用高等数学解初等数学问题
初等数学与高等数学有关问题的联系与区别

初等数学与高等数学有关问题的联系与区别一、导数的应用导数是研究函数的工具,利用导数研究函数的性质问题,可以比较容易地得到结果或找到解题的方向.导数的单调性:定理:设函数y=f(x)在[a,b]上连续,在(a,b)内可导:(1)如果在(a,b)内f′(x)0,那么函数y=f(x)在[a,b]上单调增加;(2)如果(a,b)在内f′(x)0,那么函数y=f(x)在[a,b]上单调减少.例:确定函数f(x)=x■-2x+4在哪个区间内是增函数,哪个区间内是减函数.解法一:设x■,x■是R上的任意两个实数,且x■x■,则f(x■)-f(x■)=(x■-x■)(x■+x■-2).因为x■-x■0,所以要使x■+x■-20,则x■x■1.于是f(x■)-f(x■)0.即x1时,f(x)是增函数;x1时,f(x)是减函数.解法二:f′(x)=2x-2令2x-210解得x1;因此,当x∈(1,+∞)时,f(x)是增函数.再令2x-20,解得x1,因此,当x∈(-∞,-1)时,f(x)是减函数.经过对两种方法的对比,我发现用大学数学解决此问题更方便快捷.当我们再回头看高中学的方法,觉得它在解决一些问题上存在一定的弊端.二、极限的应用学习极限是从一个“有限”到“无限”的飞跃.从数列极限或函数极限的变化趋势来理解极限问题是认识和解决问题的需要.数列极限:中学与大学的数列极限的概念虽相差不远,但大学的数列极限概念却引出了”收敛”一词,由此给出了收敛数列及其极限的准确定义.有了数列极限的精确定义,我们便可以用定义(又称“ε-N”定义)证明高中数列极限中所用的结论.例:证明■■=0(a,k均为常数,且k∈N■)在中学,我们直观地知道,当n→∞时,n■=∞,■■=0.这仅仅局限于直观得出结论.然而,在大学,我们可以通过极限的“ε-N”定义来证明这个结论的正确性.在高中,我们已经开始接触数列极限.总的来说,高中阶段的数列极限注重的是利用所给结论来求解所给数列的极限值,重点是培养解题能力,注重的是理性思维的培养和备考能力的提高.而大学的数列极限,更多的是利用抽象定义证明某一命题的正确性,强化锻炼的是抽象思维能力及逻辑思维能力.而且大学里对数列极限的深入介绍,不仅完善了我们对数列极限的认识,在求解一些极限问题上,思维也越发灵活.三、不等式的应用不等式是刻画现实世界中的不等关系的数学模型,反映了事物在量上的区别.不等式在解决优化问题中有广泛应用,也是学习高等数学的重要基础.不等式的内容体现了数学的精深.不等式的性质贯穿于不等式的证明、求解和实际应用.充分理解不等式的性质是学习不等式的关键.不等式作为中学教学内容,大体可以分为四个部分:一是不等式的概念与性质;二是解不等式;三是不等式的证明;四是不等式的应用.大学虽然没有专门介绍不等式,但不等式的应用,特别是几个常见的有关不等式的定理的应用,在整个大学数学几乎随处可见.不等式的证明:不等式的证明方法灵活多变,有时要用多种方法,并且不等式的证明常和函数联系,这体现了数学素质的要求.在中学,我们所学的不等式证明所用的最基本的方法主要有比较法、分析法、综合法、归纳法,以及放缩法、换元法、反证法、判别式法等.某些不等式,我们虽然可以用中学的解答,但是用大学所学的某些来解答,我们会发现明显简单得多.定理3.1(拉格朗日(Lagrange))中值定理:若函数f(x)满足如下条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导.则在开区间(a,b)内至少存在一点c,使得f′(c)=■例:证明:当ab0时,不等式nb■(a-b)<a■-b■> <na■(a-b)在n> 1时成立. </na■(a-b)在n> </a■-b■>在中学,我们可以用作差法来证明此题.这里不再证明.下面我们就用大学所学的拉格朗日中值定理证明此题.证明:设f(x)=x■,则f′(x)=nx■,当ab0时,对f(x)在区间[b,a]上应用拉格朗日中值定理有■=■=f′(c)=nc■其中b<c> <a因为n> 1时,n-10,所以</a因为n> </c>nb■■=nc■<na■.></na■.>故有nb■(a-b)<a■-b■> <na■(a-b).></n a■(a-b).> </a■-b■>运用精确的定义对高中的某些结论进行证明,也就让我们从只是纯粹地接受结论上升为自主地探讨结论的正确性,这本身就是在认识上的一个质的飞跃.而且大学的证明方法更简便快捷,使我们一目了然.初等数学与高等数学有机地紧密结合,以学习高等数学知识作指导,学习重温初等数学知识,可以达到一个新的高度.而以高等数学知识用以指导解题,常常可以居高临下地事先估测答案,确定解题思路.通过对初等数学与高等数学在解问题时的对比,提高了数学和科学素养,并促进了对数学分析、高等代数学科知识的进一步理解和掌握.。
初等数学与高等数学的联系及一些应用

2 0 1 3年 第 3期
学卜( l
在此 例 中引 人矩 阵作 为工具 使 用 了矩 阵 的性质 , 得 以求
由概率的性质知0 ≤ P ( A u 当 ) l , 扶旧0 口 + b — a b l
