微加速度开关功能结构

合集下载

加速度传感器原理结构使用说明校准和参数解释

加速度传感器原理结构使用说明校准和参数解释

加速度传感器原理结构使用说明校准和参数解释一、加速度传感器原理:加速度传感器是一种能够测量物体在三个空间维度上的加速度变化的传感器。

其工作原理基于牛顿第二定律,即F=ma,其中F为作用力,m为物体的质量,a为物体的加速度。

传感器通过测量物体上的惯性力来间接测量物体的加速度。

一般情况下,加速度传感器是基于微机械系统(MEMS)技术制造的。

二、加速度传感器结构:加速度传感器的主要结构包括质量块(或称为振动子系统)、阻尼器、感受层以及电子转换装置。

质量块通常是一个微小的振动系统,可以沿多个轴向振动。

当物体受到外力或加速度影响时,质量块的相对位置发生改变,从而产生相应的电信号输出。

三、加速度传感器使用说明:1.安装:加速度传感器通常需要固定在被测物体上,可以使用螺栓、胶水、焊接等方式进行安装。

需要注意的是,传感器的位置和方向应该与被测物体的运动方向保持一致。

2.供电:传感器通常需要外部直流电源供电,供电电压和电流应符合传感器的要求。

3.输出信号:加速度传感器的输出信号通常为模拟信号(如电压或电流),也有一些传感器输出数字信号。

用户在使用传感器时需要根据实际需求来选择合适的信号处理方式。

4.数据处理:传感器的输出信号可以连接到数据采集设备或控制系统中进行进一步处理和分析。

用户可以根据需求选择合适的数据处理方法和算法。

5.维护:加速度传感器通常需要定期检查和维护,包括清洁传感器表面、检查传感器连接是否松动等。

四、加速度传感器校准:为了确保加速度传感器测量结果的准确性和可靠性,通常需要进行校准。

校准可以分为两个步骤:静态校准和动态校准。

1.静态校准:静态校准主要是通过将传感器放置在水平面上并保持静止状态来进行。

根据重力加速度的方向可以计算出传感器在其坐标轴上的零偏差或者非线性误差。

2.动态校准:动态校准主要是通过将传感器连接到知道真实加速度的振动台或运动载体上进行。

通过与已知加速度值进行比较,可以计算出传感器的灵敏度和线性误差。

高过载微型加速度计结构设计及数值模拟

高过载微型加速度计结构设计及数值模拟

Vo . 4 1 3 No 3 .
Jn 0 0 u .2 1
-..
同 载 微 型 加 速 度 计 结 构 设 计 及 数 值 模 拟 过
邹 华
( 京理工 大学 理学院 , 南 江苏 南 京 2 0 9 ) 10 4
J_ L_ 【j
摘 要 : 为检 测 高膛压 火炮膛 内弹 丸运 动加 速度 的 时 间 变化规 律 , 文依 据 性 能 较优 的 电容 式 该
c fa c lr me e l si l me t s a o t2 0 k . y o c ee o tr ea tc ee n si b u 5 Hz
Ke od : ihpesr g n ;poete ; ir acl o t s f i l n i uai y w r s hg rsue u s r ei s m co cee me r; nt ee t m lt n j l r e i e me s o
c p ct e mir c ee o tr i p i m ef r n e h v be ee t d f lsi c mp — a a i v c o a c l r me e sw t o t i h mu p roma c .T e mo a l l cr e o a t o o o e c n n s i s p o e y ma y sr ih e ms T e me h n c d l g a d te f i lme tsmu a e t s u p s d b n t g tb a . h c a is mo ei n h n t e e n i l — a n i e
微 型 加速度 计 的 测量原 理 , 出了一种 高过 载微 型加 速 度 计 的 结构 设 计 方 案 , 弹性 元 件 的 动 提 其

MEMS加速度计分析

MEMS加速度计分析

MEMS加速度计分析MEMS加速度计(Microelectromechanical systems accelerometer)是一种基于微电子技术和微机械结构的传感器设备,用于测量物体的加速度。

