燃烧学
燃烧学课件.精装版

≥0.8
30
二、着火 (一)着火概念 可燃物在与空气共存的条件下,当达到某一温度 时,与着火源接触即能引起燃烧,并在着火源离 开后仍能持续燃烧,这种持续燃烧的现象叫着火。 着火就是燃烧的开始,并且以出现火焰为特征。 着火是日常生活中最常见的燃烧现象。如用火柴 去点柴草、汽油、液化石油气等,就会引起它们 着火。 (二)燃点 燃点是指可燃物开始持续燃烧所需的最低温度, 又称着火点。可燃物的温度 没有达到燃点时是不会着火的,特质的燃点越低, 越易是火。某些常见可燃物的燃点如表3-3所示。
燃烧
公安部消防局最新统计数字: 2008年共发生火灾13.3万起 死亡1385人,受伤684人 直接财产损失15亿元
(一)、火灾的危害 “火,善用之则为福,不善用之则为祸”
火灾概念:是在时间和空间上失去控制 的燃烧所造成的灾害。
新疆克拉玛依市1994年12月8日大火
、
1994年12月8日,新疆克拉玛依市教育局官 僚为欢迎上级派来走走样子的“义务教育 与扫盲评估验收团”的25位官员,组织全 市最漂亮的能歌善舞的中小学生796人在友 谊馆剧场举办“专场文艺演出”。
第四章 燃烧学
预防为主 防消结合
主讲人:
一、燃烧的概念
燃烧——可燃物与氧化剂作用发生的放热反 应,通常伴有火焰、发光和(或)发烟现象。 燃烧具有三个特征,即化学反应、放热和发 光。通电的电炉和灯泡虽有发光和放热现象, 但没有进行化学反应,只是进行了能量的转 化,故不是燃烧;生石灰遇水发生了化学反 应,并且放出大量的热,但它没有发光现象, 它也不是燃烧。这些现象虽不是燃烧,但在 一定条件下,可作为着火源引起燃烧或引发 火灾。
(三)闪点在消防上的应用
1.闪点是判断液体火灾危险性大小的主要依据
燃烧学课后习题答案

燃烧学课后习题答案燃烧学课后习题答案燃烧学是化学中的一个重要分支,研究物质在氧气存在下的燃烧过程,以及燃烧过程中涉及的能量转化和反应动力学。
学习燃烧学的过程中,课后习题是巩固知识、检验理解的重要环节。
下面,我将为大家提供一些燃烧学课后习题的答案,希望能够帮助大家更好地掌握这门学科。
1. 什么是燃烧反应?燃烧反应的一般方程式是什么?燃烧反应是指物质在氧气存在下发生的放热反应。
一般方程式可以表示为:燃料 + 氧气→ 二氧化碳 + 水 + 能量。
2. 燃烧反应中能量的转化是如何进行的?在燃烧反应中,能量的转化包括燃料的化学能转化为热能和光能。
燃料的化学能是指燃料分子中的化学键的能量,当燃料与氧气反应时,化学键会断裂,释放出能量。
这些能量以热能和光能的形式传递给周围环境。
3. 燃烧反应中的燃料和氧气的化学计量比是什么意思?燃料和氧气的化学计量比是指在燃烧反应中,燃料和氧气的摩尔比例关系。
化学计量比可以通过化学方程式中系数的比较得到。
例如,对于乙烷(C2H6)的燃烧反应,方程式为:2C2H6 + 7O2 → 4CO2 + 6H2O。
从中可以看出,乙烷和氧气的化学计量比是2:7。
4. 燃料的热值是什么?如何计算燃料的热值?燃料的热值是指单位质量或单位摩尔燃料完全燃烧时所释放出的热量。
燃料的热值可以通过实验测定得到。