4 总 结
由以上 5个 例 子可 以看 出 , 如 果用 初等 数 学 的知识 解 题
l
,
T -  ̄. , = J D 【2
例1 _设 a , I ∽者 隰正数, 且a + h " t - C = 1 , 求征二 + _ . _ + ≥9 。
/ 5
证明: 在R , 中, 使用标准内积。设 亏=
『 ]
√ 6 , √ c j,
所 以 U
】 + 1 , | 十 f 卜√ j :
发展 , 中学教 师要 掌握 一定的高等数学的知识与方 法, 并在教 学 中与初等数 学的知识 有机结合起 来 , 那/ / , 将 能 提 高学生的思维, 开阔学生的思路 , 培养学生的数 学修 养并提 高其解决 问题的能力。因而 , 本文着重把 高等数 学 与初等数 学联 系起来 , 通过几 个例子来 阐述 高等数 学在初 等数 学中的一 些重要的应用。 关键 词 : 高等数 学; 初等数学 ; 联 系; 应用
之, 学 习高 等 数学 能 加 深 对初 等 数学 的理 解 和 掌握 , 可 以 开 阔思 路 、 提 高数 学 修养 和解 决问 题 的 能力 。为 了解 决上 述 长
期存 在 的 问题 , 笔者 认 为研 究高 等数 学 与 中学 数学 的联 系是
一
设 = [ “ U i , = ] = [ : ] 贝 u c 2 , 式 为 = 一 , 且 c , 。 = [ ] = ]
(精品)高等代数知识在初等数学中的应用毕业设计

本科生毕业论文高等代数知识在初等数学中的应用摘要 (I)Abstract (I)第一章绪论 (1)第二章高等代数与初等数学的联系 (1)2.1知识方面的区别与联系 (2)2.2思想方法方面的区别与联系 (2)2.3观念方面的区别与联系 (4)第三章多项式理论在初等数学中的应用 (5)3.1去重因式分解多项式 (5)3.2 利用因数定理分解多项式 (5)3.3利用对称多项式与轮换多项式的性质分解多项式 (6)3.4多项式的一些应用 (6)第四章行列式在初等数学中的应用 (8)4.1应用行列式判定二元二次多项式的可分解性 (8)4.2应用行列式分解因式 (9)4.3应用行列式解决数列问题 (9)第五章线性方程组在初等数学中的应用 (12)5.1 在平面解析几何上的应用 (12)5.2在空间解析几何中的应用 (13)5.3在求解二元方程组上的应用 (14)第六章柯西不等式在初等数学中的应用 (15)6.1柯西不等式在解析几何中的应用 (15)6.2柯西不等式在解其它题方面的应用 (15)第七章结论 (18)参考文献 (19)致谢 (20)高等代数是现代数学中一个重要的分支,是在初等代数的基础上研究对象进一步的扩充.高等代数是初等数学的进化.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.在许多问题中,如果我们能用高等代数知识解决一些初等数学中的问题,将命题转化为一般性的问题进行解决,往往能收到事半功倍的效果,使人耳目一新.文章一方面介绍了高等代数与初等数学的联系,从数学知识、数学思想方法、数学观念3个方面发掘一下高等数学类课程与中学数学的联系.另一方面介绍高等代数的一些知识在初等数学的应用.如多项式、行列式、线性方程组、柯西不等式在初等数学中的应用,高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通和发展学生的发散和联想思维.用高等代数的观点去研究初等数学史新世纪对中学数学教师的高水平要求,教师是否具有较高的教学观点,是衡量教师数学素质的重要标准.教师具有高的观点,就能从高处看清中学教材的内在结构和本质联系,把握教材的重、难点;教师具有高观点,就能从认知的角度,在知识的各部分参透高等数学的观点,培养学生的创造性、判断性思维.关键词:高等代数多项式行列式柯西不等式初等代数应用AbstractHigher algebra is an important branch of modern mathematics, which is on the basis of the elementary algebra research object for further expansion. Advanced algebra is the evolution of elementary mathematics. Advanced algebra is not only the continuation of elementary mathematics, also is the foundation of modern mathematics, only good to master the basic knowledge of advanced algebra can adapt the mathematical development and teaching materials reform. Advanced algebra in the open field of vision of knowledge, especially the