高等数学与初等数学的联系及一些应用
初等数学与高等数学有关问题的联系与区别

初等数学与高等数学有关问题的联系与区别一、导数的应用导数是研究函数的工具,利用导数研究函数的性质问题,可以比较容易地得到结果或找到解题的方向.导数的单调性:定理:设函数y=f(x)在[a,b]上连续,在(a,b)内可导:(1)如果在(a,b)内f′(x)0,那么函数y=f(x)在[a,b]上单调增加;(2)如果(a,b)在内f′(x)0,那么函数y=f(x)在[a,b]上单调减少.例:确定函数f(x)=x■-2x+4在哪个区间内是增函数,哪个区间内是减函数.解法一:设x■,x■是R上的任意两个实数,且x■x■,则f(x■)-f(x■)=(x■-x■)(x■+x■-2).因为x■-x■0,所以要使x■+x■-20,则x■x■1.于是f(x■)-f(x■)0.即x1时,f(x)是增函数;x1时,f(x)是减函数.解法二:f′(x)=2x-2令2x-210解得x1;因此,当x∈(1,+∞)时,f(x)是增函数.再令2x-20,解得x1,因此,当x∈(-∞,-1)时,f(x)是减函数.经过对两种方法的对比,我发现用大学数学解决此问题更方便快捷.当我们再回头看高中学的方法,觉得它在解决一些问题上存在一定的弊端.二、极限的应用学习极限是从一个“有限”到“无限”的飞跃.从数列极限或函数极限的变化趋势来理解极限问题是认识和解决问题的需要.数列极限:中学与大学的数列极限的概念虽相差不远,但大学的数列极限概念却引出了”收敛”一词,由此给出了收敛数列及其极限的准确定义.有了数列极限的精确定义,我们便可以用定义(又称“ε-N”定义)证明高中数列极限中所用的结论.例:证明■■=0(a,k均为常数,且k∈N■)在中学,我们直观地知道,当n→∞时,n■=∞,■■=0.这仅仅局限于直观得出结论.然而,在大学,我们可以通过极限的“ε-N”定义来证明这个结论的正确性.在高中,我们已经开始接触数列极限.总的来说,高中阶段的数列极限注重的是利用所给结论来求解所给数列的极限值,重点是培养解题能力,注重的是理性思维的培养和备考能力的提高.而大学的数列极限,更多的是利用抽象定义证明某一命题的正确性,强化锻炼的是抽象思维能力及逻辑思维能力.而且大学里对数列极限的深入介绍,不仅完善了我们对数列极限的认识,在求解一些极限问题上,思维也越发灵活.三、不等式的应用不等式是刻画现实世界中的不等关系的数学模型,反映了事物在量上的区别.不等式在解决优化问题中有广泛应用,也是学习高等数学的重要基础.不等式的内容体现了数学的精深.不等式的性质贯穿于不等式的证明、求解和实际应用.充分理解不等式的性质是学习不等式的关键.不等式作为中学教学内容,大体可以分为四个部分:一是不等式的概念与性质;二是解不等式;三是不等式的证明;四是不等式的应用.大学虽然没有专门介绍不等式,但不等式的应用,特别是几个常见的有关不等式的定理的应用,在整个大学数学几乎随处可见.不等式的证明:不等式的证明方法灵活多变,有时要用多种方法,并且不等式的证明常和函数联系,这体现了数学素质的要求.在中学,我们所学的不等式证明所用的最基本的方法主要有比较法、分析法、综合法、归纳法,以及放缩法、换元法、反证法、判别式法等.某些不等式,我们虽然可以用中学的解答,但是用大学所学的某些来解答,我们会发现明显简单得多.定理3.1(拉格朗日(Lagrange))中值定理:若函数f(x)满足如下条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导.则在开区间(a,b)内至少存在一点c,使得f′(c)=■例:证明:当ab0时,不等式nb■(a-b)<a■-b■> <na■(a-b)在n> 1时成立. </na■(a-b)在n> </a■-b■>在中学,我们可以用作差法来证明此题.这里不再证明.下面我们就用大学所学的拉格朗日中值定理证明此题.证明:设f(x)=x■,则f′(x)=nx■,当ab0时,对f(x)在区间[b,a]上应用拉格朗日中值定理有■=■=f′(c)=nc■其中b<c> <a因为n> 1时,n-10,所以</a因为n> </c>nb■■=nc■<na■.></na■.>故有nb■(a-b)<a■-b■> <na■(a-b).></n a■(a-b).> </a■-b■>运用精确的定义对高中的某些结论进行证明,也就让我们从只是纯粹地接受结论上升为自主地探讨结论的正确性,这本身就是在认识上的一个质的飞跃.而且大学的证明方法更简便快捷,使我们一目了然.初等数学与高等数学有机地紧密结合,以学习高等数学知识作指导,学习重温初等数学知识,可以达到一个新的高度.而以高等数学知识用以指导解题,常常可以居高临下地事先估测答案,确定解题思路.通过对初等数学与高等数学在解问题时的对比,提高了数学和科学素养,并促进了对数学分析、高等代数学科知识的进一步理解和掌握.。
初等数学与高等数学的联系及一些应用

2 0 1 3年 第 3期
学卜( l
在此 例 中引 人矩 阵作 为工具 使 用 了矩 阵 的性质 , 得 以求
由概率的性质知0 ≤ P ( A u 当 ) l , 扶旧0 口 + b — a b l
4 总 结
由以上 5个 例 子可 以看 出 , 如 果用 初等 数 学 的知识 解 题
l
,
T -  ̄. , = J D 【2
例1 _设 a , I ∽者 隰正数, 且a + h " t - C = 1 , 求征二 + _ . _ + ≥9 。
/ 5
证明: 在R , 中, 使用标准内积。设 亏=
『 ]
√ 6 , √ c j,
所 以 U
】 + 1 , | 十 f 卜√ j :
发展 , 中学教 师要 掌握 一定的高等数学的知识与方 法, 并在教 学 中与初等数 学的知识 有机结合起 来 , 那/ / , 将 能 提 高学生的思维, 开阔学生的思路 , 培养学生的数 学修 养并提 高其解决 问题的能力。因而 , 本文着重把 高等数 学 与初等数 学联 系起来 , 通过几 个例子来 阐述 高等数 学在初 等数 学中的一 些重要的应用。 关键 词 : 高等数 学; 初等数学 ; 联 系; 应用
之, 学 习高 等 数学 能 加 深 对初 等 数学 的理 解 和 掌握 , 可 以 开 阔思 路 、 提 高数 学 修养 和解 决问 题 的 能力 。为 了解 决上 述 长
期存 在 的 问题 , 笔者 认 为研 究高 等数 学 与 中学 数学 的联 系是
一
设 = [ “ U i , = ] = [ : ] 贝 u c 2 , 式 为 = 一 , 且 c , 。 = [ ] = ]
(精品)高等代数知识在初等数学中的应用毕业设计

