银染方法
实验七 染色体核仁组织区的银染色法

作业
• 在油镜下绘制一中期分裂相图,显示 AgNOR的位置、数目和形态。
a .被银染色的载玻片标本,根据染色深浅可用 2% Giemsa磷酸缓冲液( pH6.8)复染1min,以便观察和摄影。 b.新鲜制片比片龄长的效果更好。 c.吸50%硝酸银与明胶显影液的吸管最好一样粗细。
实验结果
• 若染色适中,间期核及染色体为金黄色,油镜观察, 可在某些染色体上看到成对的黑色小点,此即为银染 NOR(Ag- NOR)。 • 若整张片子色淡,间期核及染色体都不易看清,为染 色时间不足,在未滴过香柏油的情况下,可重新续染。 • 若染色时间偏长,则染色体为棕色,此时,仍可看到 黑色的NOR,只是NOR与染色体间的反差较低。染色 严重过度时,整张片子都布满黑色沉淀,这样的标本 一般都丢弃不用。若标本珍贵,也可采用特殊方法褪 色后重新染色。
三、实验用品
1、材料 人或其他动物的染色体制片 2、试剂(所有试剂均应为AR级) (1)50%硝酸银溶液:5g硝酸银溶解在10mL蒸馏水 中,过滤(不过滤亦可),保存在用铝箔包裹的玻 璃容器内,可稳定的保存1年。 ( 2 )明胶显影液:称取 2g 明胶( gelatin )粉末溶解 于 99mL 蒸馏水中,加 1mL 甲醛( formylic acid )。 ( 3 ) 0.067mol/L 磷酸缓冲溶液( pH6.8 )和 Giemsa 原液的配制同“染色体标本制作及其组型实验相 同”。 (4)2% Giemsa磷酸缓冲溶液
实验方法
( 1 )在培养皿中底部放一用蒸馏水润湿的滤纸,上 放两根竹签,置水浴内保温至60℃~65℃。 (2)载玻片标本细胞面朝上平放其上,加2滴明胶显 影液和 4 滴 50%硝酸银溶液,覆以盖玻片,直到载 玻片标本呈现金褐色为止,一般为3~4分钟。 ( 3 )移除擦镜纸或盖玻片,并用蒸馏水快速漂洗数 秒,晾干。 (4)显微镜观察,分析。
支原体实验室检查方法

支原体实验室检查方法支原体是一种细菌,它可以感染人类身体的上呼吸道,引起诸如咳嗽、头痛、发热和流鼻涕等症状,特别在季节交替时易发生。
支原体是一种使人感到不适和不舒服的病原体,医生可以通过实验室检查来确认诊断。
本文将介绍10种支原体实验室检查方法,并对每种方法进行详细描述。
1. 荧光抗体法检查:通过使用一些特殊的染料和显微镜,医生可以在样本中找到支原体的蛋白质或核酸,并形成荧光物质。
荧光抗体法检查可以在较短时间内完成并具有高度的敏感性和特异性,可以快速预报支原体感染。
此方法适用于多数临床样本,如痰液、血液、尿液和分泌物等。
2. 酶联免疫吸附法检查:该方法主要针对检测支原体抗体的水平,这些抗体可以在感染期间大量产生。
该检查方法可以用于判断患者是否感染了支原体,以及抗体水平是否下降。
适用于血液或其他可采样的体液。
3. PCR检查:聚合酶链反应(PCR)是一种检测支原体核酸的方法,通过特定的引物(primers)扩增目标DNA或RNA序列并进行检测。
此方法适用于病原体数量低,但仍需要高敏感性和特异性的情况,如感染早期检测等。
4. 培养法检查:培养法检查是一种通过将样本置于特定培养基上,让支原体在培养基上繁殖和生长,并观察培养菌落的方法。
此方法适用于体液样本、泌尿生殖道分泌物、眼结膜刮片或鼻咽拭子等检测上呼吸道感染的支原体病原体。
这种方法要求样本具有较高的病原菌数量,结果的敏感性和特异性较低。
5. 饱和浸润法检查:饱和浸润法是一种传统的检测方法,主要使用甲醛或石蜡来固定细胞溶液中的细胞,然后在细胞上染上某种特定的荧光抗体或染色剂,观察结果来确定是否存在支原体。
这种方法的优点是,可以同时检测多种细菌和病毒,但麻烦的是需要较长时间。
6. 银染法检查:银染法是一种直接检验支原体的方法,在样品上使用特定的染剂染色,使得支原体在显微镜下产生银褪色反应。
此方法可以检测多种标本类型,包括痰液、脑脊液、胃液或分泌物等,但结果的敏感性较低。
质谱银染的试剂

质谱银染的试剂
质谱银染是一种在质谱分析中用于增强蛋白质或肽段的检测灵敏度的方法。
通常使用的质谱银染试剂是银离子的溶液,它会与蛋白质或肽段中的氨基酸残基反应,形成银颗粒,从而增强质谱信号。
以下是一种常用的质谱银染试剂的制备步骤:
1.制备酸性银溶液:
o将银硝酸(AgNO₃)溶解在蒸馏水中,得到
酸性的银溶液。
2.加入酸:
o向银溶液中加入一些酸,通常是甲酸
(HCOOH)或乙酸(CH₃COOH),以调整溶
液的酸性。
酸性条件有助于促使银离子与蛋
白质发生反应。
3.加入还原剂:
o添加一种还原剂,如脱氢乙酸(HCHO)或亚
硫酸氢钠(NaHSO₃),以还原银离子为银颗
粒。
4.反应蛋白质或肽:
o将待检样品中的蛋白质或肽与银离子反应,
形成银沉淀。
5.洗涤:
o将反应后的样品进行洗涤,去除未反应的试
剂和其他杂质。
6.干燥:
o将样品干燥,以得到质谱银染后的样品。
使用质谱银染的优势在于其增强了质谱信号,使得低丰度的蛋白质或肽段更容易被检测到。
然而,该方法可能对某些质谱仪器的灵敏度产生影响,因此在使用时需要谨慎优化条件。
装片染色方法

装片染色方法在生物学和医学领域中,装片染色是一种常用的实验技术,用于观察细胞和组织的微观结构。
本文将详细介绍几种常见的装片染色方法,以供参考。
一、苏木精-伊红染色(H&E染色)1.装片准备:将固定好的组织样本切成薄片,粘贴在载玻片上。
2.染色步骤:a.使用苏木精染液对装片进行初染,约5-10分钟。
b.用清水冲洗,去除多余染料。
c.使用1%的盐酸酒精分化,约30秒。
d.用清水冲洗,去除多余分化液。
e.使用伊红染液复染,约1-3分钟。
f.用清水冲洗,去除多余染料。
g.晾干装片,进行显微镜观察。
二、免疫荧光染色1.装片准备:将细胞或组织样本固定在载玻片上。
2.染色步骤:a.使用适当浓度的封闭液,室温封闭1小时。
b.加入一抗,室温或4℃孵育过夜。
c.用PBST(磷酸盐缓冲液+吐温-20)清洗装片,重复3次。
d.加入荧光二抗,室温孵育1小时。
e.用PBST清洗装片,重复3次。
f.晾干装片,进行荧光显微镜观察。
三、银染法1.装片准备:将细胞或组织样本固定在载玻片上。
2.染色步骤:a.使用银染液进行初染,室温孵育5-10分钟。
b.用清水冲洗,去除多余染料。
c.使用显影液进行显影,约1-3分钟。
d.用清水冲洗,去除多余显影液。
e.使用定影液进行定影,约3-5分钟。
f.用清水冲洗,去除多余定影液。
g.晾干装片,进行显微镜观察。
四、甘油醛-苏丹黑染色(Golgi染色)1.装片准备:将细胞或组织样本固定在载玻片上。
2.染色步骤:a.使用甘油醛溶液进行初染,室温孵育5-10分钟。
b.用清水冲洗,去除多余染料。
c.使用苏丹黑溶液进行复染,室温孵育1-3分钟。
d.用清水冲洗,去除多余染料。
e.晾干装片,进行显微镜观察。
