鸽巢问题一

合集下载

鸽巢问题课件

鸽巢问题课件

在路径规划中的应用
要点一
总结词
优化、简洁
要点二
详细描述
在路径规划中,鸽巢问题可以帮助我们确定如何最优化 路径。例如,在物流配送中,每个配送员都有一条固定 的路径,我们可以使用鸽巢问题来确定每个配送员需要 覆盖的客户。此外,这种方法还可以考虑配送员的偏好 ,如希望避免交通拥堵等。通过使用鸽巢问题,我们可 以找到一种既优化又简洁的路径规划方案。
这个原理可以应用于各种场景,如整数划分、集合划分等。
鸽巢问题的起源和发展
鸽巢问题最早出现在19世纪中叶的数学研究中,当时主要 用于研究整数划分问题。
随着数学的发展,鸽巢问题逐渐成为组合数学、离散数学 等学科的重要内容,并被广泛应用于实际生活中。
鸽巢问题的应用场景
1
在整数划分问题中,鸽巢问题可以用于证明当n 个整数被划分成n-1个部分时,至少有一个部分 包含两个整数。
应用场景
无限鸽巢问题可以应用于无线通信 、网络流量控制等问题,如无线频 谱分配、网络流量控制等。
鸽巢问题的数学表示
数学模型
鸽巢问题可以用数学模型表示为“背包问题”的一种特殊形式。设n个鸽子和m 个鸽巢,每个鸽子都有自己的重量和容量限制,目标是找到一种分配方法,使得 所有鸽子的总重量不超过某个限制。
应用场景
随机鸽巢问题在现实生活中也有很多应用,例如在风险管理、金融投资、物流配送等问题 中,都需要解决随机鸽巢问题来考虑不确定性和风险因素对方案的影响。
05
鸽巢问题的实际应用
在资源分配中的应用
总结词
高效、公平
详细描述
鸽巢问题在资源分配中可以应用在很多场景中。例如, 在分配宿舍时,如果每个宿舍的容量都相同,那么鸽巢 问题可以帮助我们确定如何分配学生以最大化公平性。 同时,这种方法还可以考虑学生的个人偏好,如希望与 同班同学住在同一宿舍等。通过使用鸽巢问题,我们可 以找到一种既高效又公平的分配方案。

鸽巢问题的三个公式

鸽巢问题的三个公式

鸽巢问题的三个公式
1、费马小定理:如果一个正整数a和正整数b及正整数n满足gcd (a,n)=1并且a^b =1 (mod n ),那么称满足该关系的三元组(a,b,n)为一个费马小定理。

2、鸽巢定理:假设n个相同的鸽子被丢入n个相同的鸽巢,那么存在必然存在某个鸽巢容纳至少两只鸽子。

3、贝祖定理:在满足费马小定理的情况下,若a^(b/2)=1(mod n),那么该关系称为贝祖定理,并且有a^b=1 (mod n)^2 成立。

费马小定理是一种数论中最古老、最重要的定理,由18世纪意大利数学家费马发现,属于完全平方定理中的一种。

它做出了结论:如果p 是大于零的奇素数,且a是整数,且两者的积不能被p整除,那么a的p次方与a的模p相等。

鸽巢定理又称鸽笼定理,也叫鸽笼原理或卡塔尔定理,是一种数学定理,它主要用于推论系统的存在性,它的陈述是:假设n个相同的鸽子被丢入n个相同的鸽巢,那么有必然会有某个鸽巢容纳至少两只鸽子,也就是,鸽子至少有一个巢里有两只或以上。

贝祖定理指出,如果a是一个整数,b是一个正整数,n是一个正奇数,满足费马小定理的关系,当且仅当a的b的二分之一的模n的等式为余数1时,该定理用于计算指数为奇数的费马定理,此时,a^b
=1(mod n2)成立。

