(完整版)平面向量高考试题精选(含详细标准答案)

(完整版)平面向量高考试题精选(含详细标准答案)
(完整版)平面向量高考试题精选(含详细标准答案)

平面向量高考试题精选(一)

一.选择题(共14小题)

1.(2015?河北)设D为△ABC所在平面内一点,,则()

A.B.

C.D.

2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()

A.13 B.15 C.19 D.21

3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()

A.20 B.15 C.9 D.6

4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()

A.||=1 B.⊥C.?=1 D.(4+)⊥

5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是()

A.||≤|||| B.||≤|||﹣|||

C.()2=||2D.()?()=2﹣2

6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()

A.B.C.D.π

7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为()

A.B.C.D.

8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()

A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014?桃城区校级模拟)设向量,满足,,<

>=60°,则||的最大值等于()

A.2 B.C.D.1

10.(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若?=1,?=﹣,则λ+μ=()

A.B.C.D.

11.(2014?安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若?+?+?+?所有可能取值中的最小值为4||2,则与的夹角为()

A.B.C.D.0

12.(2014?四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()

A.﹣2 B.﹣1 C.1 D.2

13.(2014?新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()

A.B. C.D.

14.(2014?福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()

A.B.2C.3D.4

二.选择题(共8小题)

15.(2013?浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.

16.(2013?北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.

17.(2012?湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.

18.(2012?北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.

19.(2011?天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.

20.(2010?浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是.

21.(2010?天津)如图,在△ABC中,AD⊥AB,,,则=.

22.(2009?天津)若等边△ABC的边长为,平面内一点M满足=+,则=.

三.选择题(共2小题)

23.(2012?上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.

(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;

(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;

(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.

24.(2007?四川)设F1、F2分别是椭圆=1的左、右焦点.

(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;

(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

平面向量高考试题精选(一)

参考答案与试题解析

一.选择题(共14小题)

1.(2015?河北)设D为△ABC所在平面内一点,,则()

A.B.

C.D.

解:由已知得到如图

由===;

故选:A.

2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()

A.13 B.15 C.19 D.21

解:由题意建立如图所示的坐标系,

可得A(0,0),B(,0),C(0,t),

∵,∴P(1,4),

∴=(﹣1,﹣4),=(﹣1,t﹣4),

∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),

由基本不等式可得+4t≥2=4,

∴17﹣(+4t)≤17﹣4=13,

当且仅当=4t即t=时取等号,

∴的最大值为13,

故选:A.

3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()

A.20 B.15 C.9 D.6

解:∵四边形ABCD为平行四边形,点M、N满足,,

∴根据图形可得:=+=,

==,

∴=,

∵=?()=2﹣,

2=22,

=22,

||=6,||=4,

∴=22=12﹣3=9

故选:C

4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()

A.||=1 B.⊥C.?=1 D.(4+)⊥

解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,

所以=2,=1×2×cos120°=﹣1,

4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即

=0,所以;

故选D.

5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是()

A.||≤|||| B.||≤|||﹣|||

C.()2=||2D.()?()=2﹣2

解:选项A正确,∵||=|||||cos<,>|,

又|cos<,>|≤1,∴||≤||||恒成立;

选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;

选项C正确,由向量数量积的运算可得()2=||2;

选项D正确,由向量数量积的运算可得()?()=2﹣2.

故选:B

6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()

A.B.C.D.π

解:∵(﹣)⊥(3+2),

∴(﹣)?(3+2)=0,

即32﹣22﹣?=0,

即?=32﹣22=2,

∴cos<,>===,

即<,>=,

故选:A

7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为()

A.B.C.D.

解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,

所以?()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.

8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()

A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]

】解:∵动点D满足||=1,C(3,0),

∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).

又A(﹣1,0),B(0,),

∴++=.

∴|++|===

,(其中sinφ=,cosφ=)

∵﹣1≤sin(θ+φ)≤1,

∴=sin(θ+φ)≤=,

∴|++|的取值范围是.

故选:D.

9.(2014?桃城区校级模拟)设向量,满足,,<

>=60°,则||的最大值等于()

A.2 B.C.D.1

解:∵,

∴的夹角为120°,

设,则;=

如图所示

则∠AOB=120°;∠ACB=60°

∴∠AOB+∠ACB=180°

∴A,O,B,C四点共圆

由三角形的正弦定理得外接圆的直径2R=

当OC为直径时,模最大,最大为2

故选A

10.(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC 上,=λ,=μ,若?=1,?=﹣,则λ+μ=()

A.B.C.D.

