储气库井生产动态分析方法及应用
气藏气井生产动态分析报告题改图

气藏气井生产动态分析题一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水2.1m3/d(凝析水)为纯气藏。
该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。
1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。
4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。
请结合该井的采气曲线和压力计原始记录:1、计算该井压力梯度;2、分析判断气井采气参数变化的原因。
测压时间井深(m)压力(MPa)压力梯度(MPa/100m)备注86.4.28 9:00 0 14.259:20 1000 14.93 0.0689:40 1500 15.27 0.06810:00 2000 15.61 0.06810:20 2271 15.80 0.07010:40 2700 16.10 0.07011:00 2950 16.28 0.072 2950遇阻答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。
(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。
二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1203.4米油管21/2〞×1298.8米,衬管5〞×1195.2~1324.9米,完井测试套压9.23MPa,油压8.83MPa,产气量19.4×104m3/d,产水微。
气井动态储量计算方法

二、传统的计算方法——产量递减法
递减阶段的产量公式为:
qt qoe
当D远远小于1时
Dt
e
D
D 2 D3 1 D 2! 3!
qt qo(1 D)t
t
G p qt dt qo (1 D)t dt
0 0
t
qt ln(1 D) Gp qo
气井动态储量计算方法研究及应用
学 专 主
校:中国石油大学(北京) 业:油气田开发工程 讲:田 冷
Contents
一、动储量的概念
二、动储量的计算方法原理 三、计算动储量的新方法 四、不同方法的应用及对比 五、应力敏感储层动态储量预测
一、动储量的概念
动态储量通常是指以开发地质储量中在现有的工艺技 术和现有井网开采方式不变的条件下,所有井投入生产 直至天然气产量和波及范围内的地层压力降为零时,可 以从气藏中流出的天然气总量。理论上它等于现有井网 控制条件下的地质储量。 它不但强调储量的可流动部分,而且同时还强调波及 范围内的可流动气量。因此,动态储量的大小与生产井 数、井网的控制程度及波及系数等密切相关。
探明 地质储量
二、动储量传统的计算方法原理
物质平衡法
传 统 计 算 方 法
压降法 弹性第二相法
试井分析法
压力恢复法
压差曲线法
数学统计法
产量递减法 产量累计法 试凑法 数值模拟法
其它方法
二、传统的计算方法——压降法
物质平衡法又称压降法,是目前气田应用较为广泛且相 对而言最为精确的动态储量计算方法。其基础是质量守恒 定理。目前物质平衡法主要应用的气藏类型有: ①定容封闭性气藏;②水驱气藏;③凝析气藏;④异常 高压气藏。 对于一个具有天然水驱作用的气藏,其物质平衡方程式 为:原始储量=累计采出量+剩余储量+水侵量,即
气藏动态分析1产水气井动态分析及排水采气工艺共70页

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
采气井站生产与管理:气井的生产分析

水气井
纯气井
高产气井
中产气井
低产气井
三、用采气曲线分析气井动态 2. 由采气曲线判断井内情况
(1)油管内有水柱影响:油压显著下降,水量增 加时油压下降速度相对增快。
(3)井口附近油管断裂:油压上升,油、 套Байду номын сангаас相等。
(4)井底附近渗透性变化:变好,即压力升高,产量增加;变坏,即压 力、产量下降速度增快。
一、生产资料分析气井动态 2.由生产资料判断气井产水的类别
3. 根据生产数据资料分析是否是边、底水侵入 (1)钻井资料证实气藏存在边、底水; (2)井身结构完好,不可能有外来水窜入; (3)气井产水的水性与边水一致;
3. 根据生产数据资料分析是否是边、底水侵入 (4)采气压差增加,可能引起底水锥进,气井产水量增加; (5)历次试井结果对比:在指示曲线上,开始上翘的“偏高点”的生产 压差逐渐减小,证明水锥高度逐渐增高,单位压差下的产水量增大。
3. 由采气曲线判断地面异常 如压力、水量都稳定,产量突然升高或下降,可能是地面仪表计量有误。
4. 由采气曲线分析气井生产规律 (1)井口压力与产量关系的规律; (2)单位压降与采气量的规律; (3)生产压差与产量的规律; (4)气水比随压力、产量变化的规律; (5)井底渗透率与压力、产量的变化规律。
三、用采气曲线分析气井动态 • 采气曲线是生产数据与时间关系的曲线。 • 利用它可了解气井是否递减、生产是否正常、工作制 度是否合理、增产措施是否有效等,是气田开发和气井生 产管理的主要基础资料之一。
三、用采气曲线分析气井动态 1. 从采气曲线划分气井类型和特点 通过采气曲线可划分出水气井和纯气井,高产气井、中产气井、低产气井,如图所示。
·井筒内无液柱油压等于套压; ·油管液柱高于环空液柱油压小于套压; ·油管液柱低于环空液柱油压大于套压;
油气藏动态分析:-气井生产参数

