教案平面机构的自由度

合集下载

平面机构的自由度教案

平面机构的自由度教案

机械设计基础平面机构的自由度学院:___________________________ 专业:___________________________ 班级:___________________________第二节平面机构的自由度教学过程:一、复习有关内容(6分钟):1.平面运动副的分类:根据运动副元素的不同,平面运动副可分为低副和高副。

2.低副:两构件之间通过面与面接触而组成的运动副称为低副。

3.高副:两构件以点或线的形式相接触而组成的运动副称为高副。

4.运动副的概念:两个构件之间的可动连接称为运动副。

5.低副分为移动副和转动副。

6.机构运动简图的概念:表示机构的结构组成及运动原理而不严格按照比例绘制的机构运动简图,称为机构示意图。

二、导入新课(4分钟):通过对平面四连杆机构的运动分析,引入自由度与运动副之间的关系,引导学生思考运动副是如何影响自由度的。

三、讲授新课(33分钟):(一)运动链成为机构的条件1、运动链自由度的计算平面运动链:(设n个活动构件,P L个低副,P H个高副)F = 3 n - 2 P L - P H空间运动链:F = 6 n - 5 p - 4 p - 3 p - 2 p - p2、运动链成为机构的条件:(原动件数>F,机构破坏)F = 3 x 3 - 2 x 4 - 0 = 1(原动件数二机构自由度):铰链五杆机构:F=3*4-2*5=2(原动件数〈机构自由度数):机构运动不确定(任意乱动)3、结论:(1)F W0,构件间无相对运动,不成为机构。

(2)F>0,原动件数二F,运动确定;原动件数<F,运动不确定;原动件数>尸,机构破坏。

(二)计算自由度应注意的问题(1)复合铰链处理方式:m-1例:F=3*7-2*10-0=1(2)局部自由度(与输出件运动无关的自由度称局部自由度)F = 3 x 3 —2 x 3 -1 = 2?Mi Hi(3)虚约束:在特殊的几何条件下,有些约束所起的限制作用是重复的,这种不起独立限制作用的约束称为虚约束。

平面机构的自由度教案

平面机构的自由度教案
板书(复习旧内容)
板书讲解
板书
引出概念
引导启发式记忆
板图
课堂练习
板书
例子:求下图机构的自由
解:F=3n-2Pl-Ph=3x3-2x4-0=1
F=W=1成立
三:课堂小结
1、自由度的定义;
2、自由度的计算公式:F=3n-2Pl-Ph;
3、机构自由度的计算;
4、检验机构自由度的条件。
板图
计算练习
教师小结

若引入低副Pl:失去2Pl个自由度
若引入高副Ph:失去1Ph个自由度
引出:F=3n-2Pl-Ph
提示:Pl中的l可以认为是英语中的low
Ph中的h可以认为是英语中的high
(六)举例练习
求下图机构的自由度
解:F=3n-2Pl-Ph=3x3-2x4-0=1
(七)自由度的检验条件
F=W原动件数
让学生在书本上划出约束的定义
绕某一点转动
引出:一个作平面运动的自由机构具有三个自由度。
教师引导
学生看书(5分钟)
板书
板图讲解
板书
(三)约束的定义
(四)运动副的类型
转动副
高副
运动副移动副
低副
各类型运动副所引入的约束:
引入失去
一个低副两个约束两个自由度
引入失去
一个高副一个约束一个自由度
(五)自由度的计算公式
n(活动构件数)个自由构件的自由度数:3n
黑板、各色粉笔








教学活动
教学说明
一、导入
老师:同学们,你们对“自由”这个词有什么看法?
(学生讨论、回答)

四讲 平面机构自由度

四讲 平面机构自由度

湖北职业技术学院备课纸《机械设计基础》教案教学内容:平面机构自由度教学方式:结合实际,由浅如深讲解教学目的:1.理解机构自由度的计算公式;2.明确平面机构具有确定运动的条件;3.清楚平面机构自由度计算应注意的问题;4.掌握平面机构自由度计算的实际应用。

重点、难点:平面机构自由度计算应注意的问题教学过程:3.3 平面机构的自由度3.3.1机构自由度的计算机构相对机架(固定构件)所具有的独立运动数目,称为机构的自由度。

在平面机构中,设机构的活动构件数为n,在未组成运动副之前,这些活动构件共有3n 个自由度。

用运动副联接后便引入了约束,并失去了自由度,一个低副因有两个约束而将失去两个自由度,一个高副有一个约束而失去一个自由度,若机构中共有P L个低副、P H个高副,则平面机构的自由度F的计算公式为F=3n-2P L-P H如图所示的搅拌机,其活动构件数n=3,低副数P L=4,高副数P H=0,则该机构的自由度为F=3n-2P L-P H=3×3-2×4-0=13.3.2机构具有确定运动的条件机构能否实现预期的运动输出,取决于其运动是否具有可能性和确定性。

