(完整版)平面向量高考试题精选(含详细标准答案)

合集下载

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

平面向量经典试题(含答案)

平面向量经典试题(含答案)

平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。

专题11 平面向量专项高考真题总汇(带答案及解析)

专题11 平面向量专项高考真题总汇(带答案及解析)

专题11平面向量1.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.2.【2021·全国高考真题】已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP = B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP uuur ,2AP uuu r 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α=====,同理2||2|sin |2AP β== ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC3.【2020年高考全国III 卷理数】6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b A .3135-B .1935-C .1735D .1935【答案】D【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b +== ,因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+ .故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-【答案】A 【解析】如图,AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB⋅的取值范围是()2,6-,故选:A .【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.6.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .−3B .−2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=- ,1BC == ,得3t =,则(1,0)BC = ,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅ ,即22||||AB AC AC AB +>- ,因为AC AB BC -= ,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件,故选C .【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归数学思想.8.【2021·浙江高考真题】已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.9.【2021·全国高考真题(理)】已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.10.【2021·全国高考真题】已知向量0a b c ++= ,1a =,2b c == ,a b b c c a ⋅+⋅+⋅=_______.【答案】92-【分析】由已知可得()20a b c++=,展开化简后可得结果.【详解】由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=- .故答案为:92-.11.【2021·全国高考真题(理)】已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.12.【2021·北京高考真题】(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅=_______;a b ⋅=_______.【答案】03【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+= ,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.13.【2020年高考全国Ⅰ卷理数】设,a b 为单位向量,且||1+=a b ,则||-=a b ______________.【解析】因为,a b 为单位向量,所以||||1==a b所以||1+====a b ,解得:21⋅=-a b ,所以||-===a b ,故答案为:.【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.14.【2020年高考全国II 卷理数】已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】22【解析】由题意可得:11cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.15.【2020年高考天津】如图,在四边形ABCD 中,60,3B AB ∠=︒=,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅的最小值为_________.【答案】(1).16;(2).132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠= ,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=,以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴ ,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫⎪⎪⎝⎭,∵又∵16AD BC = ,则5,22D ⎛⎫⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤),5,22DM x ⎛⎫=-- ⎪⎝⎭,3,22DN x ⎛⎫=-- ⎪⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭ ,所以,当2x =时,DM DN ⋅ 取得最小值132.故答案为:16;132.【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.16.【2020年高考北京】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD = _________;PB PD ⋅=_________.;1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.1-.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点P 的坐标是解答的关键,考查计算能力,属于基础题.17.【2020年高考浙江】已知平面单位向量1e ,2e满足122||-≤e e .设12=+a e e ,123=+b e e ,向量a ,b 的夹角为θ,则2cos θ的最小值是_______.【答案】2829【解析】12|2|e e -≤u r u r Q 124412e e ∴-⋅+≤u r u r,1234e e ∴⋅≥u r u r ,222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅u r u r u r u r r r u r u r u r u r u r u rr r 12424228(1(1)3332953534e e =-≥-=+⋅+⨯u r u r .故答案为:2829.【点睛】本题考查利用模求向量数量积、利用向量数量积求向量夹角、利用函数单调性求最值,考查综合分析求解能力,属中档题.18.【2020年高考江苏】在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是▲.【答案】185【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭ ,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=,∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC = ,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=> .19.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________.【答案】23【解析】因为2=-c a ,0⋅=a b ,所以22⋅=-⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.20.【2019年高考天津卷理数】在四边形ABCD中,,5,30AD BC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= ___________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B,5(,)22D .因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒,因为AE BE =,所以30BAE ∠=︒,所以直线BE 的斜率为33,其方程为3(3y x =-,直线AE 的斜率为33-,其方程为33y x =-.由(333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得x 1y =-,所以1)E -.所以35(,)1)122BD AE =-=- .【名师点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便.21.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是___________.3【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即,AB = 故AB AC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.22.【2019年高考浙江卷】已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++ 的最小值是___________;最大值是___________.【答案】0; 0所以当1256341,1λλλλλλ======-时,有最大值max y ===故答案为0;【名师点睛】对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题.。