总结:以上为几种常见的装片染色方法,适用于不同类型的细胞和组织样本。
在实际操作过程中,可根据实验需求选择合适的染色方法。
DNA非变性聚丙烯酰胺凝胶电泳银染配方及步骤

DNA非变性聚丙烯酰胺凝胶电泳银染配方及步骤DNA非变性聚丙烯酰胺凝胶电泳银染配方及步骤最近需要做DNA非变性聚丙烯酰胺凝胶电泳,需要用银染显示条带,但是找不到具体的配方和步骤,不知和蛋白PAGE电泳银染有什么差别,哪位师兄师姐有配方可否发一份,十分感谢!一、电泳试剂:1、30%聚丙烯酰胺(29:1)丙稀酰胺29克,Bis1克,水100ml。
2、10%过硫酸胺过硫酸胺1克,水10ml。
3、TEMED4、5xTBETris 27克,硼酸13.75克,0.5M EDTA(pH 8.0) 10ml,定容至500ml。
二、银染试剂1、固定液:100ml无水乙醇,5ml冰醋酸,定容至1000ml。
2、0.2% AgNO3:AgNO3 1克,水500ml。
3、1.5% NaOH:NaOH 7.5克,水500ml。
4、37%甲醛。
三、配胶(6%):30%聚丙烯酰胺(29:1) 8ml,5xTBE 8ml,定容至40ml,加10%过硫酸胺 200ul;T EMED 20ul。
室温凝固时间>1小时。
四、银染:1、固定液固定10m。
2、水洗2m x3次。
3、0.2% AgNO3 100ml +37%甲醛50ul,混匀,避光染色30~50m。
4、水洗 20秒x2次。
5、1.5% NaOH 100ml,加37%甲醛0.5ml,混匀,显色3~10m。
6、水洗若干次,终止显色。
电泳时间:150v x 3h,溴酚兰的位置相当于40bp。
银染后胶面积将膨胀10%。
在终止显色过程中,将依惯性继续显色,所以不等显色到位即可进行终止显色。
显色到位后立即拍摄,水浸泡过夜将使背景加深转贴聚丙烯酰胺凝胶电泳是分子生物学常用的一种技术。
我们实验室应用该项技术进行基因组甲基化的筛选,取得了一定结果。
因为全基因组的筛选需要很高的灵敏度,背景干扰降到最低,因此在对凝胶进行染色时,往往采用同位素法或银染法,而且配制的胶往往很大,我们配制的是大约40×35cm的胶,0.4mm厚。
电泳银染原理

电泳银染原理
电泳银染是一种常用的蛋白质分离和检测方法,广泛应用于生物学、生化学等领域。
其原理基于蛋白质的电泳分离和银离子还原反应。
电泳分离是将带电的蛋白质分子在电场作用下沿着凝胶中的孔道运移,从而实现蛋白质的分离和检测。
在电泳银染中,通常采用聚丙烯酰胺凝胶电泳分离,其原理是将蛋白质样品加入凝胶孔道中,在电场作用下,蛋白质分子根据大小、电荷等性质逐渐分离。
分离完成后,可以通过染色等方法进行检测。
银离子还原反应是电泳银染的核心步骤,其原理是在银离子存在的条件下,通过还原剂还原银离子成为固态银颗粒,从而实现蛋白质分子的染色。
常用的还原剂包括亚硫酸钠、甲醛等。
在电泳银染过程中,蛋白质分子与银离子结合形成银蛋白复合物,再通过还原剂的作用将银离子还原成银颗粒,最终形成黑色的银染带。
电泳银染的优点是灵敏度高、检测范围广、结果直观等。
但也存在一些缺点,如染色效果不稳定、重复性差、反应时间长等。
因此,在实际应用过程中需要根据具体情况进行调整和优化。
电泳银染是一种重要的蛋白质检测方法,其原理基于电泳分离和银离子还原反应。
虽然存在一些缺点,但其灵敏度高、检测范围广、结果直观等优点,使其在生物学、生化学等领域得到广泛应用。
一种简便快速高效的DNA银染方法

A i l ,Ra i n f in i e — t i e c n q e S mp e p d a d Efi e tS l r s an d Te h i u c v
o fDN A n PA G E i
GUO —o g ,ZHANG n y , HICh n m e , Dal n J ~ u S u — i ZHANG o h i u Gu — a ,
21 0 0年 第 7期
一
种简 便 快速 高效 的 D NA银 染 方 法
郭 大龙 张君玉 , 春梅 张 国海 , 石 , ,白晓燕 ,高姗姗
(. 南 科 技 大 学 林 学 院 , 南 洛 阳 4 l0 ;2华 中农 业 大 学 楚 天 学 院 , 北 武 汉 40 0 ) 1河 河 7O3 . 湖 3 2 5
K e r s PA G E ;Siv r s a n; Co o r to y wo d : le ti lu ain
聚丙烯 酰胺凝 胶 电泳 ( oy cya d e ee— p lar lmieg l lc to h rssP GE 是 分 析 蛋 白质 和核 酸样 品 的一 rp o ei, A ) 种常用 的方法 , 在分 子 生 物学 及 相 关学 科 的 研究 中 得 以广 泛 的应 用 。 由于其 具 有较 高 的分辨 率 , 其 尤 在 AF P、 S S P等分子标 记研 究和 遗传 图谱 构 L S R、 N 建等方 面应用更 多 。 电泳 后 对样 品 的显 示有 许 多 方法 , 目标 产 物 的 检 测主要采 取显 色法 , 目前 大 多采 用 同位 素 放 射 自 显影 法 、 光染料标 记法 、 荧 溴化 乙锭和 银染法 。放射
溴化 乙锭染 色灵 敏度 , 于 l g的 D 小 O n NA 条带很 难 检测 到 , 往 要 求 t sr c :A i l , r p d,e o o c a d e f c i e DNA i e — t i t o o o y c y a d smp e a i c n mi n f e t v sl rs a n me h d f r p l a r l mi e v
银染方法总结

银染的方法种类很多,目前有文献报道的就有100 多种。
大致的原理是银离子在碱性pH 环境下被还原成金属银,沉淀在蛋白质的表面上而显色。
由于银染的灵敏度很高,可染出胶上低于1 ng/蛋白质点,故广泛的用在2D 凝胶分析上,及极低蛋白含量测定的垂直凝胶中。
这里介绍的是我们实验室成功运用的银染方法,主要是用于垂直凝胶电泳中低丰度蛋白的检测!如内源性GST-Pulldown、Co-IP等实验中相互作用蛋白的研究银染操作规程实验原理:在碱性条件下,用甲醛将蛋白带上的硝酸银(银离子)还原成金属银,以使银颗粒沉积在蛋白带上。
染色的程度与蛋白中的一些特殊的基团有关,不含或者很少含半胱氨酸残基的蛋白质有时候呈负染。
试剂:乙醇、冰醋酸、乙酸钠、硫代硫酸钠、硝酸银、碳酸钠、甘氨酸或EDTA.Na2.2H2O、甲醛实验操作程序:固定:30min或者更长时间100ml 乙醇(40% 乙醇)25ml冰醋酸(10% 冰醋酸)加水到250ml致敏:30min75ml 乙醇(30% 乙醇)17g乙酸钠或28.2g三水乙酸钠0.5g硫代硫酸钠加水到终体积250ml 水洗:3 x 10min银染:20min0.625g AgNO3、100 ul 37%甲醛(在使用前加入)加水到终体积250ml水洗:2 x 1 min (注意把握时间,水洗时间长显色速度慢,点的颜色偏黄色)显色:视情况而定6.25 g Na2CO3、50 ul 37% 甲醛(在使用前加入)加水到终体积250ml终止:10min3.65g EDTA.Na2.2H2O 或者1g 甘氨酸加水到终体积250ml保存:1% 冰醋酸,4 ℃注意事项:1.固定时间较长,则加一步水洗30min,以免胶太脆而破碎。
