矩形、菱形、正方形学案(无答案)苏科版(new)
矩形【学习目标】1.掌握矩形的性质和判定,会证明一个四边形是矩形,并能够运用矩形的性质进行有关线段或角的计算或证明.2.能够结合三角形的知识,解决有关矩形与等腰三角形相、直角三角形相关的问题.3.探索与平行四边形有关的面积问题、最值问题、动点类问题等.【知识点】1.有一个角是的平行四边形叫做矩形.2.矩形的性质:矩形的四个角;矩形的对角线.3.矩形的判定:有个角是直角的四边形是矩形;对角线的平行四边形是矩形.【例题精讲】一、矩形与特殊等腰三角形问题例1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于E,若∠EAO=15°,则∠BOE的度数为A.85° B.80°C.75° D.70°例2.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为A.6 B.5C.23 D.33例3.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)A.2a+b B.a+2bC.a+b D.2a+2b例4.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F,G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,则AB=.二、矩形与面积问题例5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10C.8 D.6例6.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上不与A、D重合的一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.例7.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是平方厘米.三、矩形与勾股定理例8.如图,在矩形ABCD中,AB=8,AD=6,P、Q分别是AB和CD上的任意一点,且AP=CQ,线段EF是PQ的垂直平分线,交BC于F,交PQ于E,设AP=x,BF=y,则y与x的函数关系式为.例9.如图,P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=.例10.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1 恰好在∠BCD的平分线上时,则C A1的长为.例11.如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于O,E为DC的一点,过点O作OF⊥OE交BC于F,记22d=+,则关于d的正DE BF确的结论是A.d=5 B.d<5C.d≤5 D.d≥5例12.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=8,BC=3,运动过程中,点D到点O的最大距离为.例13.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C 重合),PE⊥AB于E,PF⊥AC于F,M为EF终点,设AM的长为x,则x的取值范围是A.4≥x>2.4B.4≥x≥2。
第3章《中心对称图形(一)》常考题集(27):3.5 矩形、菱形、正方形
第3章《中心对称图形(一)》常考题集(27):3.5矩形、菱形、正方形第3章《中心对称图形(一)》常考题集(27):3.5矩形、菱形、正方形解答题331.(2009•南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.332.(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.333.(2009•呼和浩特)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)观察猜想BE与DG之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.334.(2009•佛山)如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.335.(2008•黄冈)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.336.(2007•肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.337.(2007•玉溪)正方形ABCD和正方形EFGH的边长分别为2和,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH 也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=_________;(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.338.(2007•台州)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.339.(2007•茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.340.(2006•资阳)(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=_________度;(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.341.(2006•沈阳)如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.342.(2012•庆阳)已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求正方形ABCD的面积.343.(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A 作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.344.(2006•锦州)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.345.(2006•海淀区)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.346.(2005•河北)如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1所示,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是_________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是_________;③请证明你的上述两个猜想;(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE 与EF有怎样的数量关系.347.(2004•河北)如图所示,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF,求证:DE=BF.348.(2003•镇江)如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.349.(2006•常熟市一模)已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.350.如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连接AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.351.