本科生毕业论文高等代数知识在初等数学中的应用摘要 (I)Abstract (I)第一章绪论 (1)第二章高等代数与初等数学的联系 (1)2.1知识方面的区别与联系 (2)2.2思想方法方面的区别与联系 (2)2.3观念方面的区别与联系 (4)第三章多项式理论在初等数学中的应用 (5)3.1去重因式分解多项式 (5)3.2 利用因数定理分解多项式 (5)3.3利用对称多项式与轮换多项式的性质分解多项式 (6)3.4多项式的一些应用 (6)第四章行列式在初等数学中的应用 (8)4.1应用行列式判定二元二次多项式的可分解性 (8)4.2应用行列式分解因式 (9)4.3应用行列式解决数列问题 (9)第五章线性方程组在初等数学中的应用 (12)5.1 在平面解析几何上的应用 (12)5.2在空间解析几何中的应用 (13)5.3在求解二元方程组上的应用 (14)第六章柯西不等式在初等数学中的应用 (15)6.1柯西不等式在解析几何中的应用 (15)6.2柯西不等式在解其它题方面的应用 (15)第七章结论 (18)参考文献 (19)致谢 (20)高等代数是现代数学中一个重要的分支,是在初等代数的基础上研究对象进一步的扩充.高等代数是初等数学的进化.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.在许多问题中,如果我们能用高等代数知识解决一些初等数学中的问题,将命题转化为一般性的问题进行解决,往往能收到事半功倍的效果,使人耳目一新.文章一方面介绍了高等代数与初等数学的联系,从数学知识、数学思想方法、数学观念3个方面发掘一下高等数学类课程与中学数学的联系.另一方面介绍高等代数的一些知识在初等数学的应用.如多项式、行列式、线性方程组、柯西不等式在初等数学中的应用,高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通和发展学生的发散和联想思维.用高等代数的观点去研究初等数学史新世纪对中学数学教师的高水平要求,教师是否具有较高的教学观点,是衡量教师数学素质的重要标准.教师具有高的观点,就能从高处看清中学教材的内在结构和本质联系,把握教材的重、难点;教师具有高观点,就能从认知的角度,在知识的各部分参透高等数学的观点,培养学生的创造性、判断性思维.关键词:高等代数多项式行列式柯西不等式初等代数应用AbstractHigher algebra is an important branch of modern mathematics, which is on the basis of the elementary algebra research object for further expansion. Advanced algebra is the evolution of elementary mathematics. Advanced algebra is not only the continuation of elementary mathematics, also is the foundation of modern mathematics, only good to master the basic knowledge of advanced algebra can adapt the mathematical development and teaching materials reform. Advanced algebra in the open field of vision of knowledge, especially the role of guiding middle school problem solving, etc. In many problems, if we can use the advanced algebra knowledge to solve some problems in the elementary mathematics, converting the proposition to general problems are solved, can often get twice the result with find everything new and fresh.Higher algebra and elementary mathematics were introduced on the one the other the application of elementary mathematics. Such as polynomial, determinant, system of linear equations, cauchy inequality in elementary mathematics, the application of advanced algebra to establish mathematics is not a simple problemsolution, but a mastery of knowledge and the development of students' divergent and associative thinking. In view of the new century of see the inner structure and the essence of the middle school teaching material from a from the perspective of cognition, in the knowledge of each part searches view of第一章绪论人类的文明进步和社会发展,无时无刻不受到数学的恩惠和影响,数学科学的应用和发展牢固地奠定了它作为整个科学技术乃至许多人文科学的基础的地位,当今时代,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,它和其他学科的交互作用空前活跃,越来越直接地为人类物质生产与日常生活作出贡献,也成为其掌握者打开众多机会大门的钥匙.在长期开设高等代数等数学类课程的实践中一直存在两方面的问题,一方面由于中学知识难以与高等代数直接衔接,使不少大学生一接触到“数学分析”、“高等代数”等课程,就对数学专业课程产生了畏惧情绪:另一方面,由于高等代数理论与中学教学需要严重脱节,许多高师毕业生对如何用高等代数知识指导初等代数教学感到茫然.通过本文的介绍,使读者都能清楚地看到:高等代数知识在初等数学的继续喝提高,在思想方法上是初等数学的延续和扩张,在观念上是初等数学的深化和发展.这样学生学习高等代数的难度就会大大降低.高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方面.高等代数与中学数学的联系对比不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学教师的指导作用.马克思曾说过:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”.高等代数作为一门抽象的大学学科,虽然表面上是独立的知识体系,但并没有与初等代数内容严重脱节,而是相互参透,彼此相通。
