鸽巢问题(1)
六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。
2. 培养学生的逻辑思维能力和数学推理能力。
过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。
2. 通过小组合作,培养学生的团队合作能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 理解鸽巢原理。
2. 能运用鸽巢原理解决实际问题。
教学难点:1. 理解鸽巢原理的应用范围。
2. 解决实际问题时,如何运用鸽巢原理。
教学准备:1. 教师准备:多媒体课件,教具。
2. 学生准备:学习用品。
教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。
二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。
三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。
2. 学生通过观察和思考,发现鸽巢原理。
四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。
2. 学生通过练习,巩固对鸽巢原理的理解和应用。
五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。
2. 学生通过思考和讨论,解决这些问题。
六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。
2. 学生分享自己的学习心得。
教学评价:1. 学生对鸽巢原理的理解和应用。
2. 学生在解决问题时的逻辑思维能力和数学推理能力。
教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。
2. 引导学生探索鸽巢原理在其他数学问题中的应用。
通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。
同时,学生的逻辑思维能力和数学推理能力也得到了培养。
在以上的教案中,需要重点关注的是“探索发现”环节。
这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
小学六年级数学下册第五单元《鸽巢问题》知识重点、配套练习及答案

01鸽巢问题(1)鸽巣原理先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。
这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。
类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式。
②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)02第五单元练习及答案一.填空题(每空4分,共56分)。
1.一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出()个球才能保证有2个球的颜色相同。
2.抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿()枝才能才能保证至少有1枝蓝色铅笔。
3.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。
4.从()个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。
5.一个联欢会有100人参加,每个人在这个会上至少有一个朋友。
那么这100人中至少有()个人的朋友数目相同。
6.一个口袋里有四种大小相同颜色不同的小球。
每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸()次。
7.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取()颗。
第一课时 鸽巢问题(1)ppt

课题1 鸽巢问题(1)
今天给大家表演一个“魔术”。一副扑克 牌(除去大小王)52张中有四种花色,你从 中随意抽5张牌,我知道你手中至少有两 张牌是同花色的。为什么会这样呢?我们
学习了这节课的鸽巢问题就知道了!
鸽巢问题是怎样的?
这里的“鸽巢”是指什么? 运用“鸽巢问题”能解决哪些问题? 怎样运用“鸽巢问题”解决问题?
推进新课
同学们手中都有铅笔和文具盒,拿出4 枝铅笔放到标有序号的3个文具盒中, 看看有几种放法?能得出怎样的结论?
第一种情况
不妨将这种放法记 为(4,0,0)
0
0
1号
2号
3号
第二种情况
这种放法记为 (3,1,0)
0
1号
2号
3号
第三种情况
这种放法记为 (2,2,0)
0
1号
2号
3号
第四种情况
这种放法记为 (2,1,1)
1号
2号
3号
请同学们观察不同的摆法,能发现什么?
(4,0,0) (3,1,0) 不管怎么放,总有一个文
具盒里至少放进2枝铅笔。0“总有”是什么Fra bibliotek思?0
0
一定有
“至少”是什么意思?
不能少于
0
(2,2,0) (2,1,1)
上面这样的问题就是“鸽巢问题”,在这 里“4支铅笔”就是“4个要分放的物体”, “3个文具盒”相当于“3个鸽巢”。 把此问题用“鸽巢问题”的语言描述就是: 把4个物体放到3个鸽巢中,总有一个鸽巢 中有两个物体。
总有一个抽屉里至少有的本数等于“商+1”
你是这样想的吗?你 有什么发现?
物体数÷抽屉数=商……余数
鸽巢原理经典例题及解析

鸽巢原理经典例题及解析鸽巢原理,也称为抽屉原理,是组合数学中的一个基本概念。
它指的是,如果有n+1个物体放入n个盒子中,那么至少有一个盒子会放入两个或以上的物体。
这个概念类似于我们熟知的“抽屉放东西”的现象,即如果有n个抽屉,放入n+1个东西,则至少有一个抽屉中会放入两个或以上的东西。
鸽巢原理是比较直观且易于理解的,它在解决组合数学中的问题时经常被使用。
下面我们将通过几个经典例题,来进一步理解鸽巢原理的应用。
例题1:从1到10的整数中选择6个数,至少存在两个数,使得它们的和或差能被11整除。
证明这个结论。
解析:我们需要选择6个数,我们可以利用鸽巢原理来解决这个问题。
首先,我们观察到,我们有5个余数,因为1到10的整数除以11的余数是0到10。
如果我们选择6个数,那么至少有两个数的余数是相同的,因为有6个数,但只有5个余数。
假设我们选择的两个数的和或差能被11整除,那么它们的余数必然相等,于是我们就证明了这个结论。
例题2:有20盒饼干,其中19盒都装有正数个饼干,而只有1盒装有0个饼干。
证明,如果我们从这20盒中选择11个盒子,那么至少有两个盒子是包含饼干的。
解析:我们假设每个盒子都是0个饼干,那么我们需要选择11个盒子,因为只有1个盒子是包含饼干的,所以我们无论如何选择都无法找到两个盒子都包含饼干。
但是根据鸽巢原理,我们知道,如果我们选择了11个盒子,至少有两个盒子是包含饼干的。
所以,我们证明了这个结论。
例题3:有N个正整数,它们的和是2N-1,证明至少有一个整数是1。
解析:我们假设所有的正整数都不是1,那么我们可以得到每个正整数至少是2。
这样,我们所有的正整数加起来至少是2N,而不是2N-1,与题目条件矛盾。
所以,我们证明了结论至少有一个整数是1。
鸽巢原理的应用非常广泛,可以用于解决各种数学问题和概率问题。
通过以上例题的解析,我们可以更好地理解鸽巢原理的含义和应用。
在实际问题中,我们可以利用鸽巢原理巧妙地解决一些问题,提高问题求解的效率和准确性。
(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试(答案解析)(1)