2.甲醛在使用前加入。
3.最好多配制一份显色液,第一次显色到溶液变混浊时换一份显色液,显色到点清晰。
4.显色过程很快,要注意把握时间,避免染色过度。
5.银染液和显色液需要预冷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometryThe growing availability of genomic sequence information,together with improvements in analytical methodology,have enabled high throughput,high sensitivity protein identi-fication.Silver staining remains the most sensitive method for visualization of proteins separated by two-dimensional gel electrophoresis (2-D PAGE).Several silver staining protocols have been developed which offer improved compatibility with subsequent mass spectrometric analysis.We describe a modified silver staining method that is available as a commercial kit (Silver Stain PlusOne;Amersham Pharmacia Biotech,Amersham,UK).The 2-D patterns abtained with this modified protocol are comparable to those from other silver staining methods.Omitting the sensitizing reagent allows higher loading without saturation,which facilitates protein identification and quantita-tion.We show that tryptic digests of proteins visualized by the modified stain afford excellent mass spectra by both matrix-assisted laser desorption/ionization and tandem electrospray ionization.We conclude that the modified silver staining protocol is highly compatible with subsequent mass spectrometric analysis.Keywords:Proteomics /Two-dimensional gel electrophoresis /Silver stain /Mass spectrometry /Protein identification /Matrix assisted laser desorption/ionization ±time of flight /Electrospray ionization ±time of flightEL 4190Jun X.Yan 1Robin Wait 2Tom Berkelman 3Rachel A.Harry 1Jules A.Westbrook 1Colin H.Wheeler 1Michael J.Dunn 11Department of Cardiothoracic Surgery,National Heart and Lung Institute,ImperialCollege School of Medicine,Heart Science Center,Harefield Hospital,Harefield,Middlesex,UK 2Kennedy Institute ofRheumatology,Hammersmith,London,UK 3Amersham Pharmacia Biotech,San Francisco,CA,USAThe increasing availability of genomic sequence informa-tion,together with improvements in protein characteriza-tion by mass spectrometry,have facilitated huge in-creases in the throughput of protein identification.Most commonly,sample components are separated by two-dimensional gel electrophoresis (2-D PAGE)and protein spots are visualized by staining silver,Coomassie blue or SYPRO fluorescent dyes [1±3].Individual spots are then excised from the gel,proteolytically digested,and the masses of the resulting peptides are determined by matrix assisted laser desorption/ionization ±time of flight ±mass spectrometry (MALDI-TOF-MS).The list of peptide masses thus obtained can then be used as a highly spe-cific query to interrogate a protein database [4±9].Recent advances in tandem electrospray ionization-mass