高等数学在中学数学中的应用----毕业论文

【标题】高等数学在中学数学中的应用【作者】丁海云【关键词】高等数学中学数学联系应用【指导老师】陈强【专业】数学与应用数学【正文】1 引言近几年来,高等师范院校数学系的不少大学生对学习高等数学存在不少看法,如“现在学的高等数学好像与初等数学没有多大联系”,“学习高等数学对今后当中学数学教师作用不大”,有的甚至提出“高等数学在中学教学里根本用不上”等等.这些看法正如著名数学家克莱因早已指出的那样:“新的大学生一入学就发现,他面对的问题好像和中学里学过的东西一点也没有联系似的,当然他很快就忘了中学学的知识.但是毕业以后当了老师,他们又突然发现,要他们按老师的教法来教传统的初等数学,由于缺乏指导,他们很难辨明当前数学内容和所受大学数学训练之间的联系,于是很快坠入相沿成习的教学方法,而他们所受的大学训练至多成为一种愉快的回忆,对他们对教学毫无影响”.然而在新的数学教材中已经出现了一些基础的高等数学知识,可以说是数学发展的一种必然.现在的中学数学教师必须掌握高等数学的基础知识以适应数学发展和教材改革,而高等数学知识在开阔视野、指导数学解题、指导数学教学、对初等数学问题加以诠释等方面的作用就尤为突出了.本文探讨一些高等数学知识和方法在初等数学中的应用.2 初等数学与高等数学的联系一般说来,数学史家把数学的发展分成四个阶段(萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期)或五个时期(再加上“当代时期”).无论何种方法,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”.理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分法:所谓初等数学就是指常量数学,高等数学就是指变量数学,并把笛卡尔(R?Descartes)1637年发明的解析几何看成为出现高等数学或进入高等数学时期的标志.而教育意义下的初等数学和高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中、小学教育)阶段的数学主要内容为初等数学,视高等教育阶段的数学主要内容为高等数学.当然,由于社会和教育的思想、方法、手段尤其是教育内容都在不断发展,“初等数学”和“高等数学”也是一个变化的客体对象,两者没有严格的概念区别.事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的有机联系,只从学科表面上看,难以看清两者之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点.2.1 知识方面的联系高等代数在知识上是中学数学的继续和提高.它能解释许多中学数学未能说清楚的问题,如多项式的根及因式分解理论、线性方程组理论等.从以下几个方面说明:首先,中学代数讲多项式的加、减、乘、除运算法则.高等代数在拓宽多项式的含义,严格定义多项式的次数及加法、乘法运算的基础上,接着讲多项式的整除理论及最大公因式理论;中学代数给出了多项式因式分解的常用方法.高等代数首先用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式的性质、唯一因式分解定理及不可约多项式在三种常见数域上的判定;中学代数讲一元一次方程、一元二次方程的求解方法及一元二次方程根与系数的关系.高等代数接着讲一元n次方程根的定义,复数域上一元n次方程根与系数的关系及根的个数,实系数一元n次方程根的特点,有理系数一元n次方程有理根的性质及求法,一元n次方程根的近似解法及公式解简介;中学代数讲二元一次、三元一次方程组的消元解法.高等代数讲线性方程组的行列式解法和矩阵消元解法、讲线性方程组解的判定及解与解之间的关系.中学代数学习的整数、有理数、实数、复数为高等代数的数环、数域提供例子;中学代数学习的有理数、实数、复数、平面向量为高等代数的向量空间提供例子.中学代数中的坐标旋转公式成为高等代数中坐标变换公式的例子.其次,中学几何的内容体系主要是由平面几何、立体几何和平面解析几何三部分构成.平面几何研究由点的集合而形成的平面几何图形的性质;立体几何研究空间几何图形的性质诸如直线、平面及旋转体;平面解析几何研究形与数结合的问题,重点是二次曲线理论的研究.侧重研究直线间的合同、相似极度量关系,就二次曲线而言也侧重于定义的直观描述和各自所具有的性质.作为高等几何而言,侧重于对直线形的结合关系、顺序关系及二次曲线一般理论的研究,具有普适性、全面性.中学几何学习的向量的长度和夹角为欧氏空间向量的长度和夹角提供模型,三角形不等式为欧氏空间中两点间距离的性质提供模型,线段在平面上的投影为欧氏空间中向量在子空间的投影提供模型.第三,高等数学分支之一数学分析的形成和发展体现了数学发展的每个新时期,不仅内容上更加丰富,更在思想方法上发生了根本性的变化.它的形成是深深扎根于初等数学基础之上,它的一些基本概念如导数、积分、无穷级数的收敛等,都是在初等数学有关问题的基础上发展起来的.如导数是在运用代数运算求直线斜率这一问题的基础上,发展成为运用极限方法求曲线上的点的斜率而形成的.可以这样讲,数学分析的形成是初等数学发展到一定阶段的必然结果.第四,集合论是关于无穷集合和超穷数的数学理论.它的建立是数学发展史上的一个里程碑,它给数学奠下了坚实的基础,其思想已渗透到数学的各个领域.它是整个数学的基础,它是数学的基本语言,同时也树立了现代数学的传统.我国中学数学中已经渗透了集合论的内容,如集合、映射及分类的思想,并使用了点集、解集合等集合论语言.综上所述可知,高等代数在知识上的确是中学数学的继续和提高.它不但解释了许多中学数学未能说清楚的如多项式的根及因式分解理论、线性方程组理论等问题,而且以整数、实数、复数、平面向量为实例,引入了数环、数域、向量空间、欧氏空间等代数系统.这对用现代数学的观点、原理和方法指导中学数学教学是十分有用的.2.2 思想方面的联系中学数学思想和方法主要体现为三个层次,第一层次指数学各分科的具体解题方法和解题模式,如代数中的加减消元法、代入消元法、韦达法、判别式法、公式法、非负数法、放缩法、错位相消法、复数法、数学归纳法等等;几何中的平移、旋转、对称、相似、辅助线及辅助面的作法、面积方法、体积方法、图形及几何体的割补方法、三角形奠基法等等;还有在解题教学中教师概括出来的具体解题模式、教科书给出的各种具体的解题程序和模式.第二层次指适用面很广的一些“通法”,如配方法、换元法、待定系数法、分离系数法、消元法、降次法、数形结合法、一般化与特殊化法、参数法、反证法、同一法、观察与实验、比较与分类、分解与组合、分析与综合、归纳与演绎、类比与联想、抽象与概括等等.