(完整版)教案平面机构的自由度
平面机构的自由度

F 3n 2 pl ph 0
表明该运动链中各构件间已无相对运动,只构成了一个 刚性桁架,因而不能成为机构。
5)超静定桁架
图(b)所示的平面 四构件运动链,其自 由度
,
F 3n 2 pl ph 1
表明该运动链由于约束过多,已成为超静定桁架 了,也不能成为机构。
机构具有确定运动的条件 F=0(或F﹤0),是静定(超静定)桁架。 F>0,当F>主动件数目时,运动不确定。 当F﹤主动件数目时,机构发生破坏。
2
F 3n 2 PL PH 3 2 2 2 1 1
1
凸轮机构
计算图中机构的自由度。
解: n=5, PL=7 , PH=0
F=3n-2PL–PH=3×5-2×7-0=1
二、机构具有确定运动的条件 机构的主要作用是按照设计的要求完成预定的 运动传递或转换功能。 对于机构来说,必须满足以下两点:1、运动的 可能性,2、运动的确定性。 机构有确定运动是指当机构中主动件的位置确 定时,所有从动件的位置也都随之确定。
常见机构的自由度计算 1)四杆机构: n=3 PL=4 PH=0 F=3n-2PL-PH=3×3-2×4-0=1 2)五杆机构: n=4 PL=5 PH=0 F=3n-2PL-PH=3×4-2×5-0=2 3)凸轮机构:
3
n=2 PL=2 PH=1 F=3n-2PL-PH=1
2
1
4)刚性桁架
要使所设计的运动链成为机构,组成运动链的各构件之 间必须具有确定的相对运动。不能产生运动或作无规则运动 的运动链均不能成为机构。 如图(a)所示的平面三构件运动链,其自由度
注意: 法线不重合时, 变成实际约束!
n2 A n1
n1
平面机构的自由度和速度分析

R=1, F=2
运动副 自由度数
约束数
回转副
移动副 高副
1(θ) + 2(x,y) = 3 自由构 1(x) + 2(y,θ)= 3 件旳自 2(x,θ)+ 1(y) = 3 由度数
结论:构件自由度 = 3-约束数 =自由构件旳自由度数-约束数19
推广到一般:
活动构件数 构件总自由度 低副约束数 高副约束数
同一构件
9
一般构件旳表达措施
两副构件 三副构件
10
注意事项:
作者:潘存云教授
画构件时应撇开构件旳实际外形, 而只考虑运动副旳性质。
11
常用机构运动简图符号
在 机 架 上 旳 电 机
齿 轮 齿 条 传 动
圆
带
锥
传
齿
动
轮
传 动
12
链 传 动
外啮 合圆 柱齿 轮传 动
圆柱 蜗杆 蜗轮 传动
凸 轮 传 动
P12 P23
∴根据排列组合有 K= N(N-1)/2
构件数 4 5 6
8
瞬心数 6 10 15 28
38
3)机构瞬心位置旳拟定
1. 直接观察法
合用于求经过运动副直接相联旳两构件瞬心位置。
P12
1
2P12 ∞1n12
2
P12 t
1t 2 V12
n
2. 三心定律
定义:三个彼此作平面运动旳构件共有三个瞬心,且它们位 于同一条直线上。尤其合用于两构件不直接相联旳场合。
作者:潘存云教授
E
F
5. 对运动不起作用旳对称 部分。如多种行星轮。
作者:潘存云教授
33
6. 两构件构成高副,两处接触,且法线重叠。 如等宽凸轮
说课教案(自由度的计算)