4.1.1气井生产参数
二、气井分析的内容
(1)收集气井的全部地质和生产技术资料,编制气井井史,绘制采气曲线。 (2)分析气井气、油、水产量与地层压力、生产压差之间的关系,寻求它们之间的内在联系 和规律,推断气藏内部的变化。 (3)通过气井生产状况和试井资料,结合静态资料分析气井周围储层及整个气藏的地质情 况,判断气藏边界和驱动类型。 (4)分析气井产能和生产情况,建立气井产能方程,评价气井和气藏的生产潜力。 (5)提供气藏动态分析工作所需的各项资料,包括地层压力、地层温度及流体性质变化等。
2. 目前地层压力(静压)
定义: 气层投入开发以后,在某一时刻关井,待压力恢复平稳后,所获得的 井底压力称为该时期的目前地层压力,又称为井底静压力,简称为静压。
4.1.1气井生产参数
三、基本概念
3. 井底流动压力(流压)
定义:气井在正常生产时测得的井底压力称为井底流动压力,简称为 流压。它是流体从地层流入井底后剩余的能量,同时也是流体从井底流向 井口的动力。
确定方法:实测法、计算法
4.1.1气井生产参数
三、基本概念
4. 井口压力
在气井井口测得的井口压力分为油压和套压。 油压:指井口油管头处测得的油管内的压力。 套压:指井口套管头处测得的套管内的压力。
4.1.1气井生产参数
三、基本概念
不同情况下气井油套压的关系
4.1.1气井生产参数
谢谢欣赏
4.1.1气井生产参数
三、基本概念
1. 原始地层压力
定 义 : 气藏未开发前的气藏压力称为原始地层压力,即当第一口气井完钻后,关 井稳定后测得的井底压力,它表示气藏开采前地层所具有的能量。
气井动态分析实用模板.docx

气井动态分析2009 年动态分析模式一、气井生产阶段的划分1、生产阶段的时间划分(1)从 XXX 到 XXX 是什么阶段。
(2)从 XXX 到 XXX 是什么阶段。
2、生产阶段划分描述(1) XX 阶段: XX 参数变化; XX 参数变化; XX 参数变化。
(2)XX 阶段:XX 参数变化;XX 参数变化;XX 参数变化。
二、气井异常情况分析处理1、异常类型判断(1)从 XX 到 XX 是 XX 故障。
(2)从 XX 到 XX 是 XX 故障。
2、异常现象描述(1)异常 1: XXX ,是由 XX 故障引起的。
(2)异常 2: XXX ,是由 XX 故障引起的。
3、建议处理措施(1)异常 1: XXX 处理。
(2)异常 2: XXX 处理。
三、气井工艺选择1、 XXXX 。
2、 XXXX 。
3、 XXXX 。
四、计算解:依据公式:XXX 。
带数据结果。
答: XXXXXXXXXXX。
2012 年动态分析模式一、获取数据生产采气曲线(EXCEL 表格内)1、获取数据与原表保持一致。
2、采气曲线生产。
曲线个数和题目保持一致。
油套压在 1 个坐标系内。
二、气井异常情况分析处理三、气井工艺选择四、计算生产阶段的划分无水气井(纯气井):净化阶段,稳产阶段,递减阶段。
气水同产井:相对稳定阶段,递减阶段,低压生产阶段(间歇、增压、排水采气)气井异常情况一、井口装置1、故障名称:井口装置堵现象描述:套压略有升高;油压升高;产气量下降;产水量下降;氯离子含量不变。
处理措施:( 1)没有堵死时:注醇解堵。
( 2)堵死:站内放空,井口注醇解堵。
2、故障名称:井口装置刺漏现象描述:套压略有下降;油压下降;产气量下降(刺漏点在流量计前);产水量增加;氯离子含量不变。
处理措施:( 1)验漏,查找验漏点。
( 2)维修或处理漏点。
3、故障名称:仪表仪器坏现象描述:( 1)一个参数变化,仪表故障;( 2)两个参数变化,传输设备故障;处理措施:( 1)维修仪表。
储气库产能的节点分析方法——W23储气库实例