如果指数为偶数,则不具有贝祖定理。

《鸽巢问题例》课件

《鸽巢问题例》课件

对鸽巢问题的未来展望
随着科学技术的发展,鸽巢原理的应用范围将越来越广泛, 其重要性也将越来越突出。
在未来,随着数学和其他学科的交叉融合,鸽巢原理将会有 更多的应用场景和可能性,值得进一步探索和研究。
谢谢您的聆听
THANKS
鸽巢问题的应用场景
组合数学
在组合数学中,鸽巢原理 用于解决计数和排列组合
的问题。
概率论
在概率论中,鸽巢原理用 于计算概率和期望值。
计算机科学
在计算机科学中,鸽巢原 理用于设计和分析算法, 特别是在数据结构和算法
分析方面。
02
鸽巢问题的基本原理
鸽巢原理的数学表述
鸽巢原理的数学表述
如果 n 个物体要放入 n 个容器中,且至少有一个容器包含两个或两个以上的 物体,那么至少有一个容器包含的物体个数不少于两个。
资源分配
在日常生活中,我们经常遇到资源分 配的问题,如时间、金钱等。如何合 理地分配这些资源以最大化其效用, 就是一个典型的鸽巢问题。
排队理论
在排队理论中,鸽巢问题也经常出现 。例如,如何设计一个服务系统,使 得顾客等待的时间最短,就是一个典 型的鸽巢问题。
05
总结与思考
对鸽巢问题的理解和认识
鸽巢问题是一种经典的数学原理,它 表明在一定数量的物体和有限数量的 容器之间,至少有一个容器包含两个 或两个以上的物体。
鸽巢原理的证明方法二
数学归纳法。通过数学归纳法证明,当有 n 个物体和 n 个容器时,至少有一个容器包含两个或更多的物体。
鸽巢原理的推论和扩展
鸽巢原理的推论一
鸽巢原理的扩展
如果把 m 个物体放入 n 个容器中( m > n),那么至少有一个容器包含 两个或两个以上的物体。