常用的燃料热值单位有焦耳和千卡。
计算燃料的热值时,可以使用下面的公式:热值 = 释放的热量 / 燃料的质量或摩尔数5. 什么是燃烧热?燃烧热是指单位质量或单位摩尔燃料完全燃烧时所释放出的热量。
燃烧热可以用来评价燃料的能量含量和燃料的燃烧性能。
燃烧热的单位通常是焦耳/克或千焦/克。
6. 燃烧反应速率的影响因素有哪些?燃烧反应速率受到多种因素的影响,主要包括温度、压力、反应物浓度、催化剂和反应物的物理状态等。
温度的升高可以加快反应速率,因为温度的升高会增加反应物分子的平均动能,使得分子更容易发生碰撞。
《燃烧学讲义》课件

未来燃烧技术的发展趋势与挑战
发展趋势
未来燃烧技术的发展趋势包括进一步提高燃烧效率、 降低污染物排放、实现可再生能源的利用和智能化控 制等。
挑战
未来燃烧技术的发展面临诸多挑战,如技术瓶颈、经 济成本、政策法规和环保要求等。需要加强科技创新 和政策引导,推动燃烧技术的可持续发展。
感谢您的观看
THANKS
03
燃料电池可应用于汽车、船舶、航空航天、电力系统和备用电
源等领域。
生物质能燃烧技术及应用
生物质燃烧技术
生物质燃烧技术是将生物质转化为热能和电能的一种方式,具有高 效、环保、可再生的特点。
生物质燃烧设备
生物质燃烧设备包括生物质锅炉、生物质焚烧炉和生物质热电机组 等。
生物质燃烧应用
生物质燃烧可用于供热、发电和工业生产等领域,是实现可再生能源 利用的重要途径之一。
02
燃烧的基本原理
燃烧化学反应机理
01
燃烧化学反应机理是研究燃烧过 程中化学反应如何进行的机制。 它涉及到反应物分子间的相互作 用以及反应过程中的能量变化。
02
燃烧化学反应机理对于理解燃烧 过程、优化燃烧效率和减少污染 物排放具有重要意义。
燃烧反应动力学
燃烧反应动力学是研究燃烧过程中化 学反应速率以及影响反应速率的各种 因素的科学。
通过燃烧反应动力学的研究,可以了 解燃烧反应的快慢程度,进而优化燃 烧条件,提高燃烧效率。
燃烧热力学
燃烧热力学主要研究燃烧过程中能量的转化和物质的变化。 它涉及到燃烧过程中能量的释放、转移和利用。
燃烧热力学对于能源利用、环境保护和可持续发展具有重要 意义。
燃烧过程中的物质传递与热力学
燃烧过程中的物质传递与热力学涉及 到燃烧过程中物质和能量的传递与转 化过程。
《燃烧学讲义》课件

能量转化
燃烧反应中的能量转化过程,包 括焓变、内能变化等,解释能量 转化的关键概念。
平衡态与非平衡态
燃烧反应中的平衡态和非平衡态 的概念以及相互转化的条件和特 点。
爆炸理论
深入研究爆炸反应的机理和特性,包括爆轰波的传播、爆炸温度和压力等关键概念的介绍。
1
爆炸理论概述
简要介绍爆炸反应的基本原理和定义,
《燃烧学讲义》PPT课件
燃烧学是研究燃烧及相关现象的学科,涉及热力学、化学动力学、流体力学 等多个领域。本课件将带你深入了解燃烧学的基础知识和应用。
燃烧学介绍
详细介绍燃烧学的概念、研究对象以及与其他学科的关系,帮助大家理解燃烧学的重要性和应用 价值。
研究领域广泛
燃烧学涵盖化学、物理、力学等多个学科领域,与许多实际问题密切相关。
预混火焰