授课时间第次课,第周星期第节课时 2 授课方式理论课■讨论课□习题课□实验课□上机课□技能课□其他□授课题目§1-3 平面机构的自由度目的与要求1、掌握平面机构自由度的计算;2、掌握并会分析平面机构自由度计算的特殊情况(复合铰链,局部自由度,虚约束等特殊情况)重点与难点重点:自由度的计算难点:复合铰链、局部自由度和虚约束的判断教学基本内容方法及手段§1-3 平面机构的自由度为了使相互组合的构件能够产生确定的运动,必须研究机构自由度和机构具有确定运动的条件。
一、平面机构的自由度计算公式机构的自由度:构件相对于参考系的独立运动平面自由构件:3个自由度(如下图,3个自由度分别是两个轴向的独立运动和一个绕A点的转动)多个构件组成运动副后,自由度也随之减少。
1、引入转动副,限制了X和Y向的运动,即自由度减少2;引入移动副,限制了另一个方向的移动和转动,即自由度减少22、引入平面高副,限制了沿接触点处公法线方向的移动,即自由度减少1综上所述,引入一个平面低副,自由度减少2,;引入一个平面多媒体应用(三个不同的实例)高副,自由度减少1。
设平面机构中,有K 个构件,除了固定的构件,活动构件数为n=K-1,高副数为P H ,低副数为P L ,则该平面机构的自由度F 的计算公式为:)2(3H L P P n F +-=例 1-1 试计算下列机构的自由度 a)n = 3、p L = 4、p H = 0 F = 3n-(2p L + p H ) = 3×3-(2×4+0)=1b)n = 2、p L = 2、p H = 1 F =3n-(2p L + p H ) = 3×2-(2×2 +1)=1二、机构具有确定运动的条件 1、确定运动F=3×2-2×3=0 桁架 F=3×4-2×5=2 运动不固定F=3×3-2×4=1 有确定的运动通过引导学生,让学生分析出自由度计算的公式。
(完整版)机械设计基础1自由度

(约束了一个自由度)
此外,还有球面副和螺旋副,均属于空间相对运动。本课程不进行讨论。
§1-2.平面机构的运动简图
1.平面运动副的表示方法:
转动副表示方法
2.构件表示方法:
移动副表示方法
高副表示方法
两个转动副构件
一个转动副 一个移动副构件
5 F=3×5 - 2×7 = 1 ✓
(2) 局部自由度: 与整个机构运动无关的自由度。 计算机构自由度时应予排除。
F=3×3 - 2×3 -1 = 2 ×
F=3×2 - 2×2 -1 = 1 ✓
目的:变滑动磨擦为滚动磨擦,以减少磨损。计 算时应将该构件连同运动副一起除去。
(3) 虚约束: 对机构自由度是重复的约束。
第一章 平面机构的自由度 和速度分析
平面机构:所有的构件都在同一平面或在相互平行平 面内运动的机构。
§1-1.运动副及分类
自由构件:在平面内不受约束做自由运动的构件。
自由度:做平面运动的自由构件的独立的自由运动 数(三个自由度)X、Y、 。
Y
y
0
x
X
1.运动副(关节):两构件间的可动联接
定义:使两构件直接接触并能产生一定相对运动的联接。
即该机构只有一个自由度,与原 动件数相同(齿轮3为原动件)。 所以,满足机构具有确定运动的条 件。
例题3. 已知一机构如图所示,求其自由度?
解:1. A、B、C、D处为复合铰 链
2. n=7 PL= 10 PH=0
F=3n-2PL-PH=37-2100=1
即该机构只有一个自由度,与原 动件数相同(杆8为原动件)。所 以,满足机构具有确定运动的条件
四讲 平面机构自由度

湖北职业技术学院备课纸《机械设计基础》教案教学内容:平面机构自由度教学方式:结合实际,由浅如深讲解教学目的:1.理解机构自由度的计算公式;2.明确平面机构具有确定运动的条件;3.清楚平面机构自由度计算应注意的问题;4.掌握平面机构自由度计算的实际应用。
重点、难点:平面机构自由度计算应注意的问题教学过程:3.3 平面机构的自由度3.3.1机构自由度的计算机构相对机架(固定构件)所具有的独立运动数目,称为机构的自由度。
在平面机构中,设机构的活动构件数为n,在未组成运动副之前,这些活动构件共有3n 个自由度。
用运动副联接后便引入了约束,并失去了自由度,一个低副因有两个约束而将失去两个自由度,一个高副有一个约束而失去一个自由度,若机构中共有P L个低副、P H个高副,则平面机构的自由度F的计算公式为F=3n-2P L-P H如图所示的搅拌机,其活动构件数n=3,低副数P L=4,高副数P H=0,则该机构的自由度为F=3n-2P L-P H=3×3-2×4-0=13.3.2机构具有确定运动的条件机构能否实现预期的运动输出,取决于其运动是否具有可能性和确定性。
如图1所示,由3个构件通过3个转动副联接而成的系统就没有运动的可能性,因其自由度为F=3n-2P L-P H=3×2-2×3-0=0 ,故不能图1称其为机构。
图2所示的五杆系统,若取构件1作为主动件,其自由度为F=3n-2P L-P H=3×5-2×5-0=2当构件1处于图示位置时,构件2、3、4则可能处于实线位置,也可能处于虚线位置。
显然,从动件的运动是不确定的,故也不能称其为机构。
如果给出2个主动件,即同时图2给定构件1、4的位置,则其余从动件的位置就唯一确定了(图2实线),此时,该系统则可称为机构。
当主动件的位置确定以后,其余从动件的位置也随之确定,则称机构具有确定的相对运动。
那么究竟取一个还是几个构件作主动件,这取决于机构的自由度。
平面机构的自由度