全国卷高考—平面向量试题带答案资料讲解

全国卷高考—平面向量试题带答案资料讲解

5.平面向量(含解析)一、选择题【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--u u u r ,则向量BC =u u u r ( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( )A .B .21 C .21 D . 二、填空题 【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = .【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________.【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量一、选择题(2017·4)设非零向量,a b ,满足+=-a b a b 则( )A .a ⊥b B. =a b C. a ∥b D. >a b(2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( )A. -1B. 0C. 1D. 2(2014·4)设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A .1B .2C .3D .5二、填空题(2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.(2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=uu u r uu u r _______.(2012·15)已知向量a ,b 夹角为45º,且|a |=1,|2-a b |b |= .(2011·13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .5.平面向量(解析版)一、选择题【2015,2】解:(3,1),u u u r u u u r u u u r u u u r Q AB BC AC AB =∴=-=(-7,-4),故选A【2014,6】解:+EB FC EC CB FB BC +=++u u u r u u u r u u u r u u u r u u u r u u u r =111()222AC AB AB AC AD +=+=u u u r u u u r u u u r u u u r u u u r ,故选A 二、填空题【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【解析】由题得(1,3)a b m +=-r r ,因为()0a b a +⋅=r r r ,所以(1)230m --+⨯=,解得7m =;【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 解析:23-.由题意()210x x ⋅=++=a b ,解得23x =-.故填23-. 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 解析:2. ∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[ta +(1-t )b ]·b =0,即ta ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________. 【解析】23. 由已知||2245cos ||||=︒⋅⋅=⋅.因为|2|a b -=r r 10||4||422=+⋅-,即06||22||2=--, 解得23||=. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 【解析】因为a 与b 为两个不共线的单位向量,所以1==a b .又k -a b 与+a b 垂直,所以()()0k +⋅-=a b a b ,即220k k +⋅-⋅-=a a b a b b ,所以10k k -+⋅-⋅=a b a b ,即1cos cos 0k k θθ-+-=.(θ为a 与b 的夹角)所以()()11cos 0k θ-+=,又a 与b 不共线,所以cos 1θ≠-,所以1k =.故答案为1.2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量(解析版)一、选择题此文档仅供收集于网络,如有侵权请联系网站删除 (2017·4)A 解析:由||||+=-a b a b r r r r 平方得2222()2()()2()++=-+a ab b a ab b r r r r r r r r ,即0=ab r r ,则⊥a b r r ,故选A.(2015·4)C 解析:由题意可得a 2=2,a ·b =-3,所以(2a +b )·a =2a 2+a ·b =4-3=1.(2014·4)A 解析:2222||210.||2 6.a b a b ab a b a b ab +=++=-=∴+-=r r r r r r r r r r r r Q Q Q 两式相减,则 1.ab =r r二、填空题(2016·13)-6解析:因为a ∥b ,所以2430m --⨯=,解得6m =-.(2013·14)2解析:在正方形中,12AE AD DC =+uu u r uuu r uuu r ,BD BA AD AD DC =+=-uu u r uu r uuu r uuu r uuu r ,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=uu u r uu u r uuu r uuu r uuu r uuu r uuu r uuu r .(2012·15)∵|2-a b |=224410-⋅=a a b +b ,即260--=|b |b |,解得|b |=(舍)(2011·13)k = 1解析: (a +b )·(k a -b )=0展开易得k =1.。