探讨预混火焰的形成和特性, 分析混合气浓度对火焰传播速 度的影响。
燃烧极限
介绍燃烧极限概念和测定方法, 以及燃料和氧气浓度对燃烧的 影响。
火焰传递和统计理论
研究火焰的传递规律和统计性质,探讨火焰在不同条件下的行为和特点。
1 火焰传播机制
解释火焰传播的基本机制和影响因素,从微观和宏观层面进行讨论。
燃烧反应机理
了解不同物质的燃烧反应机理,对于安全控制、能源利用等方面都有重要意义。
燃烧产品分析
通过燃烧产物分析,可以得到有关燃料的详细信息,对环境保护和排放控制有重要作用。
热力学基础知识
介绍燃烧反应过程中涉及的热力学基本概念和定律,为后续的研究和理解提供必要的理论基础。
熵的概念
深入探讨熵的含义和作用,解释 燃烧过程中熵变的重要性。
爆轰波的形成
2
为后续的内容打下基础。
燃烧学

燃烧学燃烧学是研究燃烧现象、实践和理论的科学。
燃烧是涉及到化学、热力学、传热传质学和流体力学等问题的复杂过程。
燃烧学是研究着火、熄火和燃烧机理的学科。
燃烧是指燃料与氧化剂发生强烈化学反应,并伴有发光发热的现象。
燃烧不单纯是化学反应,而是反应、流动、传热和传质并存、相互作用的综合现象。
燃烧学的研究内容通常包括燃烧过程的热力学,燃烧反应的动力学,着火和熄火理论,预混气体的层流和湍流燃烧,液滴和煤粒燃烧、液雾、煤粉和流化床燃烧,推进剂燃烧,焊震燃烧,边界层和射流中的燃烧,湍流和两相燃烧的数学模型,以及燃烧的激光诊断等。
远古时代,火的使用使人类从野蛮状态走向文明。
十世纪以前,人们认为物质燃烧取决于一种特殊的“燃素”。
18世纪中叶,法国化学家拉瓦锡和俄国科学家罗蒙诺索夫根据他们的实验,分别提出燃烧是物质氧化的理论。
19世纪,人们用热化学和热力学方法研究燃烧,发现了燃烧热、绝热燃烧温度和燃烧产物平衡成分等重要特性。
20世纪初,苏联化学家谢苗诺夫和美国化学家刘易斯等人发现,影响燃烧速率的重要因素是反应动力学,而且燃烧反应有分枝链式反应的特点,即中间生成物可以加速燃烧过程。
20 世纪20年代,苏联科学家泽利多维奇、弗兰克·卡梅涅茨基和美国的刘易斯等又进一步发现:燃烧现象,无论是着火、熄灭和火焰传播,还是缓燃和爆震等,都是化学反应动力学和传热传质等物理因素的相互作用。
在研究了预混火焰和扩散火焰、层流燃烧、湍流燃烧、液摘燃烧和碳粒燃烧等基本规律之后,人们认识到,控制燃烧过程的主导因素往往不是化学反应动力学,而是流动和传热传质,于是初步形成燃烧理论。
20世纪40~50年代,由于航空、航天技术的发展,使燃烧的研究由一般动力机械扩展到喷气发动机、火箭和飞行器头部烧蚀等问题中,并取得了迅速的发展。
因此,力学家卡门和中国的钱学森建议用连续介质力学方法来研究燃烧,提出了“化学流体力学”这一名称。
许多人运用粘性流体力学和边界层理论对层流燃烧、湍流燃烧、着火、火焰稳定和燃烧振荡等问题进行了更深入的定量分析。
燃烧学-ch1

主要内容
1.1 燃烧和火焰 1.1.1 燃烧 1.1.2 火焰 1.1.3 火焰的类型 1.2 燃烧的基本特点 1.3 燃烧学的发展 1.4 燃烧学的主要任务 参考文献
学习提示
为什么要学习燃烧学? 学什么? 如何学?