1、三角形具有稳定性。 2、四边形具有不稳定性。
引入:三角形与四边形
教学引入 教学策略
教学练习
教学效果
“用三根木条钉成 三角形的木架,然 后扭动它,它的形 状会发生变化吗?” “不会变形”
引入:三角形与四边形
教学引入 教学策略
教学练习
教学效果
“然而,用四根木 条钉成四角形的木 架,然后扭动它, 它的形状会发生变 化吗?” “变形”
Part
3
教学练习
课前学习
教学流程 教学实施过程
平面机构自由度的计算
教学引入 教学讲解
教学练习
教学效果
1、三角固定架(刚性桁架)
F = 3n - 2 Pl - Ph
1 2
F=3×2-2×3=0 构件间没有相对运动 机构→刚性桁架
固定构件
2、铰链四杆机构
一个原动件
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数=机构自由度
运动确定
平面机构自由度的计算
教学引入 教学讲解
教学练习
教学效果
2、铰链四杆机构
两个原动件
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数>机构自由度
运动不确定
3、铰链五杆机构
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数<机构自由度
运动不确定
平面机构自由度的计算
构件间具有确定的相对运动关 机构具有确定运动的条件: 系的构件组合体,称为机构。 自由度 F > 0 , 且等于原动件个数。
Part
4
教学效果
教学效果 教学反思
习题练习:
教学引入 教学讲解
《平面机构自由度》课件

在计算平面机构自由度时,需要考虑局部自由度对整体自由度的影响。如果忽略 了局部自由度,可能会导致自由度计算错误。
平面机构自由度计算中的注意事项
01
正确理解约束和自由度的关系
约束和自由度是相对的概念,一个约束可以减少一个自由度。在计算自
由度时,需要正确识别和计算约束的数量。
02
注意机构的连接方式
机构的连接方式会影响其运动性质和自由度的数量。例如,不同连接方
式的连杆机构会有不同的自由度数。
03
考虑机构的实际工作状态
在某些情况下,机构在特定的工作状态下可能表现出不同的自由度数。
因此,在计算平面机构自由度时,需要考虑其实际工作状态。
04
平面机构自由度在机械设 计中的应用
机构运动分析中的应用
未来研究的方向与展望
01
02
03
04
发展更为精确、高效的平面机 构自由度计算方法,以适应各 种复杂机构的自由度分析需求
。
深入研究平面机构自由度与机 构性能之间的关系,为机构优
化设计提供理论依据。
探索平面机构自由度的实验验 证方法,提高研究的可重复性
和可推广性。
将平面机构自由度的研究成果 应用于实际工程中,促进相关
用提供理论支持。
平面机构自由度的研究有助于 推动机构学理论的完善和发展 ,促进相关领域的技术进步和
创新。
当前研究的不足与挑战
平面机构自由度的计算方法仍不够完善,对于某 些复杂机构的自由度分析仍存在困难。
平面机构自由度与机构性能之间的关系尚不明确 ,需要进一步深入研究。
平面机构自由度的实验验证方法有待发展,以提 高研究的可靠性和实用性。
分类
平面机构的自由度教案