解:由题意可得若?=(+)?(+)=+++

=2×2×cos120°++λ?+λ?μ=﹣2+4μ+4λ+λμ×2×2×cos120°

=4λ+4μ﹣2λμ﹣2=1,

∴4λ+4μ﹣2λμ=3 ①.

?=﹣?(﹣)==(1﹣λ)?(1﹣μ)=(1﹣λ)?(1﹣μ)

=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,

即﹣λ﹣μ+λμ=﹣②.

由①②求得λ+μ=,

故答案为:.

11.(2014?安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若?+?+?+?所有可能取值中的最小值为4||2,则与的夹角为()

A.B.C.D.0

解:由题意,设与的夹角为α,

分类讨论可得

①?+?+?+?=?+?+?+?=10||2,不满足

②?+?+?+?=?+?+?+?=5||2+4||2cosα,不满足;

③?+?+?+?=4?=8||2cosα=4||2,满足题意,此时cosα=

∴与的夹角为.

故选:B.

12.(2014?四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()

A.﹣2 B.﹣1 C.1 D.2

解:∵向量=(1,2),=(4,2),

∴=m+=(m+4,2m+2),

又∵与的夹角等于与的夹角,

∴=,

∴=,

∴=,

解得m=2,

故选:D

13.(2014?新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()

A.B. C.D.

【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,

∴+=(+)+(+)=+=(+)=,

故选:A

14.(2014?福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()

A.B.2C.3D.4

解:∵O为任意一点,不妨把A点看成O点,则=,

∵M是平行四边形ABCD的对角线的交点,∴=2=4

故选:D.

二.选择题(共8小题)

15.(2013?浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.

解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.

∵非零向量=x+y,∴||===,

∴====,

故当=﹣时,取得最大值为2,

故答案为2.

16.(2013?北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.

解:设P的坐标为(x,y),则

=(2,1),=(1,2),=(x﹣1,y+1),∵,

∴,解之得

∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组

作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部

其中C(4,2),D(6,3),E(5,1),F(3,0)

∵|CF|==,

点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==

∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为

3

故答案为:3

17.(2012?湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.

【解答】解:设AC与BD交于点O,则AC=2AO

∵AP⊥BD,AP=3,

在Rt△APO中,AOcos∠OAP=AP=3

∴||cos∠OAP=2||×cos∠OAP=2||=6,

由向量的数量积的定义可知,=||||cos∠PAO=3×6=18

故答案为:18

18.(2012?北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.

【解答】解:因为====1.

故答案为:1

19.(2011?天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.

解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,

则A(2,0),B(1,a),C(0,a),D(0,0)

设P(0,b)(0≤b≤a)

则=(2,﹣b),=(1,a﹣b),

∴=(5,3a﹣4b)

∴=≥5.

故答案为5.

20.(2010?浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,].

解:令用=、=,如下图所示:

则由=,

又∵与的夹角为120°,

∴∠ABC=60°

又由AC=

由正弦定理得:

||=≤

∴||∈(0,]

故||的取值范围是(0,]

故答案:(0,]

21.(2010?天津)如图,在△ABC中,AD⊥AB,,,则=.

【解答】解:,

∵,

∴,

∵,

∴cos∠DAC=sin∠BAC,

在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,

=|BC|sinB==,

故答案为.

22.(2009?天津)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.

解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得

∴,,

∵=+=,

∴M,

∴,,

=(,)?(,)=﹣2.

故答案为:﹣2.

三.选择题(共2小题)

23.(2012?上海)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.

(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;

(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;

(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.

【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,

其‘相伴向量’=(4,3),g(x)∈S.

(2)h(x)=cos(x+α)+2cosx

=(cosxcosα﹣sinxsinα)+2cosx

=﹣sinαsinx+(cosα+2)cosx

∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).

则||==.

(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),

其中cosφ=,sinφ=.

当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.

∴tanx0=tan(2kπ+﹣φ)=cotφ=,

tan2x0===.

为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].

令m=,则tan2x0=,m∈[﹣,0)∪(0,}.

当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;

当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.

综上所述,tan2x0∈[﹣,0)∪(0,].

24.(2007?四川)设F1、F2分别是椭圆=1的左、右焦点.

(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;

(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

】解:(Ⅰ)易知a=2,b=1,.

