鸽巢问题
鸽巢问题的三个公式

鸽巢问题的三个公式
1、费马小定理:如果一个正整数a和正整数b及正整数n满足gcd (a,n)=1并且a^b =1 (mod n ),那么称满足该关系的三元组(a,b,n)为一个费马小定理。
2、鸽巢定理:假设n个相同的鸽子被丢入n个相同的鸽巢,那么存在必然存在某个鸽巢容纳至少两只鸽子。
3、贝祖定理:在满足费马小定理的情况下,若a^(b/2)=1(mod n),那么该关系称为贝祖定理,并且有a^b=1 (mod n)^2 成立。
费马小定理是一种数论中最古老、最重要的定理,由18世纪意大利数学家费马发现,属于完全平方定理中的一种。
它做出了结论:如果p 是大于零的奇素数,且a是整数,且两者的积不能被p整除,那么a的p次方与a的模p相等。
鸽巢定理又称鸽笼定理,也叫鸽笼原理或卡塔尔定理,是一种数学定理,它主要用于推论系统的存在性,它的陈述是:假设n个相同的鸽子被丢入n个相同的鸽巢,那么有必然会有某个鸽巢容纳至少两只鸽子,也就是,鸽子至少有一个巢里有两只或以上。
贝祖定理指出,如果a是一个整数,b是一个正整数,n是一个正奇数,满足费马小定理的关系,当且仅当a的b的二分之一的模n的等式为余数1时,该定理用于计算指数为奇数的费马定理,此时,a^b
=1(mod n2)成立。
如果指数为偶数,则不具有贝祖定理。
《鸽巢问题例》课件

对鸽巢问题的未来展望
随着科学技术的发展,鸽巢原理的应用范围将越来越广泛, 其重要性也将越来越突出。
在未来,随着数学和其他学科的交叉融合,鸽巢原理将会有 更多的应用场景和可能性,值得进一步探索和研究。
谢谢您的聆听
THANKS
鸽巢问题的应用场景
组合数学
在组合数学中,鸽巢原理 用于解决计数和排列组合
的问题。
概率论
在概率论中,鸽巢原理用 于计算概率和期望值。
计算机科学
在计算机科学中,鸽巢原 理用于设计和分析算法, 特别是在数据结构和算法
分析方面。
02
鸽巢问题的基本原理
鸽巢原理的数学表述
鸽巢原理的数学表述
如果 n 个物体要放入 n 个容器中,且至少有一个容器包含两个或两个以上的 物体,那么至少有一个容器包含的物体个数不少于两个。
资源分配
在日常生活中,我们经常遇到资源分 配的问题,如时间、金钱等。如何合 理地分配这些资源以最大化其效用, 就是一个典型的鸽巢问题。
排队理论
在排队理论中,鸽巢问题也经常出现 。例如,如何设计一个服务系统,使 得顾客等待的时间最短,就是一个典 型的鸽巢问题。
05
总结与思考
对鸽巢问题的理解和认识
鸽巢问题是一种经典的数学原理,它 表明在一定数量的物体和有限数量的 容器之间,至少有一个容器包含两个 或两个以上的物体。
鸽巢原理的证明方法二
数学归纳法。通过数学归纳法证明,当有 n 个物体和 n 个容器时,至少有一个容器包含两个或更多的物体。
鸽巢原理的推论和扩展
鸽巢原理的推论一
鸽巢原理的扩展
如果把 m 个物体放入 n 个容器中( m > n),那么至少有一个容器包含 两个或两个以上的物体。
鸽巢问题典故

鸽巢问题典故
鸽巢原理,又称抽屉原理,最早由19世纪的德国数学家狄利克雷提出,所以也被称为狄利克雷原理。
关于鸽巢原理的典故有很多,其中比较著名的一个来自中国的古典名著《红楼梦》。
在这个典故中,贾母为了表彰贤孙,给了探春和黛玉各一块玉,并要求她们投井下石,用做散碎。
探春和黛玉面对这个选择,都没有选择投井中间,而是投井边缘。
这是因为她们知道如果自己投中间,那么另一个人就会选择边缘,这样就能避免冲突与纷争。
这个典故中的选择,与鸽巢原理是高度契合的。
鸽巢原理的一个简单表述为:如果有n个鸽巢和m只鸽子(m>n),那么至少有一个鸽巢里有多于一只鸽子。
在上述典故中,将井看作鸽巢,将探春和黛玉看作鸽子,就能理解这个原理。
这个原理在数学、计算机科学、物理学等领域都有广泛的应用,比如在组合数学、概率论、图论等领域都有深入的研究。
以上内容仅供参考,如需更多信息,建议查阅鸽巢原理相关文献或咨询数学领域专业人士。
六年级数学鸽巢知识点总结