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。

高考平面向量及其应用专题及答案 百度文库

高考平面向量及其应用专题及答案 百度文库

一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=4.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+5.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .3OA OB OC ++=D .ED 在BC 方向上的投影为766.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒7.在ABC 中,若30B =︒,AB =2AC =,则C 的值可以是( ) A .30°B .60°C .120°D .150°8.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =30A =︒,则B =( )A .30B .45︒C .135︒D .150︒9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形10.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+11.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 12.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e13.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=14.已知ABC ∆的面积为32,且2,b c ==,则A =( ) A .30° B .60°C .150°D .120°15.题目文件丢失!二、平面向量及其应用选择题16.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B .833C .-4D .417.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形18.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是()3+∞,.以上结论中正确的有( )A .1个B .2个C .3个D .4个19.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin 7BAD ∠=,则CD 等于( )A 23B 3C .332D 4320.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形21.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .3C .12D .18322.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形23.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A .62-B .1(62)2- C .62+ D .1(62)2+ 24.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-25.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-26.题目文件丢失!27.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .3π B .23π C .56π D .6π 28.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1429.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=30.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( )A .54B .2C .174D .431.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .33C .33D .332.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .32B .22C .312D .212- 33.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形34.题目文件丢失!35.在ABC ∆中,6013ABC A b S ∆∠=︒=,,,则2sin 2sin sin a b cA B C-+-+的值等于( )A B C D .【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知 解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.3.ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.4.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.5.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),()3E A B C D -, 设123(0,),3),(1,),(,33O y y BO y DO y ∈==--,BO ∥DO , 所以2313y y =-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.6.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B中:因为csin sin 115B C b ==<,且c b >,所以角C 有两解; 对于选项C中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A B a =<,且b a <,所以角B 仅有一解. 故选:BC .【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.BC【分析】由题意结合正弦定理可得,再由即可得解.【详解】由正弦定理可得,所以,又,所以,所以或.故选:BC.【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.解析:BC【分析】由题意结合正弦定理可得sin 2C =,再由()0,150C ∈︒︒即可得解. 【详解】 由正弦定理可得sin sin AB AC C B =,所以1sin 2sin 2AB B C AC ⋅===, 又30B =︒,所以()0,150C ∈︒︒,所以60C =︒或120C =︒.故选:BC.【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.8.BC【分析】用正弦定理求得的值,由此得出正确选项.【详解】解:根据正弦定理得: ,由于,所以或.故选:BC.【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC【分析】用正弦定理求得sin B 的值,由此得出正确选项.【详解】 解:根据正弦定理sin sin a b A B =得:1sin 2sin 12b A B a ===,由于1b a =>=,所以45B =或135B =.故选:BC.【点睛】本题考查利用正弦定理解三角形,是基础题. 9.AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误.【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确;对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒=所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确;对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.10.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.12.ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD【分析】依次判断各选项中的两向量是否共线即可.【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.14.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin 2A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.15.无二、平面向量及其应用选择题16.C【分析】先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果.【详解】 如图所示,AB AF 2232,3cos 113BE EC BE BC AF DF α=⇒==→→=⇒=⇒=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则())0,3,,3B F E ⎫⎪ ⎪⎝⎭,因此)BF AE BF 232,23264→=-→→=⨯=-=-,故选C.【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 17.C【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案.【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+,所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=.所以0BC AE ⋅=,即BC AD ⊥,故AB AC =,ABC 是等腰三角形.故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题.18.B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=,结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =,因为0A π<<,所以2A π=,因此③正确; ④由正弦定理sin sin a b A B =得sin 3sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠ 所以3sin 2A ⎛⎫∈ ⎪ ⎪⎝⎭,即)3,2b ∈,故④错误. 故选:B【点睛】 本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.19.A【分析】首先根据余弦定理求AB,再判断ABC的内角,并在ABD△和ADC中,分别用正弦定理表示AD,建立方程求DC的值.【详解】AB=3==,222cos22AB BC ACBAB BC+-∴===⋅,又因为角B是三角形的内角,所以6Bπ=,90BAC∴∠=,sin BAD∠=,cos BAD∴∠==,sin cosDAC BAD∴∠=∠=,在ABD△中,由正弦定理可得sinsinBD BADBAD⋅=∠,在ADC中,由正弦定理可得sinsinDC CADDAC⋅=∠,()17DC DC⨯=,解得:DC=.故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.20.D【分析】由数量积的定义判断B角的大小,得三角形形状.【详解】由题意cos()0a b a b Bπ⋅=->,∴cos()0Bπ->,cos0B->,cos0B<,又B是三角形内角,∴2Bππ<<.∴ABC是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 21.A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值22.D【分析】首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果.【详解】 解:已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以:22A B =或21802A B =︒-,解得:A B =或90A B +=︒所以:ABC 的形状一定是等腰或直角三角形故选:D .【点评】本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题. 23.A【分析】由条件求得∠BCD =150°,∠CBE =15°,故∠ABE =30°,可得∠AEB =105°.计算sin105°,代入正弦定理sin30sin105AE AB =︒︒,化简求得AE =-. 【详解】由题意可得,AC =BC =CD =DA =BAC =45°,∠BCD =∠ACB +∠ACD =90°+60°=150°.又△BCD 为等腰三角形,∴∠CBE =15°,故∠ABE =45°﹣15°=30°,故∠BEC =75°,∠AEB =105°.再由 sin105°=sin (60°+45°)=sin60°cos45°+cos60°sin45°=, △ABE 中,由正弦定理可得sin30sin105AE AB =︒︒,∴12AE =,∴AE =), 故选:A .【点睛】本题考查勾股定理、正弦定理的应用,两角和的正弦公式,属于中档题.24.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.25.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+,∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=.解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.26.无27.D【分析】根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可.【详解】∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得22a b a b +=-,即2222||2||2a b a b a b a b ++⋅=+-⋅ , 则0a b ⋅=,由2a b b +=, 平方得222||24||a b a b b ++⋅=,得223a b =,即3a b =则2a b b +=,22|3|a b a a a b b +⋅=+⋅=(),则向量a b +与a 的夹角的余弦值23||323a b a b cos a b a b bθ+⋅===+⋅⋅(), ,0.6πθπθ≤≤∴=, , 故选D.【点睛】本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 28.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.29.C【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案. 【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅, 所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案