∴,.设P(x,y)(x>0,y>0).

则,又,联立,解得,.

(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立

∴,

由△=(16k)2﹣4?(1+4k2)?12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①

又∠AOB为锐角,

又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4 ∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4

=

=

=

∴.②

综①②可知,

∴k的取值范围是.

平面向量历年高考题汇编难度高

数 学 平面向量 平面向量的概念及其线性运算 1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b∥c ,则a∥c ,则下列命题中真命题是 ( ) A .p ∨q B .p ∧q C .)()(q p ?∧? D .)(q p ?∨ 2.★★(·新课标全国卷ⅠL) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与AC → 的夹角为________. 3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .-2 B .-1 C .1 D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( ) A . B. 21 C. D. 2 1 5. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( ) A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的 平行四边形的面积为 1 2 ,则α与β的夹角θ的取值范围是 。 7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥?=?

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

平面向量高考试题精选

平面向量高考试题精选(一) 一.选择题(共14小题) 1.(2015?河北)设D为△ABC所在平面内一点,,则() A. B. C. D. 2.(2015?福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21 3.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6 4.(2015?安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是() A.||=1 B.⊥C.?=1D.(4+)⊥ 5.(2015?陕西)对任意向量、,下列关系式中不恒成立的是() A.||≤|||| B.||≤|||﹣||| C.()2=||2D.()?()=2﹣2 6.(2015?重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A. B. C. D.π 7.(2015?重庆)已知非零向量满足||=4||,且⊥()则的夹角为() A. B. C. D. 8.(2014?湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D 满足||=1,则|++|的取值范围是() A.[4,6] B.[﹣1,+1] C.[2,2] D.[﹣1,+1] 9.(2014?桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于() A.2 B. C. D.1 10.(2014?天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若?=1,?=﹣,则λ+μ=() A. B. C. D. 11.(2014?安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若?+?+?+?所有可能取值中的最小值为4||2,则与的夹角为() A. B. C. D.0

平面向量题型全归纳,平面向量知识点和题型总结

第五章 平面向量 题型57 平面向量的概念及线性运算 ? 知识点摘要: 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如AB (其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||AB 。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 一、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量a 和b 的和(或和向量),即AC BC AB b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 二、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 三点共线定理:平面内三点A,B,C 共线的充要条件是,存在实数μλ,,使μλ+=,其中 1=+μλ,O 为平面内任一点。即A,B,C 三点共线?OC OB OA μλ+=(1=+μλ) ? 典型例题精讲精练: 57.1平面向量相关概念 1. 给出下列命题:①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→ 是四 边形ABCD 为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ;④若a ∥b ,b ∥c ,则a ∥c ;其中正确命题的序号是________.[答案] ①② 2. 给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ, μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( )D A .0 B .1 C .2 D .3

平面向量复习讲义

平面向量复习讲义 一.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是 || AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如 下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相 同,终点相同。(3)若AB DC = ,则ABCD 是平行四边形。(4)若ABCD 是平行四边形, 则AB DC = 。(5)若,a bb c == ,则a c = 。(6)若/,/a bb c ,则//a c 。其中正确的是_______ (答:(4)(5)) 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i , 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+= ,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的线性运算: (1)向量加法: ①三角形法则:(“首尾相接,首尾连”),如图,已知向量a 、b.在平面内任取一点A ,作AB =a , =b ,则向量叫做a 与b 的和,记作+a b 定:a + 0-= 0 + a =a, 当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; 当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

平面向量题型归纳总结

平面向量题型归纳 一。向量有关概念:【任何时候写向量时都要带箭头】 1。向量得概念:既有大小又有方向得量,记作:或。注意向量与数量得区别.向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。 例:已知A(1,2),B(4,2),则把向量按向量=(-1,3)平移后得到得向量就是 2、向量得模:向量得大小(或长度),记作:或. 3。零向量:长度为0得向量叫零向量,记作:,注意零向量得方向就是任意得; 4.单位向量:单位向量:长度为1得向量。若就是单位向量,则。(与共线得单位向量就是); 5。相等向量:长度相等且方向相同得两个向量叫相等向量,相等向量有传递性; 6。平行向量(也叫共线向量):方向相同或相反得非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。 提醒:①相等向量一定就是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行就是不同得两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有); ④三点共线共线; 如图,在平行四边形中,下列结论中正确得就是( ) A、B、 C、D、 7.相反向量:长度相等方向相反得向量叫做相反向量.得相反向量就是-、。例:下列命题:(1)若,则。(2)若,则。(6)若,则。(3)若,则就是平行四边形。(4)若就是平行四边形,则。其中正确得就是_______ 题型1、基本概念 1:给出下列命题: ①若||=||,则=;②向量可以比较大小;③方向不相同得两个向量一定不平行; ④若=,=,则=;⑤若//,//,则//;⑥;⑦; 其中正确得序号就是。 2、基本概念判断正误:(1)共线向量就就是在同一条直线上得向量。 (2)若两个向量不相等,则它们得终点不可能就是同一点. (3)与已知向量共线得单位向量就是唯一得。 (4)四边形ABCD就是平行四边形得条件就是。