为什么学习燃烧学
社会发展需要、学科发展需要 火是人类文明的标志 燃烧现象与人类生存密不可分 燃烧是化学发展的主线 燃烧是大气环境污染的主要来源
燃烧的基本过程
气体燃料: 预混火焰、扩散火焰 液体燃料:存在蒸发—扩散 的过程。液体在预热阶段变 为蒸汽,并与氧化剂(空气) 混合形成可燃混合气,然后 着火燃烧。 固体燃料:更复杂 固体在预热阶段因热解、升 华或熔化蒸发也会释放出气 体组分,与氧化剂(空气) 混合形成可燃混合气并着火 燃烧;与此同时,随着温度 继续升高,固体可燃物固态 部分也同时燃烧。
学习提示
燃烧学研究对象
燃烧学
燃烧科学技术
燃烧基本理论 燃烧化学 燃烧物理
燃烧技术及控制技术
燃烧器 新能源 环保与防灾 热传递
化学热力学
化学动力学
动量传递
质量传递
燃烧学研究方法
实验研究:外部效应 发热:温度、热辐射 发光:气体热辐射光谱带:CO2,H2O,0.75um~0.1mm 化学发光辐射:来自电子激发态的各种组分,CH, OH, CC等自由基 固体烟粒、碳粒:发射连续光谱,增强火焰辐射 物质转化:中间物质和平衡物质——种类和浓度,生存期 流动:速度、温度、密度、压力 火焰传播:宏观表征 理论研究:燃烧现象——物理化学模型——数学模型(分析解) 化学反应动力学模型(燃烧模型) 流体动力学模型 数值研究:数学模型——数值格式,计算技术 基础数据,数值方法,计算编程——计算效率和精度
燃烧学试题及答案
燃烧学试题及答案燃烧学是研究燃烧现象、燃烧过程及其控制的科学。
以下是一份燃烧学试题及答案的示例,供参考:一、选择题(每题2分,共20分)1. 燃烧的定义是什么?A. 物质与氧气发生的放热反应B. 物质与氧气发生的吸热反应C. 物质与空气发生的放热反应D. 物质与空气发生的吸热反应答案:A2. 燃烧的三个基本条件是什么?A. 燃料、氧气、点火源B. 燃料、氧气、催化剂C. 燃料、空气、点火源D. 燃料、空气、催化剂答案:A3. 以下哪个不是燃烧产物?A. 二氧化碳B. 水蒸气C. 一氧化碳D. 氧气答案:D4. 什么是完全燃烧?A. 燃料完全转化为二氧化碳和水蒸气B. 燃料完全转化为一氧化碳和水蒸气C. 燃料完全转化为一氧化碳和二氧化碳D. 燃料完全转化为水蒸气答案:A5. 什么是不完全燃烧?A. 燃料完全转化为二氧化碳和水蒸气B. 燃料部分转化为一氧化碳和水蒸气C. 燃料部分转化为二氧化碳和水蒸气D. 燃料完全转化为一氧化碳答案:B...二、填空题(每空2分,共20分)1. 燃烧过程可以分为_和_两个阶段。
答案:预混燃烧阶段;扩散燃烧阶段。
2. 燃烧速率是指单位时间内_的质量或体积的减少量。
答案:燃料。
3. 热值是指单位质量或单位体积的燃料完全燃烧时放出的热量,通常分为_和_。
答案:高位热值;低位热值。
4. 燃烧反应的化学方程式通常用_表示。
答案:平衡常数。
5. 燃烧过程中,火焰可以分为_、_和_三个区域。
答案:反应区;氧化区;未反应区。
...三、简答题(每题10分,共30分)1. 简述燃烧过程中的化学反应类型。
答案:燃烧过程中的化学反应主要包括氧化反应、还原反应和热分解反应。
氧化反应是燃料与氧气结合生成氧化物的过程;还原反应是燃料中的氧化态降低的过程;热分解反应是在高温下燃料分解成更简单物质的过程。
2. 解释什么是燃烧的临界点火温度,并说明其意义。
答案:临界点火温度是指燃料开始自持燃烧所需的最低温度。
燃烧学
一、燃烧与火焰的基本概念1、燃烧通常把具有强烈放热并伴随有光辐射的快速化学反应过程都称为燃烧,如典型的强烈氧化反应,以及与此相似的氮化、氟化等反应也称为燃烧。
(在有两种组分参加的燃烧反应中,把放出活泼氧原子(或类似的原子)的物质称为氧化剂,而另一类组分则称为燃料。
)2、燃烧过程的特性除发光、发热等外部特征外,还具有电离和在可燃介质中传播的特征。