role of guiding middle school problem solving, etc. In many problems, if we can use the advanced algebra knowledge to solve some problems in the elementary mathematics, converting the proposition to general problems are solved, can often get twice the result with find everything new and fresh.Higher algebra and elementary mathematics were introduced on the one the other the application of elementary mathematics. Such as polynomial, determinant, system of linear equations, cauchy inequality in elementary mathematics, the application of advanced algebra to establish mathematics is not a simple problemsolution, but a mastery of knowledge and the development of students' divergent and associative thinking. In view of the new century of see the inner structure and the essence of the middle school teaching material from a from the perspective of cognition, in the knowledge of each part searches view of第一章绪论人类的文明进步和社会发展,无时无刻不受到数学的恩惠和影响,数学科学的应用和发展牢固地奠定了它作为整个科学技术乃至许多人文科学的基础的地位,当今时代,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,它和其他学科的交互作用空前活跃,越来越直接地为人类物质生产与日常生活作出贡献,也成为其掌握者打开众多机会大门的钥匙.在长期开设高等代数等数学类课程的实践中一直存在两方面的问题,一方面由于中学知识难以与高等代数直接衔接,使不少大学生一接触到“数学分析”、“高等代数”等课程,就对数学专业课程产生了畏惧情绪:另一方面,由于高等代数理论与中学教学需要严重脱节,许多高师毕业生对如何用高等代数知识指导初等代数教学感到茫然.通过本文的介绍,使读者都能清楚地看到:高等代数知识在初等数学的继续喝提高,在思想方法上是初等数学的延续和扩张,在观念上是初等数学的深化和发展.这样学生学习高等代数的难度就会大大降低.高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方面.高等代数与中学数学的联系对比不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学教师的指导作用.马克思曾说过:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”.高等代数作为一门抽象的大学学科,虽然表面上是独立的知识体系,但并没有与初等代数内容严重脱节,而是相互参透,彼此相通。
适合数学专业论文题目

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值。
浅谈高等数学在初等数学中的应用

浅谈高等数学在初等数学中的应用初等数学是学习高等数学基础,高等数学是初等数学的继续和提高,它不但解释了许多初等数学未能说清楚的问题,并使许多初等数学束手无策的问题,至此迎刃而解了。
本文从三个方面探讨高等数学在初等数学中的作用。
高等数学是在初等数学的基础上发展起来的,与初等数学有着紧密的联系。
站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。
运用高等数学的知识可以解决一些用初等方法难以解决的初等数学问题,以便使学生了解到高等数学对于初等数学的指导作用。
标签:初等数学;高等数学;联系;应用数学是一门科学性、概括性、逻辑性很强的学科。
它源自于古希腊,是研究数量、结构、变化以及空间模型等概念。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
问题的提出许多学生经常提出这样的问题:我们为什么要学这么多高等数学?这些问题长期以来困扰着我们。
本文通过讨论初等与高等数学的联系,使他们真正觉得高等数学对初等数学教学有向导性意义,帮助他们用高等数学知识去分析和理解初等数学教材,从而站得更高,对中学数学的来龙去脉看得更清楚。