平面向量测试题_高考经典试题_附详细答案

平面向量高考经典试题 海口一中高中部黄兴吉同学辅导内部资料 一、选择题 1.(全国1文理)已知向量(5,6)a =-r ,(6,5)b =r ,则a r 与b r A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 解.已知向量(5,6)a =-r ,(6,5)b =r ,30300a b ?=-+=r r ,则a r 与b r 垂直,选A 。 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .4 【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得: 2(3,)(1,)303n n n n ?-=-+=?=±, 2=a 。 3、(广东文4理10)若向量,a b r r 满足||||1a b ==r r ,,a b r r 的夹角为60°,则a a a b ?+?r r r r =______; 答案:3 2 ; 解析:1311122 a a a b ?+?=+??=r r r r , 4、(天津理10) 设两个向量22 (2,cos )a λλα=+-r 和(,sin ),2 m b m α=+r 其中,,m λα为 实数.若2,a b =r r 则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 【答案】A 【分析】由22 (2,cos )a λλα=+-r ,(,sin ),2 m b m α=+r 2,a b =r r 可得 2222cos 2sin m m λλαα+=??-=+?,设k m λ =代入方程组可得222 22cos 2sin km m k m m αα+=??-=+?消去m 化简得2 2 22cos 2sin 22k k k αα??-=+ ? --?? ,再化简得

平面向量全部讲义

第一节平面向量的概念及其线性运算 1.向量的有关概念 (1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量. (4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 例1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线 C .不可能都是零向量 D .不可能都是单位向量 例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 等价于四边形 ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .④⑤ CA 2.向量的线性运算 平行四边形法则 例3:化简AC →-BD →+CD →-AB →得( ) A.AB → B.DA → C.BC → D .0 例4:(1)如图,在正六边形ABCDEF 中,BA +CD +EF =( ) A .0 B .BE C .A D D .CF (2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23 BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________. 巩固练习: 1.将4(3a +2b )-2(b -2a )化简成最简式为______________. 2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB → 的关系是( ) A .平行 B .重合 C .垂直 D .不确 定 3.若菱形ABCD 的边长为2,则|AB -CB +CD |=________ 4.D 是△ABC 的边AB 上的中点,则向量CD 等于( ) A .-BC +12BA B .-B C -12BA C .BC -12 BA D .BC +12 BA 5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC +AD ;③AC -BD =DC +AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE → . DD 1 2 巩固练习 1。16a +6b 2。C 3。2 4。A 5。C 6.解:AB →=AC →+CB → =-3a +2b ,∵D ,E 为AB →的两个三等分点,∴AD →=13AB →=-a +23b =DE →. ∴CD →=CA →+AD →=3a -a +23b =2a +23 b .∴CE →=CD →+DE → =2a +23b -a +23b =a +43b. 3.共线向量定理:向量a (a ≠0)与b 共线等价于存在唯一一个实数λ,使得b =λa . 例5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________ 例6. 设两个非零向量a 与b 不共线,(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.

2020年高考数学平面向量专题复习(含答案)

2020年高考数学平面向量专题练习 一、选择题 1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值() A. B. C. D. 2、向量,,若,且,则x+y的值为() A.-3 B.1 C.-3或1 D.3或1 3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4 4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则 () A.B. C.D. 5、在平行四边形中,,若是的中点,则() A. B. C. D. 6、已知向量,且,则()

A. B. C. D. 7、已知是边长为2的等边三角形,D为的中点,且,则( ) A. B.1 C. D. 3 8、在平行四边形ABCD中,,则该四边形的面积为 A. B. C.5 D.10 9、下列命题中正确的个数是() ⑴若为单位向量,且,=1,则=;⑵若=0,则=0 ⑶若,则;⑷若,则必有;⑸若,则 A.0 B.1 C.2 D.3 10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为() 二、填空题 11、已知向量与的夹角为120°,且,则____. 12、若三点满足,且对任意都有,则的最小值为________. 13、已知,,则向量在方向上的投影等于___________. 14、.已知,是夹角为的两个单位向量,,,若,则实数的值为 __________.