六年级数学鸽巢知识点总结

六年级数学鸽巢知识点总结

六年级数学鸽巢知识点总结
鸽巢问题呀,简单来说就是把一些东西放到一些“盒子”里,然后研究怎么放会有什么样的结果。

比如说把 5 个苹果放到 3 个抽屉里,不管怎么放,总有一个抽屉里至少放了 2 个苹果。

鸽巢原理的两种形式
1. 如果把 n + 1 个物体放到 n 个抽屉里,那么至少有一个抽屉里会放进两个或者更多的物体。

就像刚刚说的放苹果的例子,5(n + 1)个苹果放到 3(n)个抽屉里,肯定有抽屉至少放 2 个。

2. 把多于 kn 个物体任意放进 n 个空抽屉(k 是正整数),那么一定有一个抽屉中放进了至少(k + 1)个物体。

比如说把 8 个球放进 3 个盒子,8÷3 = 2……2,那至少有一个盒子里放了 3(2 + 1)个球。

鸽巢问题的应用
1. 最常见的就是在分配问题上,比如分东西、安排座位啥的。

2. 还能用来判断一些可能性,比如从一副扑克牌里抽出几张牌,判断能不能保证有某种花色。

3. 在数学竞赛里也经常出现,需要咱们灵活运用鸽巢原理来解题。

解题小技巧
1. 遇到这类问题,先找出“物体”和“抽屉”分别是什么。

2. 然后根据原理去思考怎么分配。

3. 多做几道练习题,就能更熟练地掌握啦。

鸽巢问题虽然听起来有点复杂,但是只要咱们认真琢磨,多练习,就能轻松搞定它!。

鸽巢问题课件

鸽巢问题课件

02
鸽巢问题的基本形式
鸽巢问题的数学模型
定义:如果 n 个鸽子飞进 n-1 个鸽巢,且每个鸽 巢内至少有一只鸽子,那么存在至少两个鸽巢内 含有相同数量的鸽子。
x1 + x2 + ... + xn-1 >= n
数学表示:设 x1, x2, ..., xn-1 是每个鸽巢内的鸽 子数量,则有以下不等式
扩展鸽巢问题的应用领域
除了在计算机科学、密码学、数据存储等领域的应用外,我们还可以 将鸽巢问题的思想应用到其他领域中,例如生物学、物理学等。
03
研究新的解决算法
随着计算机科学的不断发展,我们也可以尝试研究新的解决算法来解
决鸽巢问题。例如,使用机器学习的方法来寻找最优解。
THANK YOU.
解决策略
对于不完全鸽巢问题,可以通过 增加鸽巢数量或减少待分配的鸽 子数量来寻找解决方案。
应用场景
不完全鸽巢问题在现实生活中也很 常见,例如在分配资源或安排人员 时,可能需要根据实际情况调整分 配方案。
多重鸽巢问题
定义
01
当每只鸽子都有多个可选的鸽巢时,这个问题被称为多重鸽巢
问题。
解决策略
02
对于多重鸽巢问题,需要考虑到每只鸽子的多个选择,并寻找
鸽巢问题的解决方法
鸽巢问题的解决方法包括数学方法和计算机算法。数学方法包括数学归纳法和反证法等, 而计算机算法则包括贪心算法和动态规划等。这些方法在不同的场景下有着不同的优劣和 应用。
未来研究方向和展望
01 02
深入探讨鸽巢问题的性质
尽管我们已经对鸽巢问题有了一定的了解,但是还有很多未解决的问 题和性质需要进一步探讨。例如,是否存在一种更简单的证明方法来 解决鸽巢问题?

鸽巢问题(抽屉原理)课件

鸽巢问题(抽屉原理)课件

组合优化
在组合优化问题中,鸽巢 原理可以帮助确定在有限 资源下的最优分配方案。
组合矩阵
鸽巢原理在组合矩阵论中 有重要应用,例如确定矩 阵元素的组合性质。

在计算机科学中的应用
数据结构
计算复杂性
鸽巢原理在计算机科学的数据结构中 有着广泛的应用,如动态规划、图论 和离散概率算法等。
鸽巢原理在计算复杂性理论中也有所 应用,例如确定问题的多项式时间复 杂度。
性质
鸽巢原理具有普遍性和必然性,无论 是在数学、物理、计算机科学还是实 际生活中都有广泛的应用。
鸽巢问题(抽屉原理)的表述
表述
如果 n 个物体要放到 m 个容器中去,且 n > m,那么至少有一个容器中放有 两个或两个以上的物体。
反证法
假设所有容器中最多只有一个物体,那么总物体数最多为 m,但题目中给出总 物体数为 n,这与假设矛盾,所以至少有一个容器中放有两个或两个以上的物 体。
算法设计
利用鸽巢原理可以设计出更高效的算 法,例如快速排序算法和归并排序算 法。
在日常生活中的应用
资源分配
鸽巢原理可以应用于日常生活中 的资源分配问题,例如在有限的 时间和金钱下如何合理安排消费

交通规划
在城市交通规划中,鸽巢原理可以 帮助确定最佳的公交线路和站点设 置。
存储管理
在存储管理领域,鸽巢原理可以用 于解决如何有效利用有限空间存放 物品的问题。
鸽巢问题(抽屉原理)的证明方法
反证法证明
总结词
通过假设与结论相反的情况,推 导出矛盾,从而证明原命题。
详细描述
首先假设与结论相反的情况成立 ,然后根据已知条件推导出矛盾 ,最后得出结论与假设相矛盾, 从而证明原命题。

鸽巢问题原理PPT课件

鸽巢问题原理PPT课件

感谢您的观看
THANKS
密码学中的应用
密码学是研究如何保护信息安全的一门科学,而鸽巢原理在密码学中也 有一定的应用。例如,在分析某些加密算法的安全性时,可以利用鸽巢 原理来证明某些攻击方法的有效性或无效性。
05
鸽巢问题原理拓展与延伸
广义鸽巢原理
原理表述
如果n个物体放入m个容器,且n>m,则至少有一 个容器包含两个或两个以上的物体。
掌握鸽巢原理的证明方法是学习该原理的关键。 建议学习者多阅读相关教材或论文,了解不同证 明方法的思路和应用场景。
多做练习题
通过大量的练习题可以加深对鸽巢原理的理解和 掌握。建议学习者多做一些难度适中的练习题, 逐步提高自己的解题能力。
未来研究方向展望
拓展应用领域
随着计算机科学和信息技术的发展,鸽巢原理的应用领域也在不断拓展。未来可以进一步探索鸽巢原理在人工智能、 大数据等领域的应用。
鸽巢问题原理ppt课件
目录
• 鸽巢问题原理概述 • 鸽巢问题原理基本概念 • 鸽巢问题原理证明方法 • 鸽巢问题原理应用举例 • 鸽巢问题原理拓展与延伸 • 总结与回顾
01
鸽巢问题原理概述
定义与背景
鸽巢原理定义
如果 n 个鸽子要放进 m 个鸽巢,且 n > m,则至少有一个鸽巢里有多于一 个鸽子。
重要性
理论价值
鸽巢原理是数学中的基本 原理之一,对于理解更高 级的数学概念和证明具有 重要意义。
实际应用
在计算机科学、工程等领 域中,鸽巢原理为解决复 杂问题提供了有效的思路 和方法。
拓展思维
通过学习鸽巢原理,可以 培养逻辑思维和抽象思维 能力,提高分析问题和解 决问题的能力。
02
鸽巢问题原理基本概念