一、初等数学初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
二、高等数学内容包括函数与极限、一元函数微积分、向量代数与空间解析几何、多元函数微积分、级数、常微分方程等。
其中极限论是基础:微分、积分是是核心,是从连续的侧面揭示和研究函数变化的规律性,微分是从微观上揭示函数的局部性质,积分是从宏观上揭示函数的整体性质:级数理论是研究解析函数的主要手段:解析几何为微积分的研究提供了解析工具,為揭示函数的性质提供了直观模型:微分方程又从方程的角度把函数、微分、积分犹记得联系起来,揭示了它们之间内在的依赖转化关系。
初等数学与高等数学教学衔接问题的研究

初等数学与高等数学教学衔接问题的研究
初等数学与高等数学之间的教学衔接问题是教育领域中的一个重要课题。
初等数学通常是指小学和初中阶段的数学教育,包括整数、分数、代数、几何等基本概念和计算方法。
而高等数学则是大学阶段的数学教育,涉及微积分、线性代数、概率统计等高级数学知识。
教学衔接问题主要体现在初等数学与高等数学之间的知识脉络、教学方法和学习要求的不连贯性。
学生在初等数学学习之后,进入高校学习高等数学时常常会遇到知识重复、知识断层、知识跳跃等问题,导致学习困难和学习兴趣的减退。
这种不衔接的现象不仅影响学生成绩,还可能影响其对数学学科的兴趣和学习动力。
因此,对初等数学与高等数学教学衔接问题的研究具有重要的理论和实际意义。
这方面的研究可以从以下几个方面展开:
1. 教材设计:通过对初等数学和高等数学教材内容的分析和比较,设计出衔接性强的教材,使学生在学习高等数学之前能够有所准备和适应,避免知识的重复和断层。
2. 教学方法:研究不同阶段数学教学的最佳教学方法和策略,使学生能够有针对性地掌握和应用初等数学知识,并逐渐引导学生进入高等数学学习的状态。
3. 课程设置与调整:针对初等数学和高等数学之间的衔接问题,可以在教育体制和课程设置方面进行调整,逐步建立连贯性的
数学教育体系,使学生能够有一个平滑的过渡。
4. 师资培养与教师专业发展:培养素质过硬的数学教师,提高他们对数学课程衔接问题的认识和解决能力,提供对学生更好的指导和支持。
总之,初等数学与高等数学之间的教学衔接问题需要多方面的研究和努力,以促进学生在数学学习中的顺利过渡和发展。
浅谈高等数学在中学数学中的应用大学论文

浅谈高等数学在中学数学中的应用摘要本文探讨了初等数学和高等数学在知识体系上的差别以及应用上的联系,同时也探讨了他们地位上的差别和各自的重要性。
通过讨论可以得知,高等数学在很大程度上是初等数学的扩展。
本文第三部分重点介绍了微积分,不等式,行列式,以及高等几何等在初等数学中的应用,探讨了应用高等数学的思想方法解决初等数学的有关问题。
另外还探讨了高等数学在高考试题上体现的情况和如何解决相应的问题。
关键词高等数学中学数学微积分行列式IAbstractThis study of elementary mathematics and higher mathematics in knowledge on the difference between system and application links, also discussed their differences on the status and importance of each. Through discussion can see that higher mathematics is to a large extent is an extension of elementary mathematics. This article focuses on the second part of calculus, inequality, determinants, as well as the application of higher geometry in elementary mathematics, explored the application of higher mathematics thought method to solve problems of elementary mathematics. Discussion also reflected on the college entrance examination in higher mathematics and how to solve the problemKey words advanced mathematics Mathematics calculusII目录摘要 (I)Abstract (II)第一章前言 (1)1.1 研究背景 (1)1.2 课题研究意义 (1)1.3 文献综述 (2)1.4 研究方法 (2)1.5 创新之处 (2)第二章高等数学与初等数学的地位与联系 (3)2.1 初等数学与高等数学的定位 (3)2.2 高等数学与中学数学的联系 (4)2.2.1 中学数学与大学数学的统一性 (4)2.2.2 