第三层次指数学观念,即人们对数学的基本看法和概括认识,如推理意识、整体意识、抽象意识、化归意识、数学美的意识等等.在高等数学教育活动中,上述数学思想和方法将得到进一步强化,高等数学各分支学科中几乎渗透了三个层次的思想和方法,在空间解析几何、高等几何、微分几何等学科中明显渗透着第一层次的思想和方法,第二、第三层次的思想和方法是数学学习和研究的重要方法,在各层次的数学教学活动中都应该重视这些思想和方法的训练.除上述所举的思想和方法外,高等数学各分支学科中也渗透着许多新的思想和方法,如分析中的极限法、微分法、积分法等等;代数中的求公因式法、线性方程组的矩阵解法、二次型的正负判定法、线性变换法等等.现代中学数学和高等数学教学的一个显著特征就是注重知识形成过程的教学,形成和发展学生的数学思想和方法,会用数学思想和方法来解决问题.3 高等数学在中学数学中的应用用高等数学的观点、原理和方法,认识、理解和解决中学数学问题是我们大多数人的共同目的,也是高等数学价值的一种体现,尤其是在指导教学、指导解题、诠释初等数学问题等方面,体现非常明显.3.1 高等数学在中学数学教学中的作用我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别.正因为这个原因,有许多学者就认为:学生不需要懂得什么高等数学知识,教师只要能照本本讲下去就可以了,其实这是一种误解.诚然,我们在课堂上不能把高等数学知识传授给学生,但我们作为一名教师倘若仅仅停留在本本上,那是很不够的,有时甚至连自己对一些初等数学问题也可能会感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得以澄清.因此,我们对高等数学在初等数学教学中的作用不能掉以轻心,下面就这个问题谈谈笔者的一些初浅的体会.3.1.1 高等数学原理与中学数学教学首先,注重高等数学对初等数学的指导作用,运用原理,把握本质.多数教育工作者实践中认识到:教师只有深人研究高等数学,才能深刻把握初等数学的本质,使数学课堂教学不失科学性,做到居高临下,把课教活.如有这样一道题目:例1 解方程.解此题若按三次方程求解相当困难.但若将“”看作“未知数”,看作常量,则是一个关于“”的“一元二次方程”,,解之得= .所以原方程的解为,.可以看出,该题很好的把握了题目的主旨—变量和函数的观点.虽然变量与函数是数学分析研究的对象,中学数学中以常量问题为主,但有时若将这些问题中的字母,甚至常数看作变量,而将字母间的关系看作函数关系,运用变量和函数的观点去考察它,会使一些问题变得容易或为解题提示一种可行的思路.另外,中学数学教材中的数学知识,由于充分考虑到数学的社会性原则和学生的可接受性原则,往往是以教育形态(不是学术形态)的呈现,因此中学数学教材中的一些知识内容不可能严谨透彻,例如高中代数中的指数函数(a> 0且a≠1),由于中学阶段指数概念仅推广到有理数,而指数函数的定义域是实数集.然而要在中学阶段讲清这个问题是不大容易的,需要涉及极限理论.事实上,指数函数是群(R, +)到群(R+, )的同构映射,且保持序结构.同时,一些重要的数学基本定理,根据其在中学数学中的地位与作用,大都以“公理”的形式直接加以肯定,并予以直观的描述,严格的证明需通过高等数学的知识加以证明和完善.可以说,运用高等数学的知识能将中学数学中不能或很难彻底解决的基本理论加以严格地证明;反过来,中学数学中的问题也为高等数学的理论提供可靠的背景和模型.因此,教师学习和运用高等数学知识可以加深理解中学数学教学内容的安排意图,更利于提高高师生数学解题能力.其次,在教学中讲解高等数学在初等数学中的渗透,深化对中学知识的掌握高等数学中的概念、思想、方法很多已渗透到中学数学中,在教学中注意这方面的讲解,就能使学生充分地认识到高等数学对中学数学教学的指导意义,也说明教师充分认识到了“居高临下”的重要性.另外在中学数学中,对有些概念和方法没有加以解释和说明,就交给学生应用,虽然使用时能解决问题,但深入理解是不可能的.而作为未来的中学数学教师,对这些概念的理解与掌握就不能只停留在中学时的水平上,而应该更清楚和深刻.如:中学数学中把“形如a+bi(a,b都是实数)的数”叫作复数.这里的“+”是什么意思?a与bi是两个不同单位的元素,怎么可以相加?因此,这里的“+”只能看作是将a与bi连结成一个整体的符号.那么,能不能把这个符号理解为普通实数的加法符号呢?为此,就必须学习了近世代数中复数的构造性理论后才能解答.C是复数集,+,分别表示复数的加法与乘法,则(C;+,)是一个域,叫复数域.在对应关系:(a,0) a之下可证集合与实数域同构,故可把(a,0)看成实数a,即(a,0)=a,从而复数域就是实数域的一个扩域.由复数乘法的定义得.因此复数(0,1)和的性质相同.它是方程的一个根,令(0,1)=i,i为虚数单位.故任意复数(a,b)就可以写成(a,b)=(a,0)+(0,b)=a+bi中的“+”不仅是形式上的符号,它与实数算术运算中的“+”完全一致.3.1.2 高等数学观点与中学数学教学中学数学教学以渗透高等数学思想、观点,使它们相结合.现代高等数学的新思想、新理念、新观点及许多美妙而诱人的技巧和方法,使它更具有魅力.3.1.2.1 数学分析的辩证观点与中学数学教学数学分析不仅继承了初等数学的方法,而且又引进新的思想方法———极限法.运用极限方法,“常量”与“变量”、“直”与“曲”、“均匀”与“非均匀”等可实现相互转化.所以,从方法论的角度来讲,数学分析的有关知识和方法对理解和解决一些中学数学问题会起导向作用.例2 设有三次函数y= (p、q∈R),用微分方法求函数极值.解所以当>0时,无驻点,因而也无极值点;当=0时,驻点=0,但此时在=0两侧不变号,故=0不是极值点,即=0时无极值点;当 0时,有二驻点,又所以函数在处取得极大值在处取得极小值.这从思想、方法上更有指导性的是数学分析中的辩证观点,运用这样的方法,将会使我们中学数学问题的解决思路大为开阔,方法更加灵活有效,从而摆脱对问题束手无策或盲目乱试的困境.另外高等数学知识进一步探讨和学习,可增强学生的求知欲,达到培养学生的学习兴趣.教师运用高等数学知识可以提高对学生提出的一些问题的回答的正确性及敏捷性.3.1.2.2 高等几何思想与中学数学教学高等几何对教材内容的安排一般不同于中学几何,它是先给出定义、定理而后直观解释和证明,中学几何一般是先通过实例描述而后给出重要的概念和定理.前者训练抽象思维,后者训练形象思维,出发点不同,对同一问题得出的结论相同.全面了解欧氏几何、仿射几何、射影几何的联系与区别,从本质上认识,从整体上把握,又从局部上深入,才能深刻认识动与静、特殊与一般的辩证关系.就内容而言,高等几何比中学几何丰富,而且分析问题、处理问题的观点新颖,方法独特.如对偶原则,在研究点几何的同时,也研究了线几何的内容,对二次曲线的定义,既有几何定义,又有代数定义,开拓了认识眼界.