解析: C 【解析】【解答】解:17÷8=2……1,2+1=3(个)。
故答案为:C。 【分析】从最坏的情况考虑,假设每个抽屉里面都有 2 个苹果,余下的 1 个苹果无论在哪 个抽屉里都至少有一个抽屉里面有 3 个苹果。
6.A
解析:A 【解析】【解答】解:3+1=4(个); 答:至少取 4 个球,可以保证取到两个颜色相同的 球. 故选:A. 【分析】由于袋子里共有红、黄、蓝三种颜色的球各 5 个,如果一次取三个,最差情况为 红、黄、蓝三种颜色各一个,所以只要再多取一个球,就能保证取到两个颜色相同的 球.即 3+1=4 个.
16.【解析】【解答】2+1=3(个)故答案为:3【分析】此题主要考查了抽屉 原理的应用因为只有两种颜色的乒乓球放在盒子里所以摸出两个乒乓球可能是
一个黄色一个白色再摸一个不是黄色就是白色这样就可以保证有 2 个
解析:【解析】【解答】2+1=3(个) 故答案为:3. 【分析】此题主要考查了抽屉原理的应用,因为只有两种颜色的乒乓球放在盒子里,所以 摸出两个乒乓球,可能是一个黄色,一个白色,再摸一个不是黄色,就是白色,这样就可 以保证有 2 个乒乓球同色,据此解答.
它里面至少拿出( )个苹果。
A. 1
B. 2
C. 3
D. 4
6.把红、黄、蓝三种颜色的球各 5 个放进一个盒子里,至少取( )个球可以保证取到两
个颜色相同的球.
A. 4
B. 5
C. 6
7.李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜
料的颜色种数是( )种.
A. 2
B. 3
3.A
解析: A 【解析】【解答】14÷12=1(个)……2(个), 至少:1+1=2(个). 故答案为:A. 【分析】抽屉原理的公式:a 个物体放入 n 个抽屉,如果 a÷n=b……c,那么有一个抽屉至少 放(b+1)个物体,据此解答.
完整版)六年级鸽巢问题

完整版)六年级鸽巢问题要抽取5张牌。
鸽巢问题是组合数学中的一个基本原理,也称为抽屉原理或狭利克雷原理。
它指出,在一定条件下,无论怎样分配物体,一定会有一个里至少有两个物体。
例如,把3个苹果放进2个抽屉里,一定会有一个抽屉里放了2个或2个以上的苹果。
同样地,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
鸽巢原理有两种形式。
第一种形式是,如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了2个物体。
例如,将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔。
第二种形式是,如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
例如,把10本书放进3个抽屉中,总有1个抽屉里至少放进4本书。
鸽巢原理可以用于解决各种问题,例如摸同色球问题。
要保证摸出同色的球,摸出的球的数量至少要比颜色数多1.可以用物体数=颜色数×(相同颜色数-1)+1的公式计算。
另外,最坏打算的思想可以用于保证摸出同色球的概率。
以上是鸽巢问题的基础知识点。
下面是几个例题的讲解:1.教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业。
根据鸽巢原理,这5名学生中,至少有两个人在做同一科作业。
2.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
根据鸽巢原理,至少要拿51本书。
3.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出4个球。
4.把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。
根据鸽巢原理,至少要取出13个球。
5.某班有52名学生,证明至少有5个人在同一个月出生。
根据鸽巢原理,把12个月分成11个组,每组至少有5个人,那么必然有一个月份至少有5个人生日。
鸽巢问题知识点

鸽巢问题知识点这是鸽巢问题知识点,是优秀的数学教案文章,供老师家长们参考学习。
鸽巢问题知识点第1篇“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。
例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。
本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。
兴趣是学习最好的老师。
所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。
叫举手的一男一女两个同学上台,然后问,老师想叫三位同学玩这个游戏,但是现在已有两个,你们说最后一个是叫男生还是女生呢?”同学们回答后,老师就说:“不管是男生还是女生,总有二个同学的性别是一样的,你们同意吗?”并通过三人“抢凳子”游戏得出不管怎样抢“总有一根凳子至少有两个同学”。
借机引入本节课的重点“总有……至少……”。
这样设计使学生在生动、活泼的数学活动中主动参与。
鸽巢问题知识点第2篇教学内容审定人教版六年级下册数学《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。
设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5单元数学广角—鸽巢问题
第1课时鸽巢问题(1)
【教学目标】
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使
学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实
验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发
学生的学习兴趣,使学生感受数学的魅力。
【教学重难点】
重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门进行反复推理。
【教学过程】
一、情境导入
教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。
通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。
(板书课题:鸽巢问题)
教师:通过学习,你想解决哪些问题?
根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?
二、探究新知:
1.教学例1.(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少
有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”
的学习过程来解决问题。
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么
放,总有1个笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,
不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
①像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。
②如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。
(5)归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
2、教学例2(课件出示例题2情境图)
思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
①8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
②10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本) (1)
(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。
鸽巢原理(二):我们把多余kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、巩固练习
1、完成教材第70页的“做一做”第1题。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
学生独立思考解答问题,集体交流、纠正。
四、课堂总结
今天这节课你有什么收获?能说给大家听听吗?。