已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.352.(2006•晋江市质检)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,请你观察猜想BE与DG之间的大小关系,并证明你的结论.353.(2008•晋江市质检)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动.(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由;(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.354.(2009•通州区二模)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.355.如图,正方形ABCD的对角线AC、BD相交于O.(1)(图1)若E为AC上一点,过A作AG⊥EB于G,AG、BD交于F,求证:OE=OF;(2)(图2)若E为AC延长线上一点,AG⊥EB交EB的延长线于G,AG的延长线交DB的延长线于F,其他条件不变,OE=OF还成立吗?若成立,请予以证明;若不成立,请说明理由.356.(2009•黄石)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?357.(2009•湖州)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.358.(2006•济南)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A 作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)359.(2004•济南)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)360.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)第3章《中心对称图形(一)》常考题集(27):3.5矩形、菱形、正方形参考答案与试题解析解答题331.(2009•南充)如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.中,332.(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.333.(2009•呼和浩特)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)观察猜想BE与DG之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.334.(2009•佛山)如图,在正方形ABCD中,CE⊥DF.若CE=10cm,求DF的长.335.(2008•黄冈)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.336.(2007•肇庆)如图,已知点E为正方形ABCD的边BC上一点,连接AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F.求证:BF=CE.337.(2007•玉溪)正方形ABCD和正方形EFGH的边长分别为2和,对角线BD和FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线l上平移时,正方形EFGH 也随之平移(其形状大小没有变化).(所谓正方形的中心,是指正方形两条对角线的交点;两个正方形的公共点,是指两个正方形边的公共点)(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2=3;(2)设计表格完成问题:随着中心O2在直线l上平移,两个正方形的公共点的个数的变化情况和相应的中心距的值或取值范围.338.(2007•台州)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.339.(2007•茂名)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.∵ED=∴AD=×AG=340.(2006•资阳)(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=度;(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.中,341.(2006•沈阳)如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.DEPN=DE AF PQ=AF342.(2012•庆阳)已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有什么数量关系?证明你的结论;(3)若GE•GB=4﹣2,求正方形ABCD的面积.∵BFOG=BFBD=(∴,﹣)))343.(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A 作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.344.(2006•锦州)如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.345.(2006•海淀区)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.346.(2005•河北)如图所示,四边形ABCD是正方形,M是AB延长线上一点,直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1所示,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是DE=EF;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是NE=BF;③请证明你的上述两个猜想;(2)如图2所示,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE 与EF有怎样的数量关系.AN=DN=AD AE=EB=347.(2004•河北)如图所示,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF,求证:DE=BF.348.(2003•镇江)如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.349.(2006•常熟市一模)已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.350.如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连接AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.351.已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.352.(2006•晋江市质检)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,请你观察猜想BE与DG之间的大小关系,并证明你的结论.353.(2008•晋江市质检)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动.(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由;(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.