spec-trometry (ESI-MS/MS),particularly the development of hybrid quadrupole /orthogonal acceleration TOF instru-ments (Q-TOF),enable routine de novo sequencing of low femtomole levels of peptides [10±13].The ability to determine 10±20amino acid lengths of sequence greatly facilitates cross-species protein identification and retrieval of homologous proteins from genomic and EST data-bases,even when an exactly matching sequence is not present.It is desirable to visualize protein spots in the gel at sensitivities which are roughly comparable to those of the subsequent MALDI-and ESI-MS analyses (usually in the range of nanograms per protein spot).Silver staining has been widely used for this purpose [14,15]since it re-quires relatively inexpensive equipment and reagents and remains one of the most sensitive methods for perma-nently staining proteins in polyacrylamide gels.For protein silver staining,a polyacrylamide gel is soaked in a solution containing soluble silver ions (Ag +)and sub-sequently developed by treatment with a reductant.Pro-tein molecules in the gel promote the reduction of silver ions to metallic silver (Ag 0),which is insoluble and visible.Initial deposition of metallic silver promotes further depo-sition by an autocatalytic process,resulting in exception-ally high sensitivity.There are many published versions of the silver staining process [16,17],which may incorpo-rate,in addition to silver impregnation and development,fixation steps,incubations with sensitivity enhancers (e.g.,glutaraldehyde or formaldehyde),stopping and preservation,and washing steps.The reagents used vary,but the silver reductant is always formaldehyde.The high sensitivity of silver staining comes at the cost of sus-ceptibility to interference from a variety of scources.Correspondence:Dr.Jun X.Yan,Heart Science Center,Hare-field Hospital,Hill End Road,Harefield,Middlesex,UB96JH,UK E-mail:jun.yan@ Fax:+44-(0)1895-828-9003666Electrophoresis 2000,21,3666±3672WILEY-VCH Verlag GmbH,69451Weinheim,20000173-0835/00/1717-3666$17.50+.50/0Exceptional cleanliness must therefore be practiced and reagent and water quality are critical.Silver staining pro-tocols have been developed specifically for visualizingproteins prior to in-gel digestion and mass spectrometric analysis [14,18].Subsequent MS constrains the choice of reagents that can be used during silver staining,because the proteins in the gel must not be chemically modified.Thus many common sensitization reagents (e.g.,glutaraldehyde and strong oxidizing agents)cannot be employed.Since silver staining is a multistep process utilizing numerous reagents,the quality of which is critical,it is often advantageous to purchase a dedicated kit in which the reagents are quality-assured specifically for sil-ver staining.We report here a modified silver staining method that is available as a commercial kit (Silver Stain PlusOne;Amersham Pharmacia