2024鸽巢问题PPT课件

2024鸽巢问题PPT课件

鸽巢问题PPT课件contents •鸽巢问题概述•鸽巢问题基本原理•鸽巢问题在数学中的应用•鸽巢问题在组合数学中的应用•鸽巢问题在算法设计中的应用•鸽巢问题的拓展与延伸目录01鸽巢问题概述起源背景定义性质鸽巢原理的实质是揭示了一种存在性规律,即“若有限个集合中的元素个数和大于集合的个数,则至少有一个集合中存在两个相同的元素”。

鸽巢问题的应用场景组合数学计算机科学日常生活02鸽巢问题基本原理抽屉原理又称鸽巢原理,是组合数学中一个重要的原理。

简单形式:如果将n+1 个物品放入n 个抽屉里,那么至少有一个抽屉里含有多于一个的物品。

抽屉原理的应用非常广泛,可以用于解决各种存在性问题。

抽屉原理简介鸽巢原理的表述与证明表述证明鸽巢原理与抽屉原理是等价的,只是表述方式略有不同。

抽屉原理强调“至少有一个抽屉里含有多于一个的物品”,而鸽巢原理强调“至少有一个鸽巢里有两只或两只以上的鸽子”。

两者都可以用于解决各种存在性问题,如整除性问题、染色问题等。

鸽巢原理与抽屉原理的关系03鸽巢问题在数学中的应用存在性问题的证明抽屉原理如果要将n+1个物品放入n个抽屉中,那么至少有一个抽屉中放有两个物品。

这是鸽巢问题最基础的应用,用于证明某些存在性问题。

整数性质利用整数的性质,结合鸽巢原理可以证明一些数学定理和命题,如费马小定理等。

组合数学在组合数学中,鸽巢原理常用于证明某些组合构型的存在性,如拉姆齐定理等。

排列组合重复计数在排列组合问题中,鸽巢原理可以帮助我们确定某些排列或组合的存在性或数量。

概率统计点集性质利用鸽巢原理可以证明一些与点集性质有关的结论,如平面上n 个点中必有两个点距离小于某个值等。

图形分割在几何图形分割问题中,鸽巢原理可以帮助我们确定某些分割方式的存在性或最优性。

几何构型在几何构型问题中,鸽巢原理可以帮助我们证明某些几何构型的存在性或性质,如三维空间中的柯克曼女生问题等。

04鸽巢问题在组合数学中的应用基本原理地位重要应用广泛030201鸽巢原理在组合数学中的地位鸽巢原理在组合数学中的应用举例例子1例子2例子3鸽巢原理在组合数学中的推广推广101推广202推广30305鸽巢问题在算法设计中的应用0102鸽巢原理在算法设计中的应用背景的物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸽巢问题一同学们大家好,从今天开始,我们学习第五单元鸽巢问题。