从方法论来看,高等几何对具体问题处理的方法独特,而且灵活,对解决中学几何的有关命题提供了一种新的模式,也为中学几何的有关问题提供了知识背景.如利用中心射影投影一直线到无穷远来证明中学几何问题:若在平面上给定一个与直线有关的本质上是射影性质的几何命题,则只要恰当选择射影中心和向平面,总可以使直线的象直线是上的无穷远直线.由于无穷远直线的特殊性,有时可以将原命题化成上容易证明的新命题.既然射影变换保持射影性质不变,那么只要证明了新命题,则原命题也得到了证明.3.1.2.3 集合论的观点和方法与中学数学教学集合论是整个数学的基础,它不仅是数学的基本语言,而且树立了现代数学的传统.它蕴含着极其深刻的数学思想和丰富的数学方法,对分析和理解中学数学具有指导意义.映射是集合论的有力研究工具,也是数学中十分重要的化归方法,利用映射可以把不容易研究的集合上的问题转化到容易研究的集合上去,从而实现由未知(难、复杂)到已知(易、简单)的转化.映射方法的基本思想是:当处理某问题甲有困难时,可联想适当的映射,把问题甲及关系结构R映成与它有一一对应关系且易于考察的问题及关系结构;在新的关系结构中对问题处理完毕后,再把所得结果通过逆映射反演到R,求得关于问题甲所需的结果.这样启发了解题思路,又可用来指导数学发现.如:数学模型方法. 数学模型方法是指把所考察的实际问题化为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.中学数学中的解应用题是最简单的数学模型方法.过程如下图:图1:运用数学模型方法解题过程框图3.2 高等数学在中学数学解题过程中的作用初等数学是高等数学的基础,二者有本质的联系.将高等数学的理论应用于初等数学,使其内在的本质联系得以体现,进而去指导初等数学的教学工作,是一个值得研究的课题.俗话说,站得高才能看得远.因此,笔者认为,作为中学教师,除掌握中学数学各种类型题的已熟知的初等方法外,还应善于用高等数学方法解决中学数学问题,特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用高等数学方法则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平,促进中学数学教学.下面略几举例说明之:3.2.1 变换角度,化繁为简例3 求满足方程.解如果从中学数学考虑的话那颇费周折.但换种思路从变量和函数的观点来看是两个变量,上面的方程只能确定之间的函数关系,而不能求出其具体的值.茅盾的根源在于:中学数学中求未知数总是方程的个数和未知数的个数相同才能求出,但题目里面却是两个未知数一个方程.可以得出启发:应当设法构造出两个关于的方程.在实数范围内,将一个等式分成几个等式,最常见的方法是利用非负数,即若几个非负数之和为零,则其中每个必须为零.根据此思路,可将方程变形为进而变为,由是锐角知,上式中两项均为负,故都都等于零.从而解得.另外,许多初等数学中的问题,往往蕴含着数学中的较高层次理论的再实践的问题.如能在教学中有意将高等数学的原理、方法应用于一些初等数学的证明、计算,不仅可以开拓学生的视野,而且可使学生体会到教师所使用的高等数学的原理、方法在解决初等数学问题时的驾轻驭熟的感觉,进而更加有兴趣学习数学.3.2.2 利用函数的单调性证明不等式不等式是数学中不可缺少的工具之一,有许多不等式在数学研究中有着重要的作用.但用初等数学知识证明一些不等式比较困难,下面利用高等数学的原理和方法,就不等式的证明给出证法以帮助理解.我们知道对定义在区间(a,b)内的函数,若>0(或<0),则函数在(a,b)内严格增加(或严格减少),根据函数的单调性,可证明不等式.例4 证明不等式(其中x>0).证明:先证:.设,则在[0,+ )单调增加,又,当时,,即:.再证:.设,则, 当时,,即:.以上方法体现了用初等数学知识证明比较难的不等式时,可充分利用高等数学的原理和方法思考,进而收到很好的效果.3.2.3 利用高等几何思想解初等几何问题在中学数学教学中往往会碰到一些初等几何问题,欲用传统的综合证法,苦于找不到解决问题的思路,而用解析法却轻而易举,可又不能将此法告知学生,面临如何将它转化为纯几何的证明方法的问题,往往十分棘手.但利用高等几何知识进行思考,可收到很好的效果.例5 过一圆的弦AB的中点M引任意两弦CD和EF,连结CF和ED交AB弦于P、Q.求证:PM=MQ. (蝴蝶定理)分析:如图2,此题若局限在平面几何范围内去研究,虽能找到多种不同的证法,如:为使、是全等三角形的对应边,宜将沿直线翻折至,则有, ,故知.这样,又将线段相等归结为角的相等,而角的相等关系在圆上又可利用圆周角定理进行转化,即因,故内接于圆.再由内接于圆和、对称得出结论.但以上结论的得出来之不易,如果我们利用高等几何的交比来证明,就非常容易了.证明:如图,E(AF,DB)=C(AF,DB) (1)E(AF,DB)=(AM,QB) (2)E(AF,DB)=(AP,MB) (3)由(1)、(2)、(3)式得(AM,QB)=(AP,MB)(AM,QB)=(AP,MB)即亦即(4)因为 AM=BM,设PM=x,MQ=y,AM=BM=a,则由(4)式得图2所以故 PM=MQ这种证法不仅简单地证明了结论,而且还把结论推广到了二次曲线的情形.即如果把“蝴蝶定理”中的园换成椭圆、双曲线、抛物线,一对平行线或一对相交直线,结论仍成立.高等数学的许多方法和技巧都能直接应用于中学数学解题,常能起到以简驭繁,并能使问题得以深化和拓广的作用.以上只是给出两个实例说明高等数学能指导中学数学解题(初等代数和初等几何),且收到了很好的效果.在教学过程中,结合具体内容,不失时机地介绍给学生,对于丰富学生的解题方法,特别是作为教师在将来的数学教学中用它来预测答案,确定初等解法的路线,构造习题,检验结果都有重要的作用.3.2.4 微积分在中学数学解题中的指导作用微积分在高等数学里占有非常高的地位,它之所以能解决初等数学不能解决的问题,其根本原因是在初等数学的基础上它引进了一种新的思想方法——极限法.俗话说,站得高才能看得远.笔者认为,作为中学数学教师,利用微积分思想解决中学数学问题特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用微积分思想则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平.例6 分解因式.解把看作变量,看作常量.令,求对的导数得。
浅谈高等数学在初等数学中的应用

浅谈高等数学在初等数学中的应用初等数学是学习高等数学基础,高等数学是初等数学的继续和提高,它不但解释了许多初等数学未能说清楚的问题,并使许多初等数学束手无策的问题,至此迎刃而解了。
本文从三个方面探讨高等数学在初等数学中的作用。
高等数学是在初等数学的基础上发展起来的,与初等数学有着紧密的联系。