Biotech)and we show that it is compatible with subsequent in-gel digestion,MALDI,and ESI analysis.The method is based on that of Heukes-hoven and Dernick [19],but omits the use of glutaralde-hyde in the sensitization step and formaldehyde in the sil-ver impregnation step.The detailed protocol is shown in Table 1.Staining was performed in glass dishes and par-ticular care was taken to avoid contamination by keratin and other extraneous proteins.Electrophoresis 2000,21,3666±3672Silver staining compatible with mass spectrometric analysis 3667Table 1.The modified silver staining protocol using Silver Stain PlusOne kit Step Solution (250mL per gel)Time (min)1.Fix 25mL acetic acid,100mL methanol,125mL milli-Q water 152.Fix25mL acetic acid,100mL methanol,125mL milli-Q water153.Sensitization a)75mL methanol,10ml sodium thiosulfate (5%),17g30sodium acetate 165mL milli-Q water 4.Wash 250mL milli-Q water 55.Wash 250mL milli-Q water 56.Wash 250mL milli-Q water57.Silver a)25mL silver nitrate (2.5%),225mL milli-Q water 208.Wash 250mL milli-Q water 19.Wash 250mL milli-Q water110.Develop6.25g sodium carbonate,100m L formaldehyde,250mL milli-Q water 11.Stop 3.65g EDTA,milli-Q water 1012.Wash 250mL milli-Q water 513.Wash 250mL milli-Q water 514.Wash250mL milli-Q water5a)Omitting the use of glutaraldehyde in the sensitization step and formaldehyde in the sil-ver impregnation step.Working solutions are freshly made immediately prior tostaining.Figure 1.Gel image of normal rat left ventricle using IPG pH 3±10NL 2-D PAGE (12%T)with 100m g total protein loading and silver staining (Owl silver stain kit).P r o t e o m i c s a n d 2-D ENormal human and rat heart left ventricle tissues were used.Sample preparation and2-D PAGE were performed essentially according to Weekes et al.[20].We routinely use100m g total protein loading for analytical gels(pH 3±10NL)and the Owl silver stain kit(Owl Separation Sys-tem,Portsmouth,UK)for visualization.A typical image of one of these gels is shown in Fig.1.To investigate the sensitivity of the PlusOne kit,100,200,300and400m g total protein loading were used.The corresponding gel images are shown in Fig.2.The patterns obtained using the two different kits(Figs.1and2d)are very similar. This,therefore,facilitates comparisons between semipre-parative and analytical gels stained with conventional pro-tocols(e.g.,the Owl kit).Excellent patterns were achieved at higher protein loadings(200,300,and400m g;Fig.2a±c),whereas many spots display negative staining at these loadings when more sensitive staining methods,such as the Owl kit,are used(data not shown).Note that the high-er background obtained from the higher protein loading gels were removed using transform to autoscale the gel image in PDQuest2-D software version6.1(Bio-Rad, Hercules,CA,USA).A400m g total protein loading for IPG3±10strips appears to be optimal in that adequate concentrations of most spots are obtained