它具有小巧、低功耗、高精度等优势,在多个领域中得到了广泛的应用,如智能手机、车载导航系统、运动监测设备等。

本文将对MEMS加速度计的原理、结构、应用以及未来发展进行详细分析。

首先,MEMS加速度计利用微电子技术和微机械结构实现了对物体加速度的测量。

其基本原理是通过测量微结构在加速度作用下产生的位移或形变来确定物体的加速度。

一般来说,MEMS加速度计由感应质量块、弹簧结构和传感电路组成。

当物体加速度发生变化时,感应质量块会受到作用力的影响而移动,进而引起弹簧结构的形变。

通过测量感应质量块或弹簧结构的位移或形变,就可以确定物体的加速度。

其次,MEMS加速度计具有一系列优点。

首先,它具有小巧的尺寸,可以被集成到各种微型设备中,如智能手机、手表等。

其次,它具有低功耗的特点,由于采用了微电子技术,可以在工作过程中消耗较少的电能,延长设备的使用寿命。

再次,MEMS加速度计具有高精度的特点,可以测量微小的加速度变化,从而提供准确的加速度数据。

此外,MEMS加速度计还具有较低的成本,相对于传统的加速度计,其制造成本较低。

MEMS加速度计在各个领域中具有广泛的应用。

在智能手机中,MEMS加速度计用于屏幕自动旋转、运动感应和步态识别等功能。

在车载导航系统中,MEMS加速度计可以检测汽车的加速度,从而实现车辆的导航功能。

在运动监测设备中,MEMS加速度计可以测量人体的运动轨迹和交通模式,从而实现步数统计和运动状态监测等功能。

除此之外,MEMS加速度计还被应用于工业自动化、医疗健康、航空航天等领域。

然而,MEMS加速度计也存在一些局限性。

首先,由于其微小的尺寸和灵敏的结构,MEMS加速度计容易受到外界环境的干扰,如温度变化、震动等。

mems加速度传感器原理

mems加速度传感器原理

mems加速度传感器原理加速度传感器是一种常见的MEMS(微机电系统)传感器,用于测量物体在三个轴向上的加速度。

它是由微小的机械结构和敏感器件组成,通过测量物体对这些结构的力的变化来确定加速度大小。

本文将介绍mems加速度传感器的工作原理及其应用。

一、mems加速度传感器的工作原理mems加速度传感器通常由质量块、弹簧和电容等组件构成。

当物体受到加速度作用时,质量块会受到力的作用而发生位移,而弹簧会受到拉伸或压缩。

这些位移和变形将导致电容的改变,从而通过电容变化来测量加速度。

具体来说,mems加速度传感器利用了电容的变化来测量加速度。

传感器中的质量块被固定在一个支撑结构上,并与支撑结构之间通过弹簧连接。

当物体受到加速度作用时,质量块会发生位移,而弹簧则会产生相应的拉伸或压缩。

这种位移和变形将导致质量块与支撑结构之间的电容发生变化。

mems加速度传感器中的电容通常由两个金属板构成,它们分别与质量块和支撑结构相连。

当质量块发生位移时,金属板之间的距离会发生改变,进而改变了电容的值。

这种电容的变化可以通过电路进行测量和分析,从而得到加速度的值。

二、mems加速度传感器的应用mems加速度传感器具有体积小、功耗低、成本低等优点,因此在许多领域得到广泛应用。

1. 汽车安全系统:mems加速度传感器可用于汽车的安全气囊系统和车辆稳定性控制系统。

通过测量车辆的加速度,可以及时触发气囊的放出,以保护乘客的安全。

同时,加速度传感器还可以监测车辆的姿态和动态参数,为车辆稳定性控制提供依据。

2. 手机和智能设备:mems加速度传感器广泛应用于手机和智能设备中,用于实现自动旋转屏幕、晃动动作识别、步数计数等功能。

通过测量设备的加速度,可以实现多种智能交互方式,提升用户体验。

3. 工业监测和控制:mems加速度传感器可用于工业设备的监测和控制。

例如,可以用于测量机械设备的振动和冲击,从而判断设备的工作状态和健康状况,及时进行维护和修理。

东南大学微机电系统-MEMS简介.

东南大学微机电系统-MEMS简介.