=10∴,即①,即②t==4∵或;354.(2009•通州区二模)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.∵AM=xxBC BM=x=xCQ PN=(﹣x+﹣x+1QN=AM=PM=CP=﹣CN=x x﹣=当x=355.如图,正方形ABCD的对角线AC、BD相交于O.(1)(图1)若E为AC上一点,过A作AG⊥EB于G,AG、BD交于F,求证:OE=OF;(2)(图2)若E为AC延长线上一点,AG⊥EB交EB的延长线于G,AG的延长线交DB的延长线于F,其他条件不变,OE=OF还成立吗?若成立,请予以证明;若不成立,请说明理由.356.(2009•黄石)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?357.(2009•湖州)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.358.(2006•济南)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A 作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)359.(2004•济南)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF;(2)只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)AB360.如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)参与本试卷答题和审题的老师有:自由人;Liuzhx;lbz;ln_86;MMCH;Linaliu;lanchong;蓝月梦;zhehe;117173;HLing;mmll852;zhjh;开心;bjy;CJX;zhangCF;王岑;fuaisu;算术;wenming;csiya(排名不分先后)菁优网2013年9月6日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学同步班讲义(56期)第十一讲菱形矩形正方形梯形一、主要知识点回顾:1、菱形:一组邻边相等的平行四边形叫做菱形。
菱形的性质:1、菱形具有平行四边形的所有性质(即对边平行且相等;对角相等;对角线互相平分)。
2、菱形的四条边都相等。
3、菱形的两条对角线互相垂直且平分每组对角。
说明:菱形是轴对称图形,两条对角线所在直线是它的两条对称轴。
菱形的判别:1、四条边都相等的四边形是菱形;2、有一组邻边相等的平行四边形是菱形;3、两条对角线互相垂直的平行四边形是菱形。
菱形的面积公式:如果菱形的两条对角线长分别为a、b,则菱形的面积S=a b。
2、矩形:有一内角是直角的平行四边形叫做矩形。
(也叫长方形)矩形的性质:1、矩形具有平行四边形的所有性质(即对边平行且相等;对角相等;对角线互相平分)。
2、矩形的四个角都是直角。
3、矩形的对角线相等。
说明:(1)矩形是轴对称图形,对边中点连线所在直线是它的两条对称轴。
(2)由矩形性质可得直角三角形的一个重要性质:直角三角形斜边上的中线等于斜边的一半。
矩形的判别:1、三个角是直角的四边形是矩形;2、一个角是直角的平行四边形是矩形;3、对角线相等的平行四边形是矩形。
3、正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
正方形的性质:1、正方形的四个角都是直角,四条边都相等。
2、正方形的两条对角线相等,并且互相垂直平分。
说明:1)正方形既可以看做特殊的菱形,也可以看做特殊的矩形,所以它具有菱形的所有性质(当然也具有平行四边形的所有性质)。
2)根据正方形四个角都是直角且对角线平分对角可知,正方形对角线与边的夹角为450。
3)正方形是轴对称图形,两条对角线所在直线和对边中点连线所在直线是它的四条对称轴。
正方形的判定:1、有一个角是直角、一组邻边相等的平行四边形;2、有一组邻边相等的矩形是正方形;3、有一个角是直角的菱形是正方形;4、对角线相等的菱形是正方形。
4、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
平行的两边叫做梯形的底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高。
等腰梯形:两条腰相等的梯形叫做等腰梯形。
等腰梯形的性质:1、等腰梯形的两腰相等;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等。
说明:等腰梯形是轴对称图形,通过上、下底中点的直线是它的对称轴。
等腰梯形的判别:1、两腰相等的梯形是等腰梯形;2、在同一底上的两个内角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形。
说明:成轴对称图形的梯形是等腰梯形。
直角梯形:一条腰和底垂直的梯形叫做直角梯形。
研究梯形问题的主要方法:在研究有关梯形的问题时,常常通过添加辅助线,把梯形问题转化为三角形和平行四边形的问题来解决。
说明:常用的梯形辅助线的添加方法:(1)作两条高;(2)作两条对角线;(3)平移一腰;(4)平移一条对角线;(5)延长两腰;(6)过一顶点和一腰中点作直线。
梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。
梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
说明:设梯形的上底、下底、高的长度分别为a 、b 、h 、l ,则梯形的面积S=(a+b )h=l h 。
梯形的一般梯形、等腰梯形、直角梯形的性质和判定方法: 一般梯形:⑴一组对边平行,另一组对边不平行;⑵中位线平行于底边,且等于两底和的一半;⑶S=1/2(a+b )h ,(其中:a 、b 、h 分别是梯形的上、下底的长和高)。
直角梯形的性质:除一般梯形的性质外,还有:一底角是直角。
二、考考你:1.下列命题中,真命题是( )A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形 2.矩形的面积公式是_________________.3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( ) A.21 B.41 C.51 D.614.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角 5.正方形的面积是31,则其对角线长是________.三、感悟与实践:[例1] 如图,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .四边形AEDF 是菱形吗?变式练习一如图,在梯形ABCD中,AB∥CD,M、N分别为CD、AB中点,且MN⊥A B.梯形ABCD一定为等腰梯形,请你用两种不同的方法说明理由.变式练习二如图,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE,你能用几种方法说明AC与CE相等?请你写出一种推理过程.[例2]已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,CE=CF.(1)求证:△BEC≌△DFC;(2)若∠BEC=60°,求∠EFD的度数.变式练习三如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?[例3] 如图,四边形ABCD 是等腰梯形,其中AD =BC ,若AD =5,CD =2,AB =8,求梯形ABCD 的面积.变式练习四 已知如图,梯形ABCD 中,AD ∥BC ,AB =CD ,∠B =60°,AD =10,BC =18,求梯形ABCD 的周长.