(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.[4,6]B.[ ﹣1, +1]C.[2 ,2 ]D.[ ﹣1, +1]
9.(2014•桃城区校级模拟)设向量 , 满足 , ,< >=60°,则| |的最大值等于( )
A.2B. C. D.1
10.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上, =λ , =μ ,若 • =1, • =﹣ ,则λ+μ=( )
故选:A
14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则 等于( )
A. B.2 C.3 D.4
解:∵O为任意一点,不妨把A点看成O点,则 = ,
∵M是平行四边形ABCD的对角线的交点,∴ =2 =4
故选:D.
二.选择题(共8小题)
15.(2013•浙江)设 、 为单位向量,非零向量 =x +y ,x、y∈R.若 、 的夹角为30°,则 的最大值等于2.
A.20B.15C.9D.6
解:∵四边形ABCD为平行四边形,点M、N满足 , ,
∴根据图形可得: = + = ,
= = ,
∴ = ,
∵ = •( )= 2﹣ ,
2= 2 2,
= 2 2 ,
| |=6,| |=4,
∴ = 2 2=12﹣3=9
故选:C
4.(2015•安徽)△ABC是边长为2的等边三角形,已知向量 , 满足 =2 , =2 + ,则下列结论正确的是( )
24.(2007•四川)设F1、F2分别是椭圆 =1的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且 ,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
平面向量高考试题精选(一)
参考答案与试题解析
一.选择题(共14小题)
故选:D.
9.(2014•桃城区校级模拟)设向量 , 满足 , ,< >=60°,则| |的最大值等于( )
A.2B. C. D.1
解:∵ ,
∴ 的夹角为120°,
设 , 则 ; =
如图所示
则∠AOB=120°;∠ACB=60°
∴∠AOB+∠ACB=180°
∴A,O,B,C四点共圆