5:11 PM
14
国外MEMS 技术在引信中的应用
• MEMS 技术在精确打击弹药引信中的应用
美国FMU2159/ B 硬目标侵彻灵巧引信及加速度计
5:11
5:11 PM
装有弹道修正引信的MK64 制导炮弹
16
5:11 PM
单兵20 mm 高 爆榴弹微机电引信
工作时间:8小时左右 视 角 度:140度 视 距:3cm 分 辨 力:0.1mm 体 积:13mm ×27.9mm 重 量:<6g 外 壳:无毒耐酸耐碱高分子材料
图象记录仪
5:11 PM
20
影像工作站
5:11 PM
OMOM胶囊内镜的工作原理是:患者像服药一样用水将智 能胶囊吞下后,它即随着胃肠肌肉的运动节奏沿着胃→十 二指肠→空肠与回肠→结肠→直肠的方向运行,同时对经 过的腔段连续摄像,并以数字信号传输图像给病人体外携 带的图像记录仪进行存储记录,工作时间达6~8小时,在 智能胶囊吞服8~72小时后就会随粪便排出体外。医生通过 影像工作站分析图像记录仪所记录的图像就可以了解病人 整个消化道的情况,从而对病情做出诊断。
5:11 PM
3
微电子机械系统是以微电子、微机械及材料科学为基础, 研究、设计和制造具有特定功能的微型装置(包括微结构器件、 微传感器、微执行器和微系统等方面)的一门科学。
• 1959年就有科学家提出微型机械的设想,但直到1962年 才出现属于微机械范畴的产品—硅微型压力传感器。其 后尺寸为50~500微米的齿轮、齿轮泵、气动蜗轮及联 接件等微型机构相继问世。而1987年由华裔留美学生冯 龙生等人研制出转子直径为60微米和100微米的硅微型 静电电机,显示出利用硅微加工工艺制作微小可动结构 并与集成电路兼容制造微小系统的潜力,在国际上引起 轰动,科幻小说中描述把自己变成小昆虫钻到别人的居 室或心脏中去的场景将要成为现实展现在人们面前。同 时,也标志着微电子机械系统(MEMS)的诞生。

mems加速度计原理

mems加速度计原理

mems加速度计原理
MEMS加速度计是一种利用微电子机械系统技术制造的加速
度传感器。

它采用微小的质量偏转来测量物体的加速度。

MEMS加速度计的原理基于牛顿第二定律,即力等于质量乘
以加速度。

它包括一个微小的质量块,在加速度作用下会偏转。

具体原理如下:
1. 弹性梁原理:MEMS加速度计的核心部件是微小的弹簧梁
结构。

当加速度作用于传感器时,其内部的弹簧梁会受到力的作用而发生形变。

通过测量形变量的变化,可以计算出加速度大小。

2. 微机电系统技术:MEMS加速度计通过微电子加工工艺制
造出微小的机械结构,这些结构可以识别并测量加速度。

常见的结构包括悬臂梁、微型质量块等。

当加速度发生改变时,这些微小结构会产生微小位移,通过测量位移的变化,可以得到加速度的值。

3. 电容变化原理:MEMS加速度计中的微小结构内部设置了
电容,当加速度发生变化时,结构的位移会导致电容发生改变。

通过测量电容的变化,可以得到加速度的值。

总之,MEMS加速度计利用微小结构的位移或形变来测量加
速度,具有体积小、功耗低和响应速度快等优势,广泛应用于移动设备、汽车电子系统和航空航天等领域。

差分电容式MEMS加速度计的结构设计及仿真

现代电子技术Modern Electronics Technique2023年7月1日第46卷第13期Jul.2023Vol.46No.130引言加速度计作为惯性导航系统的重要组成部分,通常被用于载体加速度的测量。

随着微电子技术和微加工技术的飞速发展,硅微加速度计已经在传感器市场占据了重要的地位[1⁃4]。

电容式微加速度计具有灵敏度高、输出精度高、低频响应好、噪声低、漂移小、功耗低、环境适应能力强和结构简单等优点,可适用于车辆工程和高精度惯性导航等多种领域,是当今加速度计的热点研究方向[5⁃9]。