for MS analy-3668J.X.Yan et al.Electrophoresis2000,21,3666±3672Figure2.Gel images of normal rat left ventricle using IPG pH3±10NL2-D PAGE(12%T)and modi-fied silver staining described in Table1(modified PlusOne silver stain kit)with total protein loading of(a)400m g,(b)300m g,(c)200m g and(d)100m g.sis,while minimizing excessive background and the for-mation of large spot clusters.Higher loadings are possi-ble,however,when using narrow-range IPG strips(data not shown).We investigated the compatibility of the PlusOne modified protocol with ESI-and MALDI-MS.While MALDI is rela-tively tolerant of salts and other contaminants[21,22], the ESI technique is much more susceptible to such inter-ference.Thus,it is necessary to validate the compatibility of the modified stain with both ionization methods.Figure 3shows a gel image of human heart left ventricle(400m g total protein loading)from which20proteins spots were excised for MS characterization.A modified sample prep-aration method was used,which incorporates a destain-ing step[15]to remove silver prior to in-gel digestion with trypsin[14].Aliquots(0.5m L)of the digest supernatant were applied directly to the MALDI target,after which,if necessary,the remainder of the sample was extracted, desalted,and analyzed by ESI-MS/MS.These data are summarized in Table.2.If the results from MALDI mass mapping were ambiguous,ESI-MS/MS was used to gen-erate amino acid sequence data suitable for sequence tag or similarity searching using BLAST.Figure4shows the MALDI mass spectrum of spot19which,when sub-mitted to database searching,retrieved a highly signifi-cant match to ubiquinol cytochrome C reductase.Figure 5a shows a MALDI mass spectrum obtained from spot4, which,when searched,did not find any unambiguous hits.Electrophoresis2000,21,3666±3672Silver staining compatible with mass spectrometric analysis3669Figure3.Gel image of human left ventricle using IPG pH3±10NL2-D PAGE(12%T)with400m gtotal protein loading.The gel was stained using the PlusOne silver stain kit.Protein spots(1±20)labeled on the image were subjected to trypsin digestion and MALDI-TOF-MS or ESI-MS(Table2).This protein was identified by ESI-MS/MS of a doubly charged ion at m/z 777.4,from which 13residues of amino acid sequence were deduced (Fig.5b),which exactly matched the sequence of ATPsynthase a -chain.We conclude that the modified silver staining kit is com-patible with both MALDI-and ESI-MS.Although the sensi-tivity is somewhat lower than other versions,this kit ena-bles higher protein loading,thus facilitating identification by MS.In our laboratory the modified protocol has pro-vided consistent results over a 12-month period and,since the resulting patterns are similar to those produced by the Owl silver stain kit,we have been able to correlate results from semipreparative and analytical gels.Spots of interest are easily located for excision and further charac-terization.A