平面机构的自由度教案第一章:平面机构的基本概念1.1 平面机构的定义介绍平面机构的定义和特点解释机构的作用和应用1.2 平面机构的组成介绍平面机构的组成要素,包括构件和连接解释不同类型的构件和连接方式1.3 平面机构的分类介绍平面机构的分类,包括单自由度机构和多自由度机构解释不同类型平面机构的特点和应用第二章:自由度的概念2.1 自由度的定义介绍自由度的概念和意义解释自由度在机构设计中的重要性2.2 自由度的计算介绍自由度的计算方法和步骤解释如何确定机构中自由度的数量2.3 自由度与约束的关系介绍自由度与约束之间的关系解释如何通过约束来控制机构的运动和稳定性第三章:平面机构的自由度计算3.1 单自由度机构的自由度计算介绍单自由度机构的自由度计算方法解释如何确定单自由度机构的自由度数量3.2 多自由度机构的自由度计算介绍多自由度机构的自由度计算方法解释如何确定多自由度机构的自由度数量3.3 自由度计算的实例分析提供实例分析,帮助学生理解和应用自由度计算方法第四章:自由度对机构运动的影响4.1 自由度与机构运动的关系介绍自由度对机构运动的影响和作用解释不同自由度机构的特点和运动方式4.2 自由度对机构稳定性的影响介绍自由度对机构稳定性的影响和作用解释如何通过自由度来控制机构的稳定性和可靠性4.3 实例分析:自由度对机构运动和稳定性的影响提供实例分析,帮助学生理解和应用自由度对机构运动和稳定性的影响第五章:自由度在机构设计中的应用5.1 自由度在机构设计中的作用介绍自由度在机构设计中的重要性和应用价值解释如何利用自由度来优化机构设计和提高性能5.2 自由度在机构创新中的运用介绍自由度在机构创新中的作用和意义解释如何利用自由度来创造新的机构设计和解决方案5.3 实例分析:自由度在机构设计中的应用提供实例分析,帮助学生理解和应用自由度在机构设计中的应用第六章:平面机构的自由度分析方法6.1 机构自由度分析的基本原理介绍机构自由度分析的基本原理和数学基础解释如何应用这些原理来分析平面机构的自由度6.2 运动链分析法介绍运动链分析法的概念和步骤解释如何利用运动链分析法来确定机构的自由度6.3 机构自由度分析的实例提供实例分析,帮助学生掌握自由度分析的方法和技巧第七章:平面机构的自由度优化设计7.1 自由度优化设计的目标介绍自由度优化设计的目标和意义解释如何在机构设计中实现自由度的优化7.2 自由度优化设计的方法介绍自由度优化设计的方法和技巧解释如何应用这些方法来提高机构的性能和效率7.3 实例分析:自由度优化设计在实际中的应用提供实例分析,帮助学生理解自由度优化设计的方法和应用第八章:平面机构的自由度控制8.1 自由度控制的概念和意义介绍自由度控制的概念和意义解释自由度控制在机构设计和应用中的重要性8.2 自由度控制的方法和技巧介绍自由度控制的方法和技巧解释如何应用这些方法来控制机构的自由度8.3 实例分析:自由度控制在实际中的应用提供实例分析,帮助学生理解自由度控制的方法和应用第九章:平面机构的自由度综合应用9.1 自由度在机构设计中的应用介绍自由度在机构设计中的应用和意义解释如何利用自由度来优化机构设计9.2 自由度在机械臂机构设计中的应用介绍自由度在机械臂机构设计中的应用和意义解释如何利用自由度来优化机械臂机构设计9.3 实例分析:自由度在机构综合应用中的实例提供实例分析,帮助学生理解自由度在机构综合应用中的方法和技巧第十章:平面机构的自由度教案总结10.1 平面机构自由度教案的回顾回顾整个教案的内容和重点强调平面机构自由度的重要性和应用价值10.2 平面机构自由度教案的实践应用鼓励学生将所学知识应用到实际机构和机械设计中强调平面机构自由度在实际工程中的重要性10.3 平面机构自由度教案的拓展学习推荐学生进一步学习的资料和资源鼓励学生探索平面机构自由度在更广泛领域中的应用重点和难点解析一、平面机构的基本概念:理解平面机构的定义、组成和分类是学习平面机构自由度的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面机构的自由度
【教学目的】
1、掌握运动链成为机构的条件。
2、熟练掌握机构自由度的计算方法。
能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。
【教学内容】
1、引出自由度的概念,明确自由度和约束的关系;
2、推导自由度计算公式,并加以举例说明;
3、学会利用公式计算平面机构的自由度。
【教学重点和难点】
1、机构自由度的计算
【教学方法】
1、课堂以讲授为主,结合实物文件进行分析讲解。
2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。
【教学内容】
1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机构的
自由度。
2、自由度的引入
构件的独立运动称为自由度。
一个作平面运动的自由构件具有3个独立的运动,见图1。
图1 平面自由度
即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。
构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。
如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。
如图3中转动副限制了2相限制1沿x轴y轴移动,引入两个约束。
如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。
图4 高副及表示符号
3 自由度公式的推导
如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。
当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。
于是,该机构的自由度应为
()H L H L p p n p p n F --=+-=2323 (1)
4 自由度的计算
图5 平面四连杆机构 图6 平面五连杆机构
(1)三个活动构件,四个低副,零个高副。
104233=-⨯-⨯=F (2)四个活动构件,五个低副,零个高副
342502F 总结:
平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。