四、巩固与提高(A )巩固训练一、选择题1.菱形具有而一般平行四边形不具有的性质是( ) A.对角相等 B.对边相等 C.对角线互相垂直D.对角线相等2.下列语句中,错误的是( )A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到3. 四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( ) A.OA =OB =OC =OD ,AC ⊥BD B.AB ∥CD ,AC =BD C.AD ∥BC ,∠A =∠C D.OA =OC ,OB =OD ,AB =BC4.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A.75° B.60° C.45° D.30°图15.如图4矩形ABCD 中,若AB =4,BC =9,E 、F 分别为BC ,DA 上的31点,则S 四边形AECF 等于( )A.12B.24C.36D.48 图4二、填空题6.菱形的周长是8,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11,菱形的周长为______. 8.菱形的对角线的一半的长分别为8 和11 ,则菱形的面积是_______.9. 已知矩形ABCD ,若它的宽扩大2倍,则它的面积等于原面积的________;若宽不变长缩小41倍,那么新矩形的面积等于原矩形面积的________;若宽扩大2倍且长缩小41,那么新矩形的面积等于原矩形面积的________.10.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于_____.三、解答题 11.菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.12.在四边形ABCD 中,∠B =∠D =90°,且AB =CD ,四边形ABCD 是矩形吗?为什么?13.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E 、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.14.E 为正方形ABCD 内一点,且△EBC 是等边三角形,求∠EAD 的度数.(B)能力提高1.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.2.如图,梯形ABCD中,AD∥BC,AC为对角线,AE⊥BC于E,AB⊥AC,若∠ACB=30°,BE=2.则BC=___________.3.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.98B.196C.280D.2844.如图,欲用一块面积为800 cm2的等腰梯形彩纸作风筝,用竹条作梯形的对角线且对角线恰好互相垂直,那么需要竹条多少厘米?5.如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3,求∠APB的度数.6.以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF,(1)试探索BE和CF的关系?并说明理由.(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.五、自我评定一、选择题( 每题4分,共32分)1.菱形的周长为100 cm ,一条对角线长为14 cm ,它的面积是( )A.168 cm 2B.336 cm 2C.672 cm 2D.84 cm 2 2.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( )A.43B.83C.103D.1233.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是( ) A.一般平行四边形 B.菱形 C.矩形 D.正方形4.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是( ) A.16 B.22 C.26 D.22或265.在正方形ABCD 中,AB =12 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( ) A.12+122B.12+62C.12+2D.24+626.下列说法正确的是( )A.一组对边平行的四边形是梯形B.有两个角是直角的四边形是直角梯形C.只有相邻的两个角是直角的四边形是直角梯形D.一组对边平行另一组对边相等的四边形是等腰梯形7.如图1,梯形ABCD 中,AD ∥BC ,设AC ,BD 交于O 点,则图中共有 对面积相等的三角形.( ) A.2B.3C.4D.5图1 图28.如图2,在直角梯形ABCD 中,AB =4 cm,AD =4.5 cm,∠C =30°,则DC = cm ,BC = cm ( ) A.8,43B.8 cm,(4.5+43) cmC.4(3+1)+21,8D.8 cm,(43+4) cm一、填空题( 每题4分,共40分) 9.菱形的面积为24,一对角线长为6;‘,则另一对角线长为______,边长为______. 10.菱形的面积为83,两条对角线的比为1∶3,那么菱形的边长为_______. 11.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图412.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为_______;周长为_______.13.已知矩形ABCD 中,S 矩形ABCD =24 cm 2,若BC =6 cm ,则对角线AC 的长是________ cm.14.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.15.在梯形中,不是同一底上的两组角的比值分别为1∶3和3∶7,则四个角的度数为 , , , . 16.直角梯形一腰长16 cm,和一个底所成的角为30°,那么另一腰长________ cm.17.若等腰梯形ABCD 中,AD ∥BC ,AB =CD ,AC 、BD 相交于点O ,那么图中全等三角形共有_______对;若梯形ABCD 为一般梯形,那么图中面积相等的三角形共有_______对.18.梯形的上底长为5 cm ,将一腰平移到上底的另一端点位置后与另一腰和下底所构成的三角形的周长为20 cm ,那么梯形的周长为_______.三、解答题( 每题14分,共28分)19.已知等腰梯形的锐角等于60°,它的两底分别为15 cm,49 cm,求它的腰长.20.在梯形ABCD 中,AB ∥CD ,∠A =∠B ,E 是AB 中点,EC 等于ED 吗?为什么?初二数学同步班讲义第九讲参考答案(56期)二、考考你:1. B2. S=ab3.A4.D5.36三、感悟与实践:变式练习一 方法一:AD=BC 方法二:∠A=∠B变式练习二 方法一:△ACD ≌△CBE 方法二:△DCB 是等腰三角形 变式练习三 (1)a45(2)是全等三角形,运用勾股定理逆定理 变式练习四 44四、巩固与提高 (A )巩固训练一、1.C 2.D 3.A 4.D 5.B 二、6. 2 7.44 8.176 9. 2,41, 21 10.45° 三、11.24 12.是矩形,全等 13. 是矩形 14.15°(B )能力提高1.9.6cm2.8 cm3. 2804. 80cm5. 135°6. (1)相等, (2)△ABE 与△AFC ,A 点,90°五、自我评定1.B2.B3.C4.D5.A6.C7.B8.B9.8,10 10.4 11. 60°,120°,60°,120° 12.,a,a,a,4a 13.213 14.10,5 15.45°,135°,54°,126°16.8cm 17.3,3 18.30cm 19.34cm 20.相等,由全等可证。