你准备好了吗好,我们现在开始上课。

请同学们先来看例一。

把四支铅笔放进三个笔筒中,不管怎么放,总有一个笔筒里至少有两只铅笔。

请你再把题读一次,这是为什么呢要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。

我们再思考这一句话中,总有和至少是什么意思对总有就是一定的意思。

至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。

或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。

你说对了吗那为什么总有一个笔筒里至少有两支铅笔呢请你静静思考一下。

老师提示一下大家,大家可以用摆一摆,画一画,剪一剪的方法,把自己的想法表示出来。

好,我们来看看这几种表示的方法。

我们最常用的方法就是用铅笔来摆一摆,一起来看,四支铅笔,三个笔筒。

我们可以把四支铅笔都放在左边的笔筒里。

:也可以在左边的笔筒里放三支,中间的笔筒里放一支,右边不放。

也可以在左边笔筒里放两支,中间笔筒里放两支,右边不放。

还可以在左边的笔筒里放2支,中间的笔筒里放1支,右边笔筒里1支。

这样我们就用有序思考的办法,发现共有四种摆法。

来看看这4种摆法,我们说说为什么总有一个笔筒里至少有两支铅笔吗鸽巢问题(一)【教学内容】教科书第68页例1、69页例2。

【教学目标】1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题或解释相关现象。

2.通过操作、观察、比较、说理等活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3.通过“鸽巢问题”的灵活应用感受数学的魅力。

【学情分析】《鸽巢问题》是一类较为抽象和难以理解的问题,对全体学生来说都具有一定的挑战性。

因此选择一些学生常见的、熟悉的事物,或者一些有趣、新颖的内容作为学习的素材,如坐凳子、玩扑克牌游戏。

以增强学生的学习积极性,建立鸽数学与生活的联系。

另外,根据学生爱动手的特点,让学生通过动手操作和直观观察,发现其中的规律,并能运用这一“模型”解决生活中的问题。

【教学重点】经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

【教学难点】理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

【教学方法】触景教学【教具、学具准备】每组都有相应数量的小棒、杯子。

教学过程:一、触景生趣,触景生疑。

今天我非常想跟大家做个游戏。

游戏:老师组织学生做“抢凳子的游戏”。

请4位同学上来,摆开3张凳子。

老师宣布游戏规则:4位同学坐三张凳子,老师喊“开始”的时候,四个人每个人都必须坐在凳子上。

允许有不同的坐法。

(2,1,1)(3,1,0)(4,0,0)(2,2,0)公布结论:总有一张凳子上至少坐了两个人。

理解总有和至少什么意思为什么能做出准确的判断呢道理是什么这其中蕴含着一个有趣的数学原理,想知道这个原理吗今天我们就一起用小棒和杯子来探究这个原理。

二、触景探究1.列举法现在如果把5根小棒放在4个杯子里,可以怎么放,一共有几种不同的放法,放一放,看看你能从中发现什么小组合作。

出示合作要求:1.把5根小棒放在4个杯子里,有几种放法分工合作,做好记录。

2.观察你记录的每种放法中,放得最多的杯中的小棒数量,你发现了什么小组合作,师巡视辅导。

小组汇报,发现结论:总有一个杯子里至少放了两根小棒。

师:象这样把每种放法一一列举的方法,在数学中叫做列举法。

除了象这样把所有可能的情况都列举出来外,你能用更直接的摆法,只摆一种情况,就得到这样的结论吗小组动手摆一摆并讨论交流。

找同学汇报:先把每个杯子里分一根小棒,剩下的一根不管放到哪个杯子里,那个杯子里就有2根。

2.假设法先假设每个杯子里各放一根,这种叫什么分(平均分)和学生一起探讨假设法。

师:你为什么一开始要平均分呢平均分可以尽可能把小棒分散,保证每个杯子中的小棒尽可能少。

师:但这样只能证明总有一个杯子里肯定会有两根小棒,怎么能证明至少呢平均分已经使每个杯子里的小棒尽可能少了,如果这样都符合要求,那别的分法就更符合要求了。

如果把6根小棒放在5个杯子里,还用一一列举吗(让学生用假设法得出结论)3.算式法像这样假设先平均分,我们可以怎样来列算式表示那你们能不能把刚才的平均分用算式表示出来(学生说算式,课件展示)如果把100根小棒放在99个杯子里,总有一个杯子里至少放()根小棒。