15、已知向量与的夹角为120°,,,则________. 16、已知中,为边上靠近点的三等分点,连接为线段的中点,若 , 则__________. 17、已知向量为单位向量,向量,且,则向量的夹角为. 18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。若 (λ,μ∈R),则λ+μ的值为。 三、简答题 19、已知平面直角坐标系中,向量,,且. (1)求的值;(2)设,求的值. 20、已知向量=(sin,cos﹣2sin),=(1,2). (1)若∥,求的值; (2)若,0<<,求的值. 21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若 在区间[1,6]内取值,求满足的概率. 22、在平面直角坐标系xOy中,已知向量, (1)求证:且; (2)设向量,,且,求实数t的值.

平面向量题型归纳

平面向量题型归纳 题型一 平面向量的线性运算 例 1:记 N ?? ?,y = ?t ? ≤ y t N i !{?,y }= y t ? ≤ y 设 a t b 为平面向量,则( ) yt ? ? y ?t ? ? y A .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |} B .N i !{ a + b t |a -b |} ≤ N i !{ a t |b |} C .N ?? a + b 2t a -b 2 ≤ a 2 + b 2 D .N ?? a + b 2t a -b 2 ≤ a 2 + b 2 【答案】:D 【解析】 方法一:对于平面向量 a t b t |a + b |与|a -b |表示以 a t b 为邻边的平行四边形的两条对角线的长度,而根据平面几何知识可得,平行四边形两对角线长度的较小者与相邻两边长度的较小者,没有确定的大小关系,故选项A ,B 均错;又 a + b t |a -b |中的较大者与 a t |b |一定构成非锐角三角形的三条边,由余弦定理知,必有 N ?? a + b 2t a -b 2 ≤ a 2 + b 2 ,故选项 D 正确,选项 C 错误. 方法二:若 a t b 同向,令 a =2t |b |=3,这时 |a + b |=5,|a -b |=1,N i !{|a + b |,|a -b |}=1,N i !{|a |,|b |}=2;若令|a |=2,|b |=6,这时 a + b =8t a -b =4t N i !{ a + b t |a -b |}=4 , 而 N i !{ a t |b |}=2 , 显然对任意 a t b , N i !{|a + b |,|a -b |} 与 N i !{ a t |b |}的大小关系不确定, 即选项 A 、B 均错. 同理, 若 a t b 同向, 取|a |=1t |b |=2, 则 a + b =3t |a -b |=1,这时 N ?? a + b 2 t a -b 2 = ?,而 a 2 + b 2 =5,不可能有 N ?? a + b 2t a -b 2 ≤ a 2 + b 2,故选 C 项错. 【易错点】平面向量加减法线性运算性质。 【思维点拨】解题的关键是结合向量模的几何意义,加减运算的几何意义,通过图形分析得到正确选项; 也可从选择题的特点入手,通过对 a t b 特殊化,从而得到 a + b t |a -b |的值,通过比较大小关系排除错误选项,得出正确答案. 题型二 共线向量定理、平面向量基本定理的应用 例 1.O A B C 中,A B 边的高为 C ?,若ˉC ˉˉB ˉ˙=a t ˉC ˉˉA ˙=b t a ·b =O t a =1t b =2t 则ˉA ˉˉ?ˉ˙=( ) A.1 a -1 b B.2 a -2 b C.3 a -3 b D.4 a -4 b 3 3 3 3 5 5 5 5 【答案】 D 【解析】方法一: a ·b =0t ?A C B =?0°t A B = 5t C ?= 2 5 . 5 B ?= 5 t A ?= 4 5 t A ? : B ?=4 : 1. ˉA ˉˉ?ˉ˙=4 ˉA ˉˉB ˉ˙=4 (ˉC ˉˉB ˉ˙ — ˉC ˉˉA ˙)= 4 a -4 b .