loading of 400m g protein on IPG 3±10strips provides adequate concentrations for successful MALDI analysis of the majority of visible spots.For very low abu-dance proteins,use of the modified stain in conjunction with high protein loadings on narrow pH range IPG strips avoids excessive background staining and spot cluster-ing.We thank the Cardiovascular Disease Group,Rhone-Poulenc Rorer (Collegeville,PA,USA)for providing the rat heart tissue,and Tim Harwood,Amersham PharmaciaElectrophoresis 2000,21,3666±3672Silver staining compatible with mass spectrometric analysis3671T a b l e 2.c o n t i n u e dS p o t E s t i m a t e d I d e n t i f i c a t i o n (a c c e s s i o n n u m b e r )T h e o r e t i c a l A m i n o a c i d P e p t i d e s e q u e n c e i n f o r m a t i o n o b t a i n e d b y E S I -T O F -M S /M S a n a l y s i sN o .p I /M r (D a )p I /M r (D a )c o v e r a g e (%)w i t h M A L D I -T O F -M S 195.7/46200U b i q u i n o l -c y t o c h r o m e c r e d u c t a s e c o m p l e x c o r e p r o t e i n I 5.94/5261939.31.m /z 787.5(3+)A V E L L G D I V Q N C S L E D S Q I E K p r e c u r s o r ,h u m a n (P 31930)2.m /z 901.5(3+)A G Y G P L E Q L P D Y N R3.m /z 1044.3(3+)...F Q G T P L A Q A V E G P S E N V R 4.m /z 1180.7(2+)A V E L L G D I V Q N C S L E D S Q I E K5.m /z 1351.7(2+)Y I I D Q C P A V A G Y Y P I E Q L P D Y N R 205.9/40700A c t i n ,a -c a r d i a c ,h u m a n (P 03996)5.24/4200930.21.m /z 565.9(2+)G Y S F V T T A E R2.m /z 652.7(3+)V A P E E H P T L L T E A P L N P K3.m /z (2+)P y r -E Y D E A G P S I V H RP r o t e i n s p o t s 1±20w e r e e x c i s e d f r o m t h e 2-D g e l s h o w n i n F i g .3a n d a n a l y z e d b y M A L D I -a n d E S I -M S .T h e r e s u l t i n g p e p t i d e m a s s m a p s w e r e s e a r c h e d a g a i n s t S W I S S -P R O T /T r E M B L r e l e a s e 35,u s i n g P r o t e i n P r o b e (M i c r o m a s s ),o r a g a i n s t a n o n r e d u n d a n t d a t a b a s e m a i n t a i n e d b y t h e N a t i o n a l C e n t e r f o r B i o t e c h n o l o g y I n f o r m a t i o n (N C B I )(h t t p ://w w w .n c b i.n l m .n i h .g o v )u s i n g t h e M a s c o t [23]s e a r c h e n g i n e (h t t p ://w w w .m a t r i x s c i e n c e .c o .u k ).A n i n i t i a l m a s s t o l e r a n c e o f 100p p m w a s u s e d ,b u t w a s r e d u c e d t o 50p p m i f e x c e s s i v e n u m b e r s o f h i t s w e r e r e t r i e v e d .A m i n o a c i d s e q u e n c e s o b t a i n e d f r o m E S I -M S /M S w e r e s e a r c h e d a g a i n s t a n o n r e d u n -d a n t d a t a b a s e i n N C B I u s i n g t h e B L A S T p r o g r a m [23].M S /M S s h o w e d t h a t s p o t 1c o n t a i n e d t w o -c o m i g r a t i n g p r o t e i n s .S p o t s 6,8±13,a n d 15±17w e r e n o t a n a l y z e d b y M S /M S b e c a u s e t h e s e a r c h r e s u l t s f r o m t h e M A L D I d a t a w e r e u n a m b