如图1所示,由3个构件通过3个转动副联接而成的系统就没有运动的可能性,因其自由度为F=3n-2P L-P H=3×2-2×3-0=0 ,故不能图1称其为机构。

图2所示的五杆系统,若取构件1作为主动件,其自由度为F=3n-2P L-P H=3×5-2×5-0=2当构件1处于图示位置时,构件2、3、4则可能处于实线位置,也可能处于虚线位置。

显然,从动件的运动是不确定的,故也不能称其为机构。

如果给出2个主动件,即同时图2给定构件1、4的位置,则其余从动件的位置就唯一确定了(图2实线),此时,该系统则可称为机构。

当主动件的位置确定以后,其余从动件的位置也随之确定,则称机构具有确定的相对运动。

那么究竟取一个还是几个构件作主动件,这取决于机构的自由度。

平面机构的自由度

平面机构的自由度

1、三角形具有稳定性。 2、四边形具有不稳定性。
引入:三角形与四边形
教学引入 教学策略
教学练习
教学效果
“用三根木条钉成 三角形的木架,然 后扭动它,它的形 状会发生变化吗?” “不会变形”
引入:三角形与四边形
教学引入 教学策略
教学练习
教学效果
“然而,用四根木 条钉成四角形的木 架,然后扭动它, 它的形状会发生变 化吗?” “变形”
Part
3
教学练习
课前学习
教学流程 教学实施过程
平面机构自由度的计算
教学引入 教学讲解
教学练习
教学效果
1、三角固定架(刚性桁架)
F = 3n - 2 Pl - Ph
1 2
F=3×2-2×3=0 构件间没有相对运动 机构→刚性桁架
固定构件
2、铰链四杆机构
一个原动件
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数=机构自由度
运动确定
平面机构自由度的计算
教学引入 教学讲解
教学练习
教学效果
2、铰链四杆机构
两个原动件
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数>机构自由度
运动不确定
3、铰链五杆机构
F = 3n - 2 Pl - Ph
(F﹥0)
原动件数<机构自由度
运动不确定
平面机构自由度的计算
构件间具有确定的相对运动关 机构具有确定运动的条件: 系的构件组合体,称为机构。 自由度 F > 0 , 且等于原动件个数。
Part
4
教学效果
教学效果 教学反思
习题练习:
教学引入 教学讲解

《平面机构自由度》课件

《平面机构自由度》课件
局部自由度对整体自由度的影响
在计算平面机构自由度时,需要考虑局部自由度对整体自由度的影响。如果忽略 了局部自由度,可能会导致自由度计算错误。
平面机构自由度计算中的注意事项
01
正确理解约束和自由度的关系
约束和自由度是相对的概念,一个约束可以减少一个自由度。在计算自
由度时,需要正确识别和计算约束的数量。
02
注意机构的连接方式
机构的连接方式会影响其运动性质和自由度的数量。例如,不同连接方
式的连杆机构会有不同的自由度数。
03
考虑机构的实际工作状态
在某些情况下,机构在特定的工作状态下可能表现出不同的自由度数。
因此,在计算平面机构自由度时,需要考虑其实际工作状态。
04
平面机构自由度在机械设 计中的应用
机构运动分析中的应用
未来研究的方向与展望
01
02
03
04
发展更为精确、高效的平面机 构自由度计算方法,以适应各 种复杂机构的自由度分析需求

深入研究平面机构自由度与机 构性能之间的关系,为机构优
化设计提供理论依据。
探索平面机构自由度的实验验 证方法,提高研究的可重复性
和可推广性。
将平面机构自由度的研究成果 应用于实际工程中,促进相关
用提供理论支持。
平面机构自由度的研究有助于 推动机构学理论的完善和发展 ,促进相关领域的技术进步和
创新。
当前研究的不足与挑战
平面机构自由度的计算方法仍不够完善,对于某 些复杂机构的自由度分析仍存在困难。
平面机构自由度与机构性能之间的关系尚不明确 ,需要进一步深入研究。
平面机构自由度的实验验证方法有待发展,以提 高研究的可靠性和实用性。
分类

3.3平面机构的自由度

3.3平面机构的自由度

第一讲一、教学目标(一)能力目标能根据实物绘制机构运动简图(二)知识目标1.了解机构组成原理2.理解自由度、运动副、约束的概念及三者的关系二、教学内容1.运动副及其分类2.平面机构的运动简图三、教学的重点与难点(一)重点平面机构的运动简图的绘制。