怎样列式探究到这里,你发现了什么小棒比杯子多1时,总有一个杯子里至少放两根小棒。

至少数=商+余数如果把7根小棒放在5个杯子里,先让同学猜测,再同桌之间进行实验验证。

强调指出:余数也要平均分。

才能保证至少的数量。

小组探究:9根小棒放在6个杯子里,10根小棒放在5个杯子里呢14根小棒放在3个杯子里呢找同学说结论并讲道理。

2.综上观察,你发现了什么规律。

当小棒数比杯子数多时,把小棒放到杯子里,总有一个杯子里至少有“商+1”根小棒。

3.简单了解鸽巢问题的由来。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为杯子问题。

但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

而且最早人们也不是从小棒和杯子中探究出来的这个规律,而是从两个有趣的事情中发现的。

我们来了解一下。

三、触景实践。

1.课件出示:,6只鸽子飞进5个鸽巢,至少有几只鸽子要飞进同一个鸽巢里。

为什么学生独立思考,自主探究——交流,说理。

2.把10个苹果放进9个抽屉,你能确定什么为什么学生独立思考——交流,说理。

3、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,请大家猜测一下,同种花色的至少有几张如果抽取其中的14张牌,请大家猜测一下,同点数的至少有几张如果抽取其中的15张牌,你能确定什么为什么五、触景升华谈谈你今天的感受和想法师:说得太好了!我们要象狄里克雷一样,善于从生活中平凡的小事发现规律,善于团结合作。

你将成为一个充满智慧的人!板书设计:鸽巢问题(杯子问题)总有……至少……列举法(待分物体)小棒数÷杯子数至少数=商+1假设法整除时至少数=商《鸽巢问题》教学设计教学内容:教材第68-69页例1、例2,及“做一做”。

学习目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生用此原理解决简单的实际问题。

2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。

教学难点:找出“鸽巢问题”的解决窍门进行反复推理。

教学准备:课件、铅笔、笔筒。

学习过程:导入师:我给大家表演一个“魔术”。

一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。

相信吗师:解决这一类问题的理论依据就是“鸽巢问题”。

今天我们就一起来研究这一类问题。

(板书课题:鸽巢问题)看到课题,你想知道哪些问题二、出示目标1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

2、通过用“鸽巢问题”解决简单的实际问题。

把具体问题转化成“鸽巢问题”。

3、找出“鸽巢问题”的解决窍门进行反复推理。

三、学习例11、思考:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

为什么呢“总有”和“至少”是什么意思理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

2、自学数学书P68例1,后思考回答下列问题:(1)、把4枝铅笔放进3个文具盒中,可以怎么放有几种情况第一种放法:第二种放法:第三种放法:第四种放法:(2)提出问题。

不管怎么放,总有一个文具盒里至少放进枝铅笔。

为什么如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

3、探究证明方法一:用“枚举法”证明。

方法二:用“分解法”证明把4分解成3个数。

我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

方法三:用“假设法”证明。

先放3支,在每个笔筒中放1支,剩下的1支就要放进其中的一个笔筒。

(平均分)小结:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒至少放进2只铅笔。

(4)认识“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的言语描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有的方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

(5)做一做:A、5个人坐4把椅子,总有一把椅子上至少坐2人。

为什么B、实验小学六(1)班第一小组一共13位同学,一定至少有2名同学的生日在同一个月。

原理1:把n+1个物体任意放进n个空抽屉里(n是非0自然数),那么一定有1个抽屉中至少放进了2个物体。

5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

为什么小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。

如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔数比笔筒的数量多3,那么总有1个笔筒至少放2支……只要放的铅笔数比笔筒数量多,就总有1个笔筒里至少放2支铅笔。

四、学习例2思考:(1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢(2)如果有8本书会怎样呢10本书呢摆一摆,有几种放法。

归纳:不难得出,总有一个抽屉至少放进本。

说一说你的思维过程。

如果每个抽屉放2本,放了4本书。

剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

如果一共有7本书会怎样呢9本呢学生独立思考,寻找结果。

与同学交流思维过程和结果。

汇报结果,全班交流。

4. 你能用算式表示以上过程吗你有什么发现5÷2=2……1 (至少放本)7÷2=3……1 (至少放本)9÷2=4……1 (至少放本)说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

五、全课总结通过这节课的学习,你有什么收获六、当堂练习1、7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。

为什么想:如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。

所以至少有2只鸽子飞进同一个鸽舍。

2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。

相关文档
最新文档