1 储气库单井注 采能力分析
1 . 1节点系 的 基本 原 理 是 用节 点分 析 的方 法 。 节 点系 统分 析 的基本 思 想是 把 系统 中的 某一 节 点 ( 如井 底 ) 视 为解 节点 , 对 解节 点流入 、 流 出部分 的能量 损失 联接起 来 , 对影 响流动 的各个 因素进行分 析 , 从 而对 整个生产 系统进行优 化 。 1 . 2采气井产能方程 1 . 2 . 1系统 测试资料 产能分析 系统 试井又 叫稳定试 井 , 把气井产 量 由低 到高设 置 3 - 5 个 工作 制度 , 测量 每个 工作制 度下 气井达 到生 产稳定 时的产 量和 井底流压 , 从而 对该 气井的产能 进行评价 分析 的方法 。 1 . 2 . 2产 能分布特征 以这 1 3 口井产 能测试 为依 据 , 考 虑 气井所 处构 造位 置 、 测 试时 间、 有效 厚度 、 射孔 状况 以 及相 邻气 井 的测试 情 况 , 绘制 能力。 无 阻流 量等 值 图 , 结合 气 井产 量变 化及 压 力下 降等 生产 特 征 , 参考文献 : 将 W2 3 气 田主块 划分 为高 、 中、 低 三个产 能区块 。 【 1 ] K e l k a r M一天然气开采工 程[ M】 . 郭平, 汪周华, 杨依依, 等 1 . 3采气能力影响因素分析 译. 北 京: 石 油工业 出版社, 2 0 1 3 . 采 气井 的产能 的高 低主要 受生产 管柱 设计 ( 主要 为 管径 ) 、 【 2 ] 马胜 利, 韩 飞. 国外天 然气储 备状况 及经验 分析[ J ] . 天然 生产 参数设 置 ( 井口 压力) 、 气藏 能量 ( 井底 压 力) 等各方面 综合 气工业, 2 0 1 0 , 3 0 ( 8 ) : 6 2 - 6 6 . 影响, 因此 可以 分别分析 油管尺 寸 、 井 口压力 、 井底 压 力 对产能 【 3 ] 马 小 明, 余 贝 贝, 马东 博, 等. 砂岩 枯 竭型 气藏 改建地 下 的影响 。 储气库方案设 计配套技术[ J ] . 集输工程, 2 0 1 0 , 3 0 ( 8 ) : 6 7 — 7 1 . 1 . 3 . 1 油管 管径 [ 4 】 张 莉, 张德 志, 李友 全, 等. 节 点分 析在 油 气井 生产 系统 气 田改储 气库后 , 老井 只能 下内径 6 2 m m油管生产 , 为满足 设计及动态预 测 中的应用[ J 】 . 油气井测试, 2 0 0 3 , 1 2 ( 2 ) : 2 9 — 3 2 . 强注强采 要求 , 新井可采 用 内径 7 6 或9 9 . 6 m m油 管生产 。 [ 5 ] B i t s i n d o u A. B . , K e l k a r M. G—G a s w e l l p r o d u c t i o n o p t i m i z a -
致密气藏水平井动态分析方法及生产规律