站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。
运用高等数学的知识可以解决一些用初等方法难以解决的初等数学问题,以便使学生了解到高等数学对于初等数学的指导作用。
标签:初等数学;高等数学;联系;应用数学是一门科学性、概括性、逻辑性很强的学科。
它源自于古希腊,是研究数量、结构、变化以及空间模型等概念。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
问题的提出许多学生经常提出这样的问题:我们为什么要学这么多高等数学?这些问题长期以来困扰着我们。
本文通过讨论初等与高等数学的联系,使他们真正觉得高等数学对初等数学教学有向导性意义,帮助他们用高等数学知识去分析和理解初等数学教材,从而站得更高,对中学数学的来龙去脉看得更清楚。
一、初等数学初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
二、高等数学内容包括函数与极限、一元函数微积分、向量代数与空间解析几何、多元函数微积分、级数、常微分方程等。
其中极限论是基础:微分、积分是是核心,是从连续的侧面揭示和研究函数变化的规律性,微分是从微观上揭示函数的局部性质,积分是从宏观上揭示函数的整体性质:级数理论是研究解析函数的主要手段:解析几何为微积分的研究提供了解析工具,為揭示函数的性质提供了直观模型:微分方程又从方程的角度把函数、微分、积分犹记得联系起来,揭示了它们之间内在的依赖转化关系。
高等数学(绪论)

基本原理是高等数学的核心,需要熟 练掌握。在学习过程中,要注重对定 理、公式的推导和证明,理解其逻辑 和证明过程。
多做习题,培养解题能力
做习题
通过大量练习习题,可以加深对知识点 的理解和掌握,培养解题能力和技巧。 在练习过程中,要注重对题目的理解和 分析,掌握解题思路和方法。
VS
解题能力
推理思维的培养需要学生注重观察和实验,从具体问题中寻找规律和线索,通过归纳和总结得出一般 性的结论。同时,学生还需要注重培养自己的创造性思维,能够从不同角度和思路出发进行思考和探 索。
04
高等数学的学习方法
理解概念,掌握基本原理
理解概念
高等数学中的概念通常比较抽象,需 要深入理解。在学习过程中,要注重 对概念的解释和推导,理解其本质含 义和应用场景。
05
高等数学的重要性和意义
对其他学科的影响
物理学
高等数学提供了描述物理现象和规律的数学语言, 如微积分、线性代数和微分方程等。
工程学
高等数学是解决复杂工程问题的关键工具,如流 体力学、结构力学和航空航天工程等。
经济学
高等数学在经济学中广泛应用,如统计分析、计 量经济学和决策理论等。
对个人发展的影响
高等数学是大学理工科、经济学、管 理学等学科的重要基础课程,对于培 养学生的逻辑思维、分析问题和解决 问题的能力具有重要意义。
高等数学的应用领域
物理学 高等数学在物理学中有广泛应用, 如力学、电磁学、光学等领域都 需要用到高等数学的知识。
计算机科学 计算机科学中,高等数学主要用 于算法设计、数据结构、图像处 理等领域,有助于提高计算机科 学和技术的水平。
联系
高等数学与初等数学有着密切的联系,初等数学是高等数学的基础。高等数学中的许多概念和方法都 是在初等数学的基础上发展起来的,同时高等数学也为解决初等数学中的问题提供了更为深入和有效 的方法。
高等数学与初等数学相关内容的比对

高等数学与初等数学相关内容的比对高等数学与初等数学相关内容的比对作文/zuowen/经过调研了解到,2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。
试图从教学内容方面解决高中数学与大学数学的衔接问题。
但是,大学数学与高中数学教材内容的衔接上还存在不少问题。
这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。
高等数学与初等数学教材内容的有效衔接亟待解决。
1 “函数与极限”的衔接函数,是高中数学的重点内容,高考要求较高,学生掌握也比较牢固。
高等数学教材中的这部分内容基本相同,但内涵更丰富,难度也提高了。
(1)函数概念:在原有内容中,增加了几个在高等数学中经常用到的实例,如取整函数、狄利克雷函数、黎曼函数、符号函数等。
因此,在学习中,函数概念部分可以简略,重点学习这几个特殊函数即可。
(2)初等函数:反三角函数要求提高,新增加了“双曲函数”和“反双曲函数”等内容。
反三角函数的概念在高中已学过,但高中对此内容要求较低,只要求学生会用反三角函数表示“非特殊角”即可。
而高等函数中要求较高,此处在学习中应补充有关内容:在复习概念的基础上,要求学生熟悉其图像和性质,以达到灵活应用的目的。
新增加的“双曲函数”和“反双曲函数”在高等数学中经常用到,故应特别注意。
代写论文(3)函数极限:“数列极限的定义”,高中教材用的是描述性定义,而高等数学重用的是“”定义,此处是学生在高等数本文由收集整理学的学习中遇到的第一个比较难理解的概念,因此在教学中应注意加强引导,避免影响函数极限后面内容的学习。
浅谈高等数学在中学数学中的应用大学论文

浅谈高等数学在中学数学中的应用摘要本文探讨了初等数学和高等数学在知识体系上的差别以及应用上的联系,同时也探讨了他们地位上的差别和各自的重要性。
通过讨论可以得知,高等数学在很大程度上是初等数学的扩展。
本文第三部分重点介绍了微积分,不等式,行列式,以及高等几何等在初等数学中的应用,探讨了应用高等数学的思想方法解决初等数学的有关问题。
另外还探讨了高等数学在高考试题上体现的情况和如何解决相应的问题。
关键词高等数学中学数学微积分行列式IAbstractThis study of elementary mathematics and higher mathematics in knowledge on the difference between system and application links, also discussed their differences on the status and importance of each. Through discussion can see that higher mathematics is to a large extent is an extension of elementary mathematics. This article focuses on the second part of calculus, inequality, determinants, as well as the application of higher geometry in elementary mathematics, explored the application of higher