在两种常见的电容式加速度计结构中,相较于梳齿结构在工艺上难于实现,“三明治”结构则在工艺上更容易实现、成品率高,于是本文设计了一种“三明治”结差分电容式MEMS 加速度计的结构设计及仿真邬润杰1,张伟1,郭子龙2(1.北京信息科技大学传感器重点实验室,北京100101;2.西安工业大学光电工程学院,陕西西安710021)摘要:为了扩大加速度计的测量范围、提高其灵敏度并且控制成本,提出一种差分电容式MEMS 加速度计,并介绍了其敏感机理,即输入加速度时硅质量块产生相应位移,与钯银电极形成差分电容。

通过建立输入加速度、电容差及输出电压三者之间的关系,即可检测z 轴加速度。

使用有限元分析,设置加速度为±100g 范围内,对该加速度计支撑梁厚度变化时其应力、位移变化情况进行计算和分析。

结果表明,差分电容式MEMS 加速度计具有加速度计效应,加速度在±100g 范围内线性度良好。

加速度计在梁厚为0.058mm 时,输入加速度和位移的最佳比例系数为10-7m/g ,其机械灵敏度、位移灵敏度和电容灵敏度较梁厚为0.075mm 时分别提高了10%、38%和37.9%。

该研究为后续结构改进、性能优化奠定了理论基础。

关键词:加速度计;敏感元件;“三明治”结构;差分检测;有限元分析;灵敏度;支撑梁厚度中图分类号:TN37+9⁃34;TN212文献标识码:A文章编号:1004⁃373X (2023)13⁃0147⁃06Structure design and simulation of differential capacitive MEMS accelerometerWU Runjie 1,ZHANG Wei 1,GUO Zilong 2(1.Key Laboratory of Sensors,Beijing Information Science &Technology University,Beijing 100101,China;2.School of Opto⁃electornical Engineering,Xi ’an Technology University,Xi ’an 710021,China)Abstract :In order to expand the measuring range,improve the sensitivity and control the cost of the accelerometer,a differential capacitive MEMS accelerometer is proposed,and its sensitive mechanism is introduced,that is,when the acceleration is input,the silicon mass will generate corresponding displacement and form differential capacitance with palladium ⁃silver electrode.By establishing the relationship among input acceleration,capacitance difference and output voltage,the z ⁃axis acceleration can be detected.By means of the finite element analysis,the stress and displacement changes of the support beamthickness of the accelerometer are calculated and analyzed within the range of ±100g of acceleration.The results show that thedifferential capacitive MEMS accelerometer has the accelerometer effect,with an acceleration range of ±100g and good linearity.The optimal ratio coefficient for input acceleration and displacement of the accelerometer is 10-7m/g when the beam thickness is 0.058mm.Its mechanical sensitivity,displacement sensitivity,and capacitance sensitivity are increased by 10%,38%,and37.9%compared to the beam thickness of 0.075mm,respectively.This study can lay a theoretical foundation for the subsequent structural improvement and performance optimization.Keywords :accelerometer;sensitive element;″sandwich″structure;differential detection;finite element analysis;sensitivity;support beam thicknessDOI :10.16652/j.issn.1004⁃373x.2023.13.025引用格式:邬润杰,张伟,郭子龙.差分电容式MEMS 加速度计的结构设计及仿真[J].现代电子技术,2023,46(13):147⁃152.收稿日期:2023⁃01⁃03修回日期:2023⁃01⁃18基金项目:国家自然科学基金资助项目(61372016);北京市教育委员会科技计划重点项目(KZ201711232030);传感器北京市重点实验室开放课题基金资助项目(2022CGKF002)147现代电子技术2023年第46卷构的差分电容式MEMS 加速度计。