中学数学与大学数学的连贯性 (4)2.3 高等数学对初等数学的拓展 (5)2.3.1 代数方面 (5)2.3.2 几何方面 (6)第三章高等数学在初等数学中的应用 (8)3.1 高等代数在中学数学中的应用 (8)3.2.1 行列式的应用 (8)3.2.2 柯西—施瓦兹不等式应用 (9)3.2 微积分方法在中学数学的应用 (9)3.2.1 微积分方法在求函数的极值、最值中的应用 (9)3.2.2 用微积分知识直接用来处理初等数学的问题而达到简便的目的 (10)3.2.3 积分在空间立体体积与表面积中的应用 (12)3.2.4 积分在求曲线弧长中的应用 (13)3.3 高等几何在初等几何的应用 (14)3.3.1 仿射变换的应用 (14)3.3.2 射影几何观点在初等几何中的应用 (14)3.3.2.1 仿射变换的应用 (15)3.3.2.2 笛沙格定理的应用 (16)3.3.2.3 点列中四点的交比 (17)3.3.2.4 线束中四条直线的交比的应用 (18)第四章高考试题中的微积分在解题中的应用 (20)4.1 拉格朗日中值定理 (20)4.2 有关级数的应用 (23)总结 (26)参考文献............................................................ 错误!未定义书签。
高等数学与初等数学的联系及一些应用

高等数学与初等数学的联系及一些应用摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。
由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。
因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。
关键词:高等数学;初等数学;应用1.引言数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。
因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。
这些都是基于这种认识和理解,是有一定的道理的。
中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。
只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。
2.国内外研究现状大学课程学习的思维单向性很强。
大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。
“用”的观念淡薄了,“学”的热情自然而然的就少了。
抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。
中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。
比如极限定义、集合和函数等。
一位新数学教师在解释从非空数集A到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b一 n ‘ 0
1“ ) ≥6时 , 不存 在 z, 也就 是说 公路运 费
4 概 率 论 知 识
小于等 于铁路运 费 时 , 接 从 A 修 一条 公 路 直
到 C运 费最 少. 2 a 6时 , )< 一
3 求 , n , ( ) f x ) 比较 大小 找 出 ) ( ) 厂 6 , ( , 最 大值 、 小值 . 最
例 2 由铁 路 线
A 上 一 点 A 处 要 把 B
按渐 近线定 义 z c ,PNl — × l 。 —O即有
l f x) (z i m[ ( 一 志 + ) 一0 ] , 或 l f x -k ] . i ( ) x 一d m[ () 1
一 Ⅱ .
●
、\ \
导 数是 中学 学生应 掌握 的知 识.
/ / \\ \
图 1
预备知 识
法:
若 - ) a 6 上 连续 ,n 厂 在[ ,] ( (,
6 可导 , _ z 存 在 最 大 ( 小 ) , 体求 ) 则 厂 ) ( 最 值 具
1令 f( ) , ) z 一0 求驻 点 ( 止 一个 ) i 不 ,
= 1 2, , ; , …
如 图 1 曲 线 上 动 , 点 P到渐 近线 距离 l PNl l Mc s口 = P o l
—
i ( ) + f z 一‘
2若 /( <o , ) ) z) , ( 在 极 大值 , 若 /( >0 厂 在 极小值 ; ) , ( )
第 3 卷 第 4期 1
2 1 年 4月 02
数 学 教 学 研 究
2 5
用 高等 数 学 解初 等 数学 问题
王 春 林
( 西北 师 范 大 学 数 学 与信 息科 学 学 院 ,甘 肃 兰 州 70 7 ) 3 0 0
高等数 学知 识 可 以应 用 到新课 程 改革下 的初 等数学 中来 , 用 高 等 数 学 方 法解 初 等 利 数学 问题 , 不但 问题 得 以解决 , 而且 是 简捷 的 方法 , 本文举 例 阐述 具体 做法 .