火焰辐射由于火焰发光、发热等导致,主要包括:热辐射——主要是化学稳定产物的光谱带,最强的光谱带一般在红外区。
化学发光辐射——不连续光谱带发射的结果,主要来自于化学反应过程中CH、OH、O等自由基的激发态电子。
炽热固态烟粒和碳粒的辐射——连续辐射,具有较宽的光谱带范围。
电离特性一般在碳氢化合物和空气中的燃烧火焰中(尤其是层流火焰中)的气体具有较高的电离度。
自行传播火焰向周围可燃介质传播,直到整个反应系统终止。
根据传播机理和特征包括两类火焰:缓慢燃烧火焰——通过导热使未燃气体温度升高(或通过扩散作用将自由原子、自由基传递到未燃气体中产生链式反应),以约0.2~1m/s的速度稳定、缓慢地传播。
爆轰火焰——依靠激波的压缩作用使未燃气体温度升高,传播速度约为几km/s)。
3、燃烧过程的本质(1)化学的观点:燃烧过程中原来物质的分子结构被破坏,原子中的外层电子重新组合,经过一系列的中间产物的演变,最后形成了生成物即燃烧产物。
在化学反应中,总的化学能降低了,这部分能量主要以热能和光能的形式被释放出来,表现为火焰现象。
(2)物理的观点:燃烧过程总是发生在流动系统中,这种流动可能是均相流,也可能是多相流,可以是层流也可以是湍流;燃烧过程总是发生在不均匀物质场的条件下,多种组分之间会发生混合、扩散等现象,甚至还有物质相态的变化。
燃烧引起的不均匀温度场,使燃烧过程中还伴有能量的传递,且如外界电磁场、重力场等因素也会对燃烧过程产生显著的影响。
因此,燃烧是一种物理和化学的复杂的综合动态过程,燃烧学的学习必然涉及燃烧的化学热力学和化学动力学基础、燃烧的流体力学和传热传质基础等相关理论基础,以及化学动力学控制的燃烧、液体与煤燃烧的理论、预混气体火焰、湍流燃烧等基本燃烧现象。
燃烧学
第一讲重点:燃烧条件、及燃烧空气量的计算。
绪论燃烧学是研究燃烧的发生、发展和熄灭过程的学科。
一.燃烧学的研究内容燃烧的本质;着火机理、熄火机理;气、液、固体可燃物燃烧特性;燃烧技术(工程燃烧学);防灭火技术(消防燃烧学)。
二.燃烧学学习的目的和意义2.1 火的作用火被人类掌握和使用以后,为人类的进步和社会的发展作出了巨大贡献。
2.2火的危害火一旦失去控制,造成对国民经济的损失,同时,火灾还对环境和生态系统造成不同程度的破坏。
火灾还对社会带来不安定因素。
火灾指的是在时间和空间上失去控制的一种灾害性燃烧现象,包括森林、建筑、油类等火灾以及可燃气和粉尘爆炸。
火灾发生的必要条件:可燃物、空气和火源同时存在。
按火灾损失严重程度可分为特大火灾、重大火灾和一般火灾三类。
下面是几个典型火灾案例。
1998年1月3日,吉林省通化市东珠宾馆发生火灾。
1999年10月30日,韩国仁川市一幢4层楼的地下卡拉OK厅发生火灾,有57人被烧死,71人被烧伤。
2000年12月25日,洛阳东都商厦火灾。
2002年6月16日,位于海淀区学院路20号的“蓝极速”网吧发生火灾。
火灾烟气的组成:(1)气相燃烧产物;(2)未完全燃烧的液固相分解物和冷凝物微小颗粒;(3)未燃的可燃蒸汽和卷吸混入的大量空气。
火灾烟气中含有众多的有毒有害成分、腐蚀性成分和颗粒物等,加之火灾环境高温、缺氧,导致火灾中很多人因烟气窒息和中毒而死亡。
2.3目的和意义学习研究各种可燃物的着火条件――――防火学习研究物质爆炸规律―――预防爆炸学习研究燃烧、蔓延规律、熄灭―――灭火,减少损失学习研究燃烧烟气特性――――防排烟,减少人员伤亡三、火灾防治措施火灾防治措施有:建立消防队伍和机构、研制各种防灭火设备、制定相关防灭火法规、研究火灾机理和规律及调动社会各界力量投入防灭火。
四、燃烧学的研究对象和方法4.1燃烧学的研究对象燃烧学的主要研究方面:1、燃烧理论的研究。
2、燃烧技术的研究。
燃烧学基础知识
燃烧学基础知识燃烧啊,就是一种很神奇的现象。