adxl1005工作原理

adxl1005工作原理ADXL1005是一种微型加速度传感器,其工作原理基于微机电系统(MEMS)技术。

它被广泛应用于手机、游戏手柄、汽车安全系统等领域,用于检测物体的加速度和倾斜角度。

ADXL1005的工作原理可以简单描述为通过微机电系统技术将加速度转换为电信号。

在ADXL1005内部,有一块微小的晶片,上面集成了微小的结构和电子元件。

当ADXL1005受到外部加速度作用时,微小的结构会产生微小的位移,从而改变电子元件之间的电容或电阻值。

通过测量这些电容或电阻值的变化,ADXL1005可以将加速度转换为电信号输出。

具体来说,ADXL1005采用了一种称为差分电容检测的技术。

它包括了两个微小的电容结构,分别与X轴和Y轴方向的加速度相关联。

当加速度作用于ADXL1005时,微小的电容结构会发生变化,导致电容值的差异。

这个差异被转换成电压信号,并经过放大和滤波等处理后输出。

ADXL1005还具有温度补偿和线性加速度范围调整的功能,以提高测量的准确性和稳定性。

温度补偿功能可以校正温度对传感器输出的影响,确保在不同环境温度下的准确测量。

线性加速度范围调整功能可以根据需要调整传感器的灵敏度,以适应不同的应用场景。

ADXL1005通过SPI或I2C接口与微处理器或其他电子设备进行通信。

通过读取传感器输出的电压值,可以获得物体的加速度和倾斜角度信息。

这些信息可以用于控制和判断设备的运动状态,如手机的屏幕自动旋转、游戏手柄的动作捕捉和汽车安全系统的碰撞检测等。

ADXL1005是一种基于MEMS技术的微型加速度传感器,通过测量微小的电容或电阻变化将加速度转换为电信号输出。

它具有温度补偿和线性加速度范围调整的功能,可以在各种应用场景中准确测量物体的加速度和倾斜角度。

mems加速度计z轴结构及工作原理

mems加速度计z轴结构及工作原理mems加速度计是一种基于微机电系统(MEMS)技术的传感器,用于测量物体在三维空间中的加速度,其中z轴加速度是指物体在垂直于地面的方向上的加速度。