由三角形的正弦定理得外接圆的直径2R=
】解:∵动点D满足| |=1,C(3,0),
∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).
又A(﹣1,0),B(0, ),
∴ + + = .
∴| + + |= = = ,(其中sinφ= ,cosφ= )
∵﹣1≤sin(θ+φ)≤1,
∴ = sin(θ+φ)≤ = ,
∴| + + |的取值范围是 .
解:设P的坐标为(x,y),则
=(2,1), =(1,2), =(x﹣1,y+1),∵ ,
∴ ,解之得
21.(2010•天津)如图,在△ABC中,AD⊥AB, , ,则 =.
22.(2009•天津)若等边△ABC的边长为 ,平面内一点M满足 = + ,则 =.
三.选择题(共2小题)
23.(2012•上海)定义向量 =(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为 =(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
平面向量高考试题精选(一)
一.选择题(共14小题)
1.(2015•河北)设D为△ABC所在平面内一点, ,则( )
A. B.
C. D.
2.(2015•福建)已知 ,若P点是△ABC所在平面内一点,且 ,则 的最大值等于( )
A.13B.15C.19D.21
3.(2015•四川)设四边形ABCD为平行四边形,| |=6,| |=4,若点M、N满足 , ,则 =( )
18.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则 的值为.
19.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则 的最小值为.
20.(2010•浙江)已知平面向量 满足 ,且 与 的夹角为120°,则| |的取值范围是.
∴ 与 的夹角为 .
故选:B.
12.(2014•四川)平面向量 =(1,2), =(4,2), =m + (m∈R),且 与 的夹角等于 与 的夹角,则m=( )
A.﹣2B.﹣1C.1D.2
解:∵向量 =(1,2), =(4,2),
∴ =m + =(m+4,2m+2),
又∵ 与 的夹角等于 与 的夹角,
(1)设g(x)=3sin(x+ )+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量 的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.
A.20B.15C.9D.6
4.(2015•安徽)△ABC是边长为2的等边三角形,已知向量 , 满足 =2 , =2 + ,则下列结论正确的是( )
A.| |=1B. ⊥ C. • =1D.(4 + )⊥
5.(2015•陕西)对任意向量 、 ,下列关系式中不恒成立的是( )
A.| |≤| || |B.| |≤|| |﹣| ||
A.| |=1B. ⊥ C. • =1D.(4 + )⊥
解:因为已知三角形ABC的等边三角形, , 满足 =2 , =2 + ,又 ,
所以 , ,
所以 =2, =1×2×cos120°=﹣1,
4 =4×1×2×cos120°=﹣4, =4,所以 =0,即(4 ) =0,即 =0,所以 ;
故选D.
5.(2015•陕西)对任意向量 、 ,下列关系式中不恒成立的是( )
∵ ,∴P(1,4),
∴ =( ﹣1,﹣4), =(﹣1,t﹣4),
∴ =﹣( ﹣1)﹣4(t﹣4)=17﹣( +4t),
由基本不等式可得 +4t≥2 =4,
∴17﹣( +4t)≤17﹣4=13,
当且仅当 =4t即t= 时取等号,
∴ 的最大值为13,
故选:A.
3.(2015•四川)设四边形ABCD为平行四边形,| |=6,| |=4,若点M、N满足 , ,则 =( )
A.﹣2B.﹣1C.1D.2
13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则 + =( )
A. B. C. D.
14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则 等于( )
A. B.2 C.3 D.4
二.选择题(共8小题)
15.(2013∈R.若 、 的夹角为30°,则 的最大值等于.
16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足 (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.
17.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 =.
当OC为直径时,模最大,最大为2
故选A
10.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上, =λ , =μ ,若 • =1, • =﹣ ,则λ+μ=( )
A. B. C. D.
解:由题意可得若 • =( + )•( + )= + + +
=2×2×cos120°+ +λ • +λ •μ =﹣2+4μ+4λ+λμ×2×2×cos120°
即3 2﹣2 2﹣ • =0,
即 • =3 2﹣2 2= 2,
∴cos< , >= = = ,
即< , >= ,
故选:A
7.(2015•重庆)已知非零向量 满足| |=4| |,且 ⊥( )则 的夹角为( )
A. B. C. D.
解:由已知非零向量 满足| |=4| |,且 ⊥( ),设两个非零向量 的夹角为θ,
∴ = ,
∴ = ,
∴ = ,
解得m=2,
故选:D
13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则 + =( )
A. B. C. D.
【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,
∴ + =( + )+( + )= + = ( + )= ,
A. B. C. D.
11.(2014•安徽)设 , 为非零向量,| |=2| |,两组向量 , , , 和 , , , ,均由2个 和2个 排列而成,若 • + • + • + • 所有可能取值中的最小值为4| |2,则 与 的夹角为( )
A. B. C. D.0
12.(2014•四川)平面向量 =(1,2), =(4,2), =m + (m∈R),且 与 的夹角等于 与 的夹角,则m=( )
A.| |≤| || |B.| |≤|| |﹣| ||
C.( )2=| |2D.( )•( )= 2﹣ 2
解:选项A正确,∵| |=| || ||cos< , >|,
相关文档
最新文档