简单说呢,就是东西烧起来啦。
你看那蜡烛,火苗一闪一闪的,这就是燃烧。
燃烧得有三个要素,就像三兄弟一样缺一不可。
有可燃物,这就是能烧起来的东西呗,像木头啊,纸张啊,都是可燃物。
要是没有能烧的东西,那还谈什么燃烧呢。
然后呢,得有氧化剂。
在咱们日常生活里,最常见的氧化剂就是氧气啦。
你想啊,在太空里没有氧气,火柴都划不着呢。
这就说明氧气对于燃烧多重要。
可燃物和氧化剂就像两个好伙伴,得凑一块儿才有可能燃烧起来。
还有一个重要的因素就是着火源。
这就像是个导火索,能把燃烧这个事儿给触发了。
比如打火机的火苗,或者是静电产生的火花。
要是没有这个着火源,可燃物和氧化剂就只能干瞪眼,啥事也不会发生。
不同的东西燃烧起来可不一样呢。
像汽油燃烧就特别猛,呼啦一下就着起来了,还能产生很大的能量。
这就是因为汽油这种可燃物本身的性质。
而且燃烧的时候还会产生很多东西,像二氧化碳啊,水啊。
要是燃烧不完全呢,还会有一氧化碳这种有毒的气体冒出来。
这可就不好了,所以燃烧的时候得让它烧得充分一点。
在生活里,燃烧无处不在。
做饭的时候,炉灶里的火在燃烧,这是为了把食物弄熟。
冬天的时候,壁炉里的火烧得旺旺的,能让屋子暖烘烘的。
但是燃烧也得小心呀,要是不小心引发了火灾,那可就麻烦大了。
所以我们得了解燃烧学的基础知识,知道怎么安全地用火。
燃烧的颜色也很有意思呢。
你看那烟花,为啥能有那么多漂亮的颜色呀?这就是因为在烟花里面加了不同的东西,燃烧的时候就会产生不同颜色的光。
像加了钠元素的,燃烧就可能是黄色的光;加了铜元素呢,可能就是绿色的光。
是不是超级酷?燃烧学的基础知识就是这么好玩又实用。
了解了这些,你就会对身边的燃烧现象有更深的认识啦。
不管是看到蜡烛的小火苗,还是大马路上汽车发动机的燃烧,你都能明白其中的门道呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1预防和控制可燃气爆炸的方法:
1、严格控制火源
2、防止预混可燃气的产生
3、用惰性气体预防气体爆炸
4、用阻火装置防止爆炸传播
5、用爆炸抑制器抑制爆轰
6、用泄压装置保护设备,防止爆炸的灾害扩大,减少损失
7、用爆炸抑爆装置抑制爆炸.
2湍流燃烧是具有湍流流动性质的燃烧.
(特点)长度短,厚度较厚,发光区模糊,有明显噪音,燃烧强化反应率大.因为在层流燃烧中,输运流动性的作用更大,所以湍流大于层流.
3气流速度是如何影响火焰高度的?
气流在流速比较低时,既处于层流状态,火焰的高度随流速的增加大致正比提高,而流速比较高时,是处于湍流状态时,火焰高度几乎与流速无关.
4电火花引燃的机理,影响引燃的因素.
(机理)一是着火的热理论,它把电火花视为一个高温热源使局部混合气体温度升高,后被点燃.二是着火电理论,靠近电火花的混合气体被电离形成活性中心,而提供燃烧条件.(因素)1热容越大,最小引燃能越大,混气不容易引燃2导热系数越大最小引燃能越大,混气不容易引燃3燃烧热大,最小引燃能小, 混气容易引燃4混气压力大,密度大,最小引燃能小,混气易引燃5混气初温高,最小引燃能小混气易引燃6混气活化能大,混气不易引燃.
5预混可燃气燃烧波的传播存在缓燃和爆震.
(特点)缓燃,火焰正常传播是依靠导热和分子扩散使未燃混合气温度升高,并进入反应区而引起化学反应,从而使燃烧波不断向未燃混合气中推进,速度一般不大于1-3M.S,传播是稳定的.而爆震波的传播不是通过热传质发生的,是依靠激波的压缩作用使未燃混合气的温度不断升高而引起化学反应的,从而使燃烧不断向未燃混合气中推进,传播速度很高,大于1000M.S与正常火焰传播速度形成了明显的对比,其传播也是稳定的.
6影响层流预混火焰传播速度的因素
1燃料氧化剂比值的影响2燃料结构的影响3压力的影响4混合物初始温度的影响5火焰温度的影响6惰性添加剂的影响7活性添加剂的影响.