(二)难点绘制简图时构件及运动副的准确表示。

四、教学方法与手段多媒体教学,采用动画演示、实例分析、启发引导的教学方式。

3.1 机构的组成3.1.1 运动副运动副:两构件直接接触并能保持一定形式的相对运动的联接称为运动副。

如图a),轴承中的滚动体与内外圈的滚道、图b)啮合中的一对齿廓、图c)滑块与导槽,均保持直接接触,并产生一定的相对运动。

因而它们都构成了运动副。

构件上参与接触的点、线、面,称为运动副的元素。

根据运动副对构件运动形式的约束及两构件接触方式的不同,运动副可如下分类: 1、 高副两构件通过点或线接触组成的运动副称为高副。

如图所示,凸轮与从动杆及两齿轮分别在其接触处组成高副。

2、低副 两构件通过面接触组成的运动副称为低副。

平面低副可分为转动副和移动副。

(1)转动副 若运动副只允许两构件作相对转动,则称该运动副为转动副,也称铰链。

如图所示各构件的联接就是转动副。

如果转动副的两构件之一是固定不动的,则称该转动副为固定铰链。

若转动副中两构件都是运动的,则称该转动副为活动铰链。

(2)移动副 若运动副只允许两构件沿接触面某一方向相对滑移,则称该运动副为移动副。

如图所示。

3.1.2 自由度和运动副的约束yO 12x1、构件的自由度在平面运动中,每一个独立的构件,其运动均可分为三个独立的运动,即沿x轴和y 轴的移动及在xoy平面内的转动。

构件的这三种独立的运动称为其自由度,分别用x、y及α为三个独立参数表示。

由上述可知:构件的自由度等于构件的独立运动参数。

平面内自由的构件,有3个自由度,而空间内自由的构件,有6个自由度。

2、运动副的约束当两构件通过运动副联接,任一构件的运动将受到限制,从而使其自由度减少,这种限制就称为约束。

平面机构的自由度教案

平面机构的自由度教案

平面机构的自由度教案第一章:平面机构的基本概念1.1 平面机构的定义介绍平面机构的定义和特点解释机构的作用和应用1.2 平面机构的组成介绍平面机构的组成要素,包括构件和连接解释不同类型的构件和连接方式1.3 平面机构的分类介绍平面机构的分类,包括单自由度机构和多自由度机构解释不同类型平面机构的特点和应用第二章:自由度的概念2.1 自由度的定义介绍自由度的概念和意义解释自由度在机构设计中的重要性2.2 自由度的计算介绍自由度的计算方法和步骤解释如何确定机构中自由度的数量2.3 自由度与约束的关系介绍自由度与约束之间的关系解释如何通过约束来控制机构的运动和稳定性第三章:平面机构的自由度计算3.1 单自由度机构的自由度计算介绍单自由度机构的自由度计算方法解释如何确定单自由度机构的自由度数量3.2 多自由度机构的自由度计算介绍多自由度机构的自由度计算方法解释如何确定多自由度机构的自由度数量3.3 自由度计算的实例分析提供实例分析,帮助学生理解和应用自由度计算方法第四章:自由度对机构运动的影响4.1 自由度与机构运动的关系介绍自由度对机构运动的影响和作用解释不同自由度机构的特点和运动方式4.2 自由度对机构稳定性的影响介绍自由度对机构稳定性的影响和作用解释如何通过自由度来控制机构的稳定性和可靠性4.3 实例分析:自由度对机构运动和稳定性的影响提供实例分析,帮助学生理解和应用自由度对机构运动和稳定性的影响第五章:自由度在机构设计中的应用5.1 自由度在机构设计中的作用介绍自由度在机构设计中的重要性和应用价值解释如何利用自由度来优化机构设计和提高性能5.2 自由度在机构创新中的运用介绍自由度在机构创新中的作用和意义解释如何利用自由度来创造新的机构设计和解决方案5.3 实例分析:自由度在机构设计中的应用提供实例分析,帮助学生理解和应用自由度在机构设计中的应用第六章:平面机构的自由度分析方法6.1 机构自由度分析的基本原理介绍机构自由度分析的基本原理和数学基础解释如何应用这些原理来分析平面机构的自由度6.2 运动链分析法介绍运动链分析法的概念和步骤解释如何利用运动链分析法来确定机构的自由度6.3 机构自由度分析的实例提供实例分析,帮助学生掌握自由度分析的方法和技巧第七章:平面机构的自由度优化设计7.1 自由度优化设计的目标介绍自由度优化设计的目标和意义解释如何在机构设计中实现自由度的优化7.2 自由度优化设计的方法介绍自由度优化设计的方法和技巧解释如何应用这些方法来提高机构的性能和效率7.3 实例分析:自由度优化设计在实际中的应用提供实例分析,帮助学生理解自由度优化设计的方法和应用第八章:平面机构的自由度控制8.1 自由度控制的概念和意义介绍自由度控制的概念和意义解释自由度控制在机构设计和应用中的重要性8.2 自由度控制的方法和技巧介绍自由度控制的方法和技巧解释如何应用这些方法来控制机构的自由度8.3 实例分析:自由度控制在实际中的应用提供实例分析,帮助学生理解自由度控制的方法和应用第九章:平面机构的自由度综合应用9.1 自由度在机构设计中的应用介绍自由度在机构设计中的应用和意义解释如何利用自由度来优化机构设计9.2 自由度在机械臂机构设计中的应用介绍自由度在机械臂机构设计中的应用和意义解释如何利用自由度来优化机械臂机构设计9.3 实例分析:自由度在机构综合应用中的实例提供实例分析,帮助学生理解自由度在机构综合应用中的方法和技巧第十章:平面机构的自由度教案总结10.1 平面机构自由度教案的回顾回顾整个教案的内容和重点强调平面机构自由度的重要性和应用价值10.2 平面机构自由度教案的实践应用鼓励学生将所学知识应用到实际机构和机械设计中强调平面机构自由度在实际工程中的重要性10.3 平面机构自由度教案的拓展学习推荐学生进一步学习的资料和资源鼓励学生探索平面机构自由度在更广泛领域中的应用重点和难点解析一、平面机构的基本概念:理解平面机构的定义、组成和分类是学习平面机构自由度的基础。