历年平面向量高考试题汇集学习资料

历年平面向量高考试 题汇集

高考数学选择题分类汇编 1.【2011课标文数广东卷】已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实 数,(a +λb)∥c ,则λ=( ) A.14 B .1 2 C .1 D .2 2.【2011·课标理数广东卷】若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b)=( ) A .4 B .3 C .2 D .0 3.【2011大纲理数四川卷】如图1-1,正六边形ABCDEF 中,BA →+CD →+EF →= ( ) A .0 B.BE → C.AD → D.CF → 4.【2011大纲文数全国卷】设向量a ,b 满足|a|=|b|=1,a·b =-1 2,则|a +2b|=( ) A. 2 B. 3 C. 5 D.7 . 5.【2011课标文数湖北卷】若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A .-π4 B.π6 C.π4 D.3π4 6.【2011课标理数辽宁卷】若a ,b ,c 均为单位向量,且a·b =0,(a -c)·(b -c)≤0,则|a +b -c|的最大值为( ) A.2-1 B .1 C. 2 D .2 【解析】 |a +b -c|=(a +b -c )2=a 2+b 2+c 2+2a·b -2a·c -2b·c ,由于a·b =0,所以上式=3-2c·(a +b ),又由于(a -c)·(b -c)≤0,得(a +b)·c ≥c 2=1,所以|a +b -c|=3-2c·(a +b )≤1,故选B. 7.【2011课标文数辽宁卷】已知向量a =(2,1),b =(-1,k),a·(2a -b)=0,则k =( ) A .-12 B .-6 C .6 D .12

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

平面向量高考真题精选一

平面向量高考真题精选(一) 一.选择题(共20小题) 1.(2017?新课标Ⅱ)设非零向量,满足|+|=|﹣|则() A.⊥B.||=||C.∥D.||>|| 2.(2017?新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则?(+)的最小值是() A.﹣2 B.﹣ C.﹣ D.﹣1 3.(2017?浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=?,I2=?,I3=?,则() A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3 4.(2017?新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为() A.3 B.2 C.D.2 5.(2016?四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M满足||=1,=,则||2的最大值是() A.B.C. D. 6.(2016?新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=() A.﹣8 B.﹣6 C.6 D.8 7.(2016?天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、

BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为()A.﹣ B.C.D. 8.(2016?山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为() A.4 B.﹣4 C.D.﹣ 9.(2016?四川)在平面内,定点A,B,C,D满足==,?=?=?=﹣2,动点P,M满足=1,=,则||2的最大值是() A.B.C. D. 10.(2016?新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120° 11.(2015?新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B. C.D. 12.(2015?新课标Ⅰ)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=() A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4) 13.(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6 14.(2015?山东)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2 D.a2 15.(2015?四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N

平面向量题型归纳归纳

平面向量题型归纳 一.向量有关概念:【任何时候写向量时都要带箭头】 1.向量的概念:既有大小又有方向的量,记作:AB 或a 。注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 例:已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 4.单位向量:单位向量:长度为1的向量。若e 是单位向量,则||1e =。(与AB 共线的单位向量是|| AB AB ±); 5.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 6.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。 提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0); ④三点A B C 、、共线? AB AC 、 共线; 如图,在平行四边形ABCD 中,下列结论中正确的是 ( ) A.AB CD = B.AB AD BD -= C.AD AB AC += D.AD BC +=0 7.相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 、AB BA =-。例:下列命题:(1)若a b =,则a b =。(2)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则 AB DC =。其中正确的是_______ 题型1、基本概念 1:给出下列命题: ①若|a |=|b |,则a =b ;②向量可以比较大小;③方向不相同的两个向量一定不平行; ④若a =b ,b =c ,则a =c ;⑤若a //b ,b //c ,则a //c ;⑥00a ?=;⑦00a ?=; 其中正确的序号是 。

平面向量及其应用高考真题复习doc

一、多选题 1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 2.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=, 2QA QB =,记APQ 的面积为S ,则下列说法正确的是( ) A .//P B CQ B .2133 BP BA BC = + C .0PA PC ?< D .2S = 3.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 4.已知点()4,6A ,33,2B ??- ??? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( ) A .1122AE A B A C → →→ =+ B .2AB EF →→ = C .1133 CP CA CB → →→ =+ D .2233 CP CA CB → →→ =+ 6.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 7.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =b C .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立 D .在ABC 中, sin sin sin +=+a b c A B C 8.下列关于平面向量的说法中正确的是( )

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

相关文档
最新文档