z—
l 『z 一 ] iL m 忌 - j
m
货物 运 往 与 铁 路 相 距
为C B=Z 上一 点 C 如 (
—l i [ ( -k 3 m L ) x 一O・ =O , d ,
图 2 . 路 单 位 运 费 )铁 为 a 公 路单 位运 费 为 ,
图2
故 走 l掣 . 一i m
p o 。L
上 动点 P沿 着双 曲线 无 限远 离 原 点 时 , P 点
与某定 直 线 z的距 离 趋 于 零 , 称 z 双 曲 则 为
线 .( ) 厂 z 的渐 近 线.
一
l 『 鱼/ -2x—. i ± " a 1 0 m  ̄2 - x
“
故 ±z 得 一 詈.
从上 述方 法 可 以 看 出 , 方 法 可 以求 任 本 何存 在渐 近线 的 曲线 的渐 近线方 程如抛 物线
等.
2 导 数 法
2
. 2
例1 已知双曲线 一寺一1“ > (>6
“ L ,
O , 曲线 的渐近 线. )求
解 设 渐 近 线 方 程为 Y— k x十 d, 双 而 曲 线 方 程 Y一 - _ b _ 4 -
一
,( ) “ — ) 6、 了 = z一 ( + / .
1
C S C C S B O O
一
令厂 z一 b — — , ) 丽 x n o ( 则
一
C S C O
1
C SA = 0 O .
—
C S B C SA O O
l
丛
故
C S A+ C S B+ CS C O O。 O。
P( AB) P( ) B) 一 A P( , P( C = P( ) C), A ) = A P( : P( BC) P ( P( . = B) C)
厂 (
)
例 4 设 0 ,, <x 3 < l求 证 z , — , , +3 +z
z — z — z 1 ≤ .
预知 1辜 备识称 乏 耋- b c: a llO l ) x + ̄ 三 yz, +
a b C l l
a 6 C = 0. 2 2 。
证 明 据 , , Y z的 属性 , A, C 为 设 B, 三个两 两相 互 独 立 的 随 机 事 件 , P( : 且 A)
z, B) 3, C) z P( 一 ,P( 一 .
由预备知识
P( A+ B+ C) P( ) P( + P( 一 A + B) C)
由( ) , 2式
( 2 )
b问应该从 铁 路 线 上 选 怎样 一 点 M 修 公 路 ,
MC 使 由 A 到 C 全路线 AMC 运费 最少? , ( )
2 6
数 学 教 学 研 究
第 3 1卷第 4 期
21 02年 4月
解
如 图 2 设 M B=x, 运 费 , 则
n b C为三角形 边 , ,, 由预 备知识
简单概 率论知 识是 中学应 掌握 的 内容.
预 备知 识
1 P( + B+ C) P( 十 P( ) A : A) B) + P( 一 P( C) AB) P( 一 AC)
、
褥
>。 ,
’
.
f x- i()
故 z 一
一
P( BC) P( + ABC)
时最 小值
2 A, C两 两相互 独立 , ) B, 则
1 极 限 法
是一 l i m
一
± 旦 ,—2 — 2 / a X -  ̄ l — l———一 一 土 旦 i m _
,
.
由() , 1式
—
简单极 限理论是 中学数学 中必须掌握的. 预 备知识 渐 近线 定 义 : 双 曲线 - z 若 厂 ) (
一
l f x -k ] i () ) P( 一 AC 一 B + ABC )