i g u o u s .T h e s e q u e n c e c o v e r a g e o f 6,8,9a n d 12a p p e a r s l o w ,b e c a u s e t h e o b s e r v e d p r o -t e i n s p o t s c o r r e s p o n d t o t r u n c a t e d f o r m s ,w h e r e a s t h e c o v e r a g e w a s c a l c u l a t e d f r o m t h e f u l l -l e n g t h s e q u e n c e.Biotech,for conducting this collaboration.JXY acknowl-edges Aventis for their financial support.RAH and JAW thank Proteome Sciences Inc.for their financial support. RW thanks the Wellcome Trust for purchase of the MALDI spectrometer.Work in MJD©s laboratory is sup-ported by the British Heart Foundation.Received May,30,2000References[1]Berggren,K.,Chernolalskaya,E.,Steinberg,T.H.Kemper,C.,Lopez,M.F.,Diwu,Z.,Haugland,R.P.,Patton,W.F.,Electrophoresis2000,21,2509±2521.[2]Steinberg,T.H.,Lauber,W.M.,Berggren,K.,Kemper,C.,Yue,S.,Patton,W.F.,Electrophoresis2000,21,497±508.[3]Steinberg,T.H.,Jones,L.J.,Haugland,R.P.,Singer,V.L.,Anal.Biochem.1996,239,223±237.[4]Henzel,W.J.,Billeci,T.M.,Stults,J.T.,Wong,S.C.,Grim-ley,C.,Watanabe,C.,A1993,90, 5011±5015.[5]Mann,M.,Hojrup,P.,Roeppstorff,P.,Biol,Mass Spectrom.1993,22,338±345.[6]Pappin,D.J.C.,Hojrup,P.,Bleasby,A.J.,Curr.Biol.1993,3,327±332.[7]Liang,X.L.,Bai,J.,Liu,Y.H.,Lubman,D.M.,Anal.Chem.1996,68,1012±1018.[8]Patterson,S.D.,Aebersold,R.,Electrophoresis1995,16,1791±1814.[9]Wheeler,C.H.,Berry,S.L.,Wilkins,M.R.,Corbett,J.M.,Ou,K.,Golley,A.A.,Humphery-Smith,I.,Williams,K.L., Dunn,M.J.,Electrophoresis1996,7,580±587.[10]Morris,H.R.,Paxton,T.,Dell,A.,Langhorne,J.,Berg,M.,Bordoli,R.S.,Hoyes,J.,Bateman,R.H.,Rapid Commun.Mass Spectrom.1996,10,889±896.[11]Shevchenko,A.,Chernushevich,I.,Ens,W.,Standing,K.G.,Thomson,B.,Wilm,M.,Mann,M.,Rapid Commun.Mass Spectrom.1997,11,1015±1024.[12]Borchers,C.,Peter,J.F.,Hall,M.C.,Kunkel,T.A.,Tomer,K.B.,Anal.Chem.2000,72,1163±1168.[13]Kristensen,D.B.,Imamura,K.,Miyamoto,Y.,Yoshizato,K.,Electrophoresis2000,21,430±439.[14]Shevchenko,A.,Wilm,M.,Vorm,O.,Mann,M.,Anal.Chem.1996,68,850±858.[15]Gharahdaghi,F.,Weinberg,C.R.,Meagher,D.A.,Imai,B.S.,Mische,S.M.,Electrophoresis1999,20,601±605.[16]Rabilloud,T.,Electrophoresis1990,11,785±794.[17]Rabilloud,R.,Electrophoresis1992,13,429±439.[18]Arnott,D.,O©Connell,K.L.,King,K.L.,Stults,J.T.,Anal.Biochem.1998,258,1±18.[19]Heukeshoven,J.,Dernick,R.,Electrophoresis1985,6,103±112.[20]Weekes,J.,Wheeler,C.H.,Yan,J.X.,Weil,J.,Eschenha-gen,T.,Scholtysik,G.,Dunn,M.J.,Electrophoresis1999, 20,898±906.[21]Garden,R.W.,Moroz,L.L.,Moroz,T.P.,Shippy,S.A.,Sweedler,J.V.,J.Mass Spectrom.1996,31,1126±1130.[22]Winkler,M.A.,Kundu,S.,Robey,T.E.,Robey,W.G.,J.Chromatogr.A1996,744,177±185.[23]Perkins,D.N.,Pappin,D.J.,Creasy,D.M.,Cottrell,J.S.,Electrophoresis1999,20,3551±3567.[24]Altschul,S.F.,Madden,T.L.,Schäffer,A.A.,Zhang,J.,Zhang,Z.,Miller,W.,Lipman,D.J.,Nuclei Acids Res.1997, 25,3389±3402.[25]Vorm,O.,Mann,M.,J.Am.Soc.Mass Spectrom.1994,5,955±958.3672J.X.Yan et al.Electrophoresis2000,21,3666±3672。