六年级数学鸽巢知识点总结
鸽巢问题呀,简单来说就是把一些东西放到一些“盒子”里,然后研究怎么放会有什么样的结果。
比如说把 5 个苹果放到 3 个抽屉里,不管怎么放,总有一个抽屉里至少放了 2 个苹果。
鸽巢原理的两种形式
1. 如果把 n + 1 个物体放到 n 个抽屉里,那么至少有一个抽屉里会放进两个或者更多的物体。
就像刚刚说的放苹果的例子,5(n + 1)个苹果放到 3(n)个抽屉里,肯定有抽屉至少放 2 个。
2. 把多于 kn 个物体任意放进 n 个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k + 1)个物体。
比如说把 8 个球放进 3 个盒子,8÷3 = 2……2,那至少有一个盒子里放了 3(2 + 1)个球。
鸽巢问题的应用
1. 最常见的就是在分配问题上,比如分东西、安排座位啥的。
2. 还能用来判断一些可能性,比如从一副扑克牌里抽出几张牌,判断能不能保证有某种花色。
3. 在数学竞赛里也经常出现,需要咱们灵活运用鸽巢原理来解题。
解题小技巧
1. 遇到这类问题,先找出“物体”和“抽屉”分别是什么。
2. 然后根据原理去思考怎么分配。
3. 多做几道练习题,就能更熟练地掌握啦。
鸽巢问题虽然听起来有点复杂,但是只要咱们认真琢磨,多练习,就能轻松搞定它!。
鸽巢问题的总结和答题技巧

鸽巢问题的总结和答题技巧鸽巢问题是组合数学中常见的问题,涉及到把若干个元素分配到若干个集合中,要求每个集合中的元素个数不能超过一个给定值。
以下是鸽巢问题的总结和答题技巧:总结:1. 鸽巢问题中一般都要求每个集合中元素的个数不能超过一个给定值。
2. 鸽巢问题中的鸽子代表元素,集合代表巢。
3. 如果鸽子的数量大于巢的数量乘以每个巢中鸽子的最大数量,那么必然会出现至少一个巢中有两只鸽子。
答题技巧:鸽巢问题一般涉及到计数问题,我们可以通过以下技巧来简化计数过程:1. 确定鸽子的数量和巢的数量。
2. 确定每个巢中鸽子的最大数量。
3. 利用乘法原理计算总方案数。
4. 利用减法原理计算不符合要求的方案数。
5. 用总方案数减去不符合要求的方案数,得到符合要求的方案数。
6. 一般需要将符合要求的方案数转换为比例或百分数。
例如:1. 将12只鸽子放进4个巢里,每个巢最多只能放3只鸽子,问一种分配方案都不重复的可能性?解法:共有4^3种分配方法,但是有其中有放入3个鸽子的情况,会导致至少一个巢有两只鸽子,不符合要求。
所以,需要减去这些不符合要求的方案。
3只鸽子放入每个巢中的情况有4种,所以总共有4^3-4种不重复的可能性。
2. 将10只鸽子分配到6个巢里,每个巢最多只能放2只鸽子,那么至少有几个巢中会有两只鸽子?解法:每个巢最多只能放2只鸽子,所以最多放入6*2=12只。
由于鸽子的数量是10只,所以必然会有至少1只鸽子没有被安排在巢里。
因此,最少会有1个巢中只有1只鸽子,那么剩下的9只鸽子必须被安排在剩下的5个巢中。
根据鸽巢原理,至少会有一个巢中有两只鸽子。
2023年《鸽巢问题》教学反思10篇