01 平面机构自由度-教学设计

01 平面机构自由度-教学设计
教学过程
教师活动
学生活动
设计意图及
资源准备
一、组织教学
同学们好,现在开始上课!
停止说话,准备上课
用洪亮的声音吸引学生的注意力,让他尽快进入上课状态
二、复习
复习上次课学过的主要内容:
1.机械、机构、构件、零件等基本概念。
2.机构的组成原理。
强调掌握每一概念的重要性。
学生回忆该部分的知识
温故而知新,复习前次课的重要内容,对于本次课的学习有至关重要的作用
二、教学目的(知识,技能,情感态度、价值观)
知识与技能目标:
1.熟练掌握平面机构、低副和高副等概念。
2.熟练掌握机构自由度计算公式。
过程与方法目标:
1.通过提问式方法,总结归纳出机构自由度计算公式;
2.分别用工程中常见的机构作为例题,通过课堂练习法,带领学生巩固机构自由度计算公式,并对结果进行分析。
“机构自由度计算”是《机械设计基础》课程第一章平面机构分析中第三节课程的教学内容,在学生掌握了平面机构的组成、特点,熟练掌握机构运动简图绘制的基础上,进行教学的。通过学习该节内容,让学生学会如何准确的计算出机构的自由度,以及学会判断机构是否具有确定的运动,为已有机构进行分析或创造新的机构提供基本条件。
让学生做题,提高其应变能力。并培养学生积极做题。
五、巩固新课
课堂小结
这节课我们学习了计算机构自由度方法,通过学习发现在计算自由度时,应先判断机构中活动构件、低副和高复的数目,再进行做题!
学生积极配合
对本课的总结可以及时的帮助学生对主要讲授内容进行梳理,对学生的学习起巩固的作用
六、布置作业
课件中布置课后作业。
五、教学策略和方法
本节课采用启发式和主动参与式教学策略,引导学生发现问题,分析问题并解决问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案平面机构的自由度 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
平面机构的自由度
【教学目的】
1、掌握运动链成为机构的条件。

2、熟练掌握机构自由度的计算方法。

能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。

【教学内容】
1、引出自由度的概念,明确自由度和约束的关系;
2、推导自由度计算公式,并加以举例说明;
3、学会利用公式计算平面机构的自由度。

【教学重点和难点】
1、机构自由度的计算
【教学方法】
1、课堂以讲授为主,结合实物文件进行分析讲解。

2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。

【教学内容】
1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机
构的自由度。

2、自由度的引入
构件的独立运动称为自由度。

一个作平面运动的自由构件具有3个独立的运动,见图1。

图1 平面自由度
即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。

构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。

如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。

如图3中转动副限制了2相限制1沿x 轴y 轴移动,引入两个约束。

如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。

图4 高副及表示符号
3 自由度公式的推导
如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。

当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。

于是,该机构的自由度应为
()H L H L p p n p p n F --=+-=2323 (1)
4 自由度的计算
图5 平面四连杆机构 图6 平面五连杆机构
(1)三个活动构件,四个低副,零个高副。



=
F
-
-
3=
4
1
2
3
(2)四个活动构件,五个低副,零个高副
F
342502
总结:
平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。

相关文档
最新文档