mems加速度计的结构可分为三个主要部分:质量块、支撑结构和感应电极。

质量块是mems加速度计的核心部件,通常采用微米级别的硅质材料制成。

支撑结构用于支撑质量块,以保持其相对静止位置,一般由弹性材料制成。

感应电极则用于测量质量块的位移,从而间接测量物体在z轴方向上的加速度。

mems加速度计的工作原理基于质量块的惯性。

当物体受到外力作用时,质量块会发生位移,而这种位移会导致感应电极间的电容发生变化。

通过测量电容的变化,可以推断出质量块的位移大小,从而得到物体在z轴方向上的加速度。

具体而言,mems加速度计利用电容变化来测量质量块的位移。

当物体受到加速度时,质量块会发生相应的位移,导致感应电极之间的电容发生变化。

通过测量电容的变化,可以确定质量块的位移量,从而得到物体在z轴方向上的加速度。

为了实现这一测量过程,mems加速度计通常采用差动电容结构。

差动电容结构由两对相等的感应电极组成,分别位于质量块的两侧。

当质量块发生位移时,感应电极之间的电容会发生变化。

通过测量两对感应电极之间的电容差值,可以确定质量块的位移量,进而计算出物体在z轴方向上的加速度。

为了提高mems加速度计的灵敏度和精度,还可以采用一些增强措施。

例如,可以在质量块和支撑结构之间设置减震垫,以减小外界干扰对加速度测量的影响。

同时,还可以采用温度补偿技术,通过测量环境温度的变化来修正mems加速度计的输出,以提高其稳定性和准确性。

mems加速度计是一种基于微机电系统技术的传感器,用于测量物体在三维空间中的加速度。

通过测量质量块的位移,可以间接得到物体在z轴方向上的加速度。

其结构简单、工作原理清晰,可以应用于许多领域,如运动追踪、姿态控制、智能手机等。

随着MEMS技术的不断发展,mems加速度计将会在更多领域发挥重要作用。

加速度传感器原理结构使用说明校准和参数解释

加速度传感器原理结构使用说明校准和参数解释加速度传感器(Accelerometer)是一种用于测量物体加速度的传感器。

它的原理基于牛顿力学中的惯性原理,即物体的加速度与作用在物体上的力成正比,反向与物体的质量成反比。

下面将详细介绍加速度传感器的原理、结构、使用说明、校准和参数解释。

一、原理:加速度传感器的原理基于微机电系统(MEMS)技术或压电效应。

在MEMS加速度传感器中,通常使用微小的质量(如悬臂梁、微弹簧等)和微型电容或电阻来测量物体的加速度。

当物体加速度改变时,微小的质量会相对于传感器的壳体发生位移,从而改变传感器内部的电容或电阻值。

通过测量电容或电阻值的变化,就可以计算出物体的加速度。

在压电式加速度传感器中,传感器内部包含压电材料,当物体加速度改变时,压电材料会产生电荷,通过测量电荷的大小,可以计算出物体的加速度。

二、结构:加速度传感器的结构通常包括感应质量(Mass)、感应结构(Spring)、感应电容或电阻、壳体等部分。

感应质量是传感器内部的微小质量,感应结构用于支撑感应质量并产生位移,感应电容或电阻用于测量感应质量的位移,壳体则用于保护传感器内部的结构。

三、使用说明:1.安装:将加速度传感器固定在需要测量加速度的物体上,确保传感器与物体之间的接触良好,并且传感器的测量轴与物体的加速度方向一致。

2.供电:连接传感器的供电电源,通常为直流电源或电池。

3.输出:连接传感器的输出接口,获取传感器的加速度数据。

常见的输出接口包括模拟电压输出、数字串行接口(如I2C、SPI等)等。

4.数据处理:将传感器输出的原始数据进行处理,根据传感器的校准参数将原始数据转换为实际的加速度值。

5.数据分析:根据需要对加速度数据进行分析,如计算速度、位移、碰撞检测等。

四、校准:1.静态校准:将传感器放置在水平平稳的表面上,采集传感器输出的静态加速度数据,并与真实的重力加速度(9.8m/s²)进行比较,通过调整传感器的校准参数,使得传感器输出的静态加速度数据接近真实的重力加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双稳态微加速度开关结构及原理
一、双稳态微加速度开关的结构以及工作状态示意图
图1
1:顶盖2:侧架3:底盖4:质量块5:支撑梁6:动极板7:触点8:定极板
图1为双稳态微加速度开关结构模型
如图1所示,在无外界冲击力干扰的情况下,微开关内部质量块在感应方向受到卡西米尔力、范德瓦尔斯力、弹性力和静电力的共同作用。

二、质量块受力分析
如图2所示,质量块受到弹性力Fk、范德瓦尔斯力Ff、卡西米尔力Fc 和电场力Fe的作用。

图2
三、运用的微电子与机械的相关技术
1)静电力驱动特性—吸合效应
静电驱动微结构的吸合效应来源于静电力的非线性,由库仑定律可以知道,电荷之间的静电力与电荷之间的距离成反比关系,而结构的刚度一般为线性,也就是说弹性力线性增加的同时,静电力是非线性增加的。

而结构间隙达到某一特定值时,弹性力与静电力平衡,之后静电力增加的速度大于弹性力增加的速度,使得弹性力无法与静电力平衡,电极之间就会因此而吸合到一起,也就是所谓的吸合效应。

2)卡西米尔力分析
卡西米尔力由卡西米尔效应产生,卡西米尔效应就是真空中两片平行的平坦金属板之间的吸引压力。

这种压力是由平板之间空间中的虚粒子的数目比正常数目减小造成的。

在正常情况下,真空中充满着几乎各种波长的粒子,卡西米尔认为,如果使两个不带电的金属薄盘紧紧靠在一起,较长的波长就会被排除。

接着,金属盘外的其他波就会产生一种往往使它们相互聚拢的力,金属盘越靠近,两者之间的吸引力就越强。

这种平坦金属板之间的由于虚粒子数目和波长引起的压力被称为卡西米尔力。

3)范德瓦尔斯力分析
随着MEMS特征尺寸减小,物体离散性表现的越来越明显,用传统的连续方法研究离散微观物体间的相互作用已不符合微观世界的规律了。

但是,对于工程实际中微观物体间力学问题的研究,国际上主要采用Hamaker微观连续介质理论。

四、参考文献
【1】王林滨基于双稳态的MEMS微开关设计.西安电子科技大学,2010
【2】郝亚锋基于MEMS的静电控制加速度微开关分析及测试,2011。

相关文档
最新文档