2023年《鸽巢问题》教学反思10篇《鸽巢问题》教学反思1“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现__知识,“鸽巢”问题教学反思。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
《鸽巢问题》教学反思2《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,新教材把这一部分内容纳入了数学广角,《鸽巢问题》教学反思。
当第一次看到《鸽巢问题》成为必学内容时,老师们都很困惑:什么是鸽巢问题?这么难的内容学生能理解吗?我的印象里《抽屉原理》也是非常坚深难懂的。
为了上好这一内容,我搜集学习了很多资料,文中对“抽屉原理”作了深入浅出的分析,使我对“抽屉原理”有了新的认识,也终于理出了头绪。
抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
兴趣是学习最好的老师。
所以在本节课我就设计了“抢凳子”游戏来导入新课,在上课伊始我就说:同学们,在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
六年级下册数学试题鸽巢问题含答案人教版

鸽巢问题知识点:鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(相同颜色数-1)+1②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业。
2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。
小学数学鸽巢问题

02
学生们还可以进一步探索数学的其他领域,例如分数、小数和
百分数等,以增强对数学概念的理解和运用能力。
为了更好地掌握数学知识,学生们应该积极寻求实践机会,例
03
如在日常生活中应用数学知识解决实际问题。
THANKS
谢谢您的观看
鸽巢问题的解题思路
定义问题
确定问题的形式,确定所涉及的参数(如鸽巢数量和鸽子数量)。
选择合适的数学模型
根据问题的具体情况选择合适的数学模型进行计算。对于简单的鸽巢问题,可以直接使用对立事件的概率进行计算;对于 复杂的鸽巢问题,需要使用更复杂的数学模型进行计算。
进行计算
根据选择的数学模型进行计算,得出答案。
03
鸽巢问题的解题方法
枚举法
总结词
直观、简单、但效率较低
详细描述
枚举法是一种通过列举所有可能情况来寻找答案的方法。在鸽巢问题中,枚举法通常用于解决一些简单的问题 ,如两个鸽巢中最多可以有多少只鸽子。然而,由于枚举法需要列出所有可能的情况,因此在处理大规模问题 时效率较低。
反证法
总结词
通过假设并验证反例来证明原命题的正确性
04
鸽巢问题的实际应用
在数学竞赛中的应用
1 2
培养逻辑思维
鸽巢问题在数学竞赛中常作为一道难题,需要 学生灵活运用抽屉原理等数学知识,通过逻辑 推理和思维拓展来解决。
增强问题解决能力
通过解决鸽巢问题,学生可以学会如何分析、 综合和推理,进而提高问题解决的能力。
3
拓展数学思维
鸽巢问题的解决需要运用多种数学方法和思想 ,如分类讨论、数形结合等,有助于拓展学生 的数学思维。
问题描述
在一个有n个鸽巢和n+1只鸽子的鸽巢群 中,随机选择一个鸽巢放入一只鸽子,那 么至少有一个鸽巢中放有两只或以上的鸽 子的概率是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元数学广角
——鸽巢问题
一、教材分析:
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。
和以往的义务教育教材相比,这部分内容是新增的内容。
本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。
这类问题依据的理论我们称之为“抽屉原理”。
“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。
“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。
但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。
因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。
教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。
能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。
所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。
六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。
教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
二、三维目标:
1、知识与技能:
引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:
(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
(2)学会与人合作,并能与人交流思维过程和结果。
3、情感态度与价值观:
(1)积极参与探索活动,体验数学活动充满着探索与创造。
(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体
验学数学、用数学的乐趣。
(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。
(4)理解知识的产生过程,受到历史唯物注意的教育。
三、教学重点:
应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。
四、教学难点:
理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
五、教学措施:
1、让学生经历“数学证明”的过程。
可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。
通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。
通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。
当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。
教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。
这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。
“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。
因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。
例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。
因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。
六、课时安排:3课时
鸽巢问题-------------------1课时
“鸽巢问题”的具体应用------1课时
练习课---------------------1课时
放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
http://w ww.x kb1. com
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a
÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
鸽巢原理(二):古国把多与kn个的物体任意分别放进n
个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、巩固新知,拓展应用
1、完成教材第70页的“做一做”。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
学生独立思考解答问题,集体交流、纠正。
四、课堂总结
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用“鸽巢问题”解释的生活中的例子吗?
五、作业。