mathematics thought method to solve problems of elementary mathematics. Discussion also reflected on the college entrance examination in higher mathematics and how to solve the problemKey words advanced mathematics Mathematics calculusII目录摘要 (I)Abstract (II)第一章前言 (1)1.1 研究背景 (1)1.2 课题研究意义 (1)1.3 文献综述 (2)1.4 研究方法 (2)1.5 创新之处 (2)第二章高等数学与初等数学的地位与联系 (3)2.1 初等数学与高等数学的定位 (3)2.2 高等数学与中学数学的联系 (4)2.2.1 中学数学与大学数学的统一性 (4)2.2.2 中学数学与大学数学的连贯性 (4)2.3 高等数学对初等数学的拓展 (5)2.3.1 代数方面 (5)2.3.2 几何方面 (6)第三章高等数学在初等数学中的应用 (8)3.1 高等代数在中学数学中的应用 (8)3.2.1 行列式的应用 (8)3.2.2 柯西—施瓦兹不等式应用 (9)3.2 微积分方法在中学数学的应用 (9)3.2.1 微积分方法在求函数的极值、最值中的应用 (9)3.2.2 用微积分知识直接用来处理初等数学的问题而达到简便的目的 (10)3.2.3 积分在空间立体体积与表面积中的应用 (12)3.2.4 积分在求曲线弧长中的应用 (13)3.3 高等几何在初等几何的应用 (14)3.3.1 仿射变换的应用 (14)3.3.2 射影几何观点在初等几何中的应用 (14)3.3.2.1 仿射变换的应用 (15)3.3.2.2 笛沙格定理的应用 (16)3.3.2.3 点列中四点的交比 (17)3.3.2.4 线束中四条直线的交比的应用 (18)第四章高考试题中的微积分在解题中的应用 (20)4.1 拉格朗日中值定理 (20)4.2 有关级数的应用 (23)总结 (26)参考文献............................................................ 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学与初等数学的联系及一些应用摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。
由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。
因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。
关键词:高等数学;初等数学;应用1.引言数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。
因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。
这些都是基于这种认识和理解,是有一定的道理的。
中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。
只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。
2.国内外研究现状大学课程学习的思维单向性很强。
大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。
“用”的观念淡薄了,“学”的热情自然而然的就少了。
抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。
中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。
比如极限定义、集合和函数等。
一位新数学教师在解释从非空数集A到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。
如果他的数学分析中的映射掌握得好,完全可以既讲得轻松而学生又听得明白。
法国数学家F·克莱因曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简单。
”数学教育专业的学生绝不可以轻视高等数学对中学数学的指导作用。
要使高等数学课程学有所用,必须要尽可能了解中学数学教材内容,明确教材改革方向和趋势,这样才能在教学中将两者有机结合起来,从而提高学生的思维,居高临下地解决问题。
3.高等数学与初等数学的联系高等数学是初等数学的延伸和发展,而初等数学却是高等数学的基础。
作为学习和研究数学的步骤,无疑应该是先学习和掌握初等数学,然后才能学习和应用高等数学。
反之,学习高等数学能加深对初等数学的理解和掌握,可以开阔思路、提高数学修养和解决问题的能力。
但由于中学数学知识几乎很难和高等数学知识直接衔接,使不少大一新生一接触到“数学分析”、“高等代数”等这些数学课程,就对数学专业课产生了畏难、抵触情绪。
而且高等数学理论与中学教学需要严重脱节,许多大学师范毕业生对如何运用高等数学理论指导中学数学感到迷茫。
毫无头绪。
为了解决上述长期存在的问题,笔者认为研究高等数学与中学数学的联系是一项有效的措施。
4.高等数学在初等数学中的一些应用(1).柯西——施瓦兹不等式应用柯西——施瓦兹不等式是高等代数的一个重要不等式,它在中学数学中有广泛的应用。
设欧式空间n R ,令()n a a a ,,,21 =ξ,()n n R b b b ∈= ,,21η,则222,ηξηξ≤。
(等号当且仅当ηξ,线性相关时成立)在标准内积下,即()()()222212222122211n n n n b b b a a a b a b a b a ++++≤++,若1=i b ,则得()()22221221nn a a a n a a a ++≤++。
例[]81设c b a ,,都是正数,且1=++c b a 。
求证:9111≥++cb a 证明:在3R 中,使用标准内积。
设()c b a ,,=ξ,⎪⎪⎭⎫⎝⎛=c b a 1,1,1η,则()cb ac b ac b a 11111122++=⎪⎭⎫ ⎝⎛++++=ηξ 9111,22=⎪⎭⎫ ⎝⎛⋅+⋅+⋅=c c b b aa ηξ由柯西不等式,得9111≥++cb a ,(等号当且仅当ηξ,线性相关时成立)使用柯西——施瓦兹不等式重要的是构造一个合适的欧式空间,特别是构造內积运算,并找到两个适当的向量。
做到这一点是有困难的,但是只要完成这个构造,余下的问题便很容易解决。
构造法就是在解决某个问题时,先构造一种数学对象,这种构造物有时看来与题意无关,但实际上恰与问题有内在的联系,而且在某种条件下正是题目所求,或者使我们可以用另一种方法求解问题,这时构造物就成了一种桥梁。