7爆炸极限的影响因素
1初始温度,爆炸性混合物的初始温度越高,则爆炸极限范围越大,即爆炸下限降低而爆炸上限增高2初始压力,一般压力增大,爆炸极限也扩大,若压力降至临界压力以下系统便不爆炸3惰性介质即杂质,若混合物中含惰性气体的百分数增加,爆炸极限的范围缩小,惰性气体的浓度提高到某一数值,可使混合物不爆炸4容器,充装容器的材质,尺寸等,对物质的爆炸极限均有影响5点火能源,火花的能量,热表面的面积`火源与混合物的接触时间等,对爆炸均有影响
8爆轰的过程及本质?
过程1开始的燃烧波是正常的火焰传播2由于温度升高,体积膨胀压缩未燃混气,产生一系列的压缩波,向未燃混气传播3压缩波重叠在一起,形成激波4激波后压力非常高,使未燃混气着火,经过一段时间后,火焰传播与微波引起的燃烧合二为一,激波后的已燃气体又连续向前传递一系列的压缩波,并不断提供能量以阻止激波强度的衰减,从而得到一稳定的爆轰波.本质正常火焰传播形成体积膨胀的已燃气体相当于一个活塞压缩未燃混气,产生一系列的压缩波.
9爆轰的形成条件1初始火焰传播能形成压缩扰动2管子要足够长或自由空间的预混气体积要足够大3可燃气浓度要处于爆轰极限范围内4管子直径大于爆轰临界直径.
10竖直向上传播(快)向上蔓延时高温燃气流经未燃固体表面,所以对流换热明显,而得到更多的热量,所以蔓延速度快。
竖直向下传播(慢)向下蔓延时高温燃气流不经未燃固体表面,传热量少,所以蔓延速度也就慢了。
11强迫着火和自燃的不同及高温质点引燃可燃混合气的条件?
不同1强迫着火仅仅是在混气局部中进行的,而自发着火则在整个混气空间进行2自发着火是全部混合气体都处于环境温度包围下,温度逐步提高到自燃温度而引起的。
强迫着火时,点火温度一般要比自燃温度高得多3可燃混气能否被点燃,不仅取决于热物体附面层内部混气能否着火,而且还取决于火焰能否在混气中自行传播。
条件当在质点表面处的温度梯度等于零时,气体反应层开始向未燃混气传播。
12油品的燃烧速度是怎样随容器直径的变化而变化的?
原因?1直径小于0.003m时火焰为层流状态,燃烧速度随直径增加而减小。
2直径大于1m时,火焰呈充分发展的湍流状态,燃烧速度为常数,不受直径变化的影响。
3介于0.003-1m时随直径的增加燃烧状态逐渐从层流状态过渡到湍流状态,在0.1m时达最小值,之后随直径的增加上升到湍流状态的恒定值。
原因当直径很小时导热项占主导地位,直径越小液面的热量越大,因此燃烧速度越大,当直径很大时,导热项趋于0,而辐射项占主导地位,且液面的热量趋于一个常数。
13固体自燃临界准数取决于物体的外形。
应用1来确定大量堆积固体发生自燃的条件,为预防堆积固体自燃和确定自燃火灾的原因提供坚实的理论依据2求活化能
14谢苗诺夫热自燃理论认为,着火是反应放热因素与散热因素相互作用的结果。
条件q1=q2 dq1/dT=dq2/dT
15自由基链锁着火条件是链分支形成活化中心的速率大于链终断的速率时,才可能发生着火。
措施1降低系统的着火温度2断绝可燃物3稀释空气中的氧浓度4抑制着火区内的链锁反应。
16用自由基链锁着火理论解释H2/O2?
设第一、二极限之间的爆炸区内有一点P,保持系统温度不变而降低系统压力,P点则向下垂直移动,此时,因氢氧混合气体压力较低,自由基扩散较快,消毁速度较大,有可能大于传递过程,就出现第一极限。
如果保持温度不变而升高系统压力,就出现第二极限。
压力再增高,又发生新的链锁反应,导致自由基增长速度增大,于是又能发生爆炸,这就是爆炸的第三极限。