(2).矩阵的应用要在问题中用上矩阵也必须构造出与问题有某种关系的矩阵,然后才能使用矩阵的性质和定理。
例]8[2. 已知1110,1,1-++===i i i u u u u u (1)。
能不能用一个显式表达n u 呢?解:首先把(1)式用矩阵来表示⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡--+1110111i i i i i i i u u u u u u u (2) 设⎥⎦⎤⎢⎣⎡=+i i i u u U 1,⎥⎦⎤⎢⎣⎡=0111A 则(2)式为1-=i i AU U ,且⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11010u u U 于是01AU U =, 0212U A AU U ==,0U A U n n =问题转为求n A 。
先求A 的特征值与特征向量,并将A 对角化得1251251-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+=P P A 。
其中⎥⎥⎦⎤⎢⎢⎣⎡-+=11251251P ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+---=-5251515251511P , 于是1251251-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+=P P A nn所以⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛+==⎥⎦⎤⎢⎣⎡=+++++11220125125125125151n n n n n n n n U A u u U 所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+=++1125125151n n n U 。
在此例中引入矩阵作为工具使用了矩阵的性质,得以求出通项。
而用初等数学的方法解的话,则要经过复杂的迭代才能解出此题,不如用矩阵的知识解题一目了然。
(3).微积分的应用例[]93. 证明:当b a <<0时aab a b l b a b n -<<- 证明:设x l y n =,它在区间[]b a ,满足拉格朗日中值定理的条件,有ξ1=--a b a l b l n n ,b a <<<ξ0,ξab a l b l n n -=-由于a b 111<<ξ,故aab a b b a b -<-<-ξ 即aab a b l b a b n -<<-。
若用初等数学的知识解题便会发现此题几乎无从下手,将不等号两边相减或相除来证都是比较困难的,因为有个对数函数在,而只要用拉格朗日中值定理,则此题便迎刃而解。
例[]44.设()x f y =是定义在区间[]1,1-上的函数,且满足条件: (i )()()011==-f f ; (ii)对任意的[]1,1,-∈v u 都有()()v u v f u f -≤-.(1) 证明:对任意的[]1,1-∈x ,都有()x x f x -≤≤-11; (2) 证明:对任意的[]1,1,-∈v u ,都有()()1≤-v f u f ; (3) 在区间[]1,1-上是否存在满足题设条件奇函数()x f y =,使得当⎥⎦⎤⎢⎣⎡∈21,0,v u 时,()()v u v f u f -≤-,当⎥⎦⎤⎢⎣⎡∈1,21,v u 时,()()v u v f u f -=-.若存在,请举一例;若不存在,请说明理由。
这是03年北京高考理科数学最后一道大题(第20题),是有关抽象函数不等式的证明题,认真分析研究该题中的(2),发现这是一道具有高等数学知识背景的试题,可以将这个问题推广:推广1. 函数()x f 定义在[]b a ,上。
()()b f a f =,且对任意的[]b a x x ,,21∈,都有()()2121x x x f x f -≤-,则必有()()221ab x f x f -≤-. 证明:(i )当221a b x x -≤-时,由()()22121ab x x x f x f -≤-≤-知,结论成立。
(ii )当221a b x x ->-时,不妨设21x x <,则221a b x x --<-,从而有 ()()()()()()2121x f b f a f x f x f x f -+-=- ()()()()21x f b f a f x f -+-≤ 21x b a x -+-≤21x b a x -+-= 21x x a b -+-= 2ab a b ---< 2ab -=. 综合可知,总有()()221ab x f x f -≤-。
由试题中函数()x f 满足的条件(ii )可联想到高等数学中的R.Lipschitz 条件:对于[]b a ,上定义的函数()x f 和正数()10≤<αα,若存在正常数M 使不等式()()α2121x x M x f x f -≤-对[]b a x x ,,21∈都成立,则称函数()x f 在[]b a ,上满足α阶的R.Lipschitz 条件。
显然试题中的函数()x f 满足1阶的R.Lipschitz 条件。
下面进一步将其推广到()x f 满足α阶的R.Lipschitz 条件。
推广2. 函数()x f 定义在[]b a ,上,()()b f a f =,且()x f 满足α阶的R.Lipschitz 条件,即存在正常数M ,使得对于任意的[]b a x x ,,21∈,都有()()α2121x x M x f x f -≤-()10≤<α,则必有()()()ααa b M x f x f -≤--21212. ①证明:(i)当221ab x x -≤-时,若21x x =,则不等式①显然成立。
下设21x x ≠。
由于10≤<α得110<-≤α,2211<≤-α。
于是()()α2121x x M x f x f -≤-ααα⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛-≤-2221a b M a b M()ααa b M -=-212(ii)当221a b x x ->-时,不妨设21x x <,则221ab x x --<- 由10<<α知函数αx y =在区间[)+∞,0上是凸函数,于是()()221ααx b a x -+-()()α⎥⎦⎤⎢⎣⎡-+-≤221x b a x ()αα212x x a b -+-=-αα⎪⎭⎫ ⎝⎛---<-22a b a b()ααααa b a b -=⎪⎭⎫ ⎝⎛-=--2222,()()αα21x b a x -+-∴()ααa b -<-212 ②显然当1=α时,不等式②也成立。