致密气藏水平井动态分析方法及生产规律摘要:低渗致密气藏类型复杂,不同类型气藏水平井开发动态差异性大,水平井的合理开发对策针对性较差。
在气藏分类研究的基础上,采用动态分析及数值模拟技术,定量分析了不同类型气藏水平井在不同开发阶段的储量动用及采出情况,揭示了导致不同类型气藏水平井存在动态差异性的原因。
结果表明,储层厚度主要影响水平井初期的线性流阶段,储层越厚,则阶段动态储量越高、产量越高、稳产期越长、递减越慢、阶段采出程度越高;储层展布主要影响中后期径向流阶段,储层越连续、泄气半径越大,则生产期越长、阶段采出程度越高。
关键词:低渗致密气藏;水平井开发;动态特征低渗致密气藏普遍具有“低、小、散、差”的地质特点:储量品质普遍偏低、单砂体控制储量规模小、储量空间分布零散、砂体连片性差。
前期采用直井开发,井控储量小,单井产量低、产量及压力递减快、气藏稳产期短、开发难度大。
经过开发调整逐步尝试利用水平井开发,随着水平井开发瓶颈技术的不断突破,储量动用程度得以大大提高,实现低渗致密气藏的效益开发。
由于低渗致密气藏类型复杂、储层非均质性强、含气性差异大等特点,不同类型气藏水平井开发动态及开发效果差异性大。
为正确认识不同类型气藏水平井的开发动态特征,有针对性地设计合理的水平井开发对策,本文根据低渗致密气藏储层展布特点及砂体厚度特征,开展了气藏类型划分;利用动态分析方法及数值模拟技术,解剖不同类型气藏气井的生产过程,定量分析不同开发阶段的储量动用及采出情况,揭示开发动态存在差异性的原因。
1气藏地质特征低渗致密气藏发育气层多,埋深跨度大,主要分布在上侏罗统蓬莱镇组、遂宁组和中侏罗统沙溪庙组地层中。
单个气藏由多套含气砂体叠置而成,气藏埋藏浅、中,埋藏深度一般为400~2800m;纵向上储层由浅层常规储层、近常规储层向中深层低渗致密储层变化,砂体连片或不连片分布,含气面积差异大,储量丰度低,一般低于3×108m3/km2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储气库井生产动态分析方法及应用
随着天然气的普及和消费量的不断增加,地下储气库的建设越来越紧迫,在数据库设计建设过程当中,存在着很多技术挑战,以保证数据库的安全,注采井的安全是地下储气库安全运行的重要依托,国内外有大量对于储气库安全的研究,而且很多研究着眼于井下的管串安全,储气库注采经验表明出砂对储层的长期有效运行造成威胁。
笔者根据自身的工作经验,分析了储气库井生产动态分析方法和应用。
标签:储气库井;生产动态;分析方法;应用
近百年以来,地下储气库经过不断的建设发展,已经成为各国天然气的主要存储方式和重要调峰手段,2000年,我国建立了第一座储气库,保证了京津地区的天然气的稳定供应,随着我国对于天然气需求量的不断增加,储气库建设必须紧随时代发展,满足日益增长的消费量。
我国的储蓄库建设面临着很多的技术挑战,例如,建设管理体系处于起步阶段,缺乏研究和实践经验,在储气库注井井筒温度压力调整的过程当中,周期性变化不均,缺乏完善的管理体系与监督体系。
因此,在储气库的建设和管理过程中,我们需要借鉴其他国家的先进经验,及时发现我国存在的问题,在生产运行过程当中重视技术的创新,来保证储气库的安全和有效运行。
1 储气库井生产动态研究现状
我国的储气库建设技术,包括地质方案,施工技术,废弃井封井技术,钻井、固井、完井技术,钻井液技术和储层保护技术,这些技术对于储气库建设的每一个环节都会产生很大的影响。
储气库井注采出砂预测研究:储气库建设的过程中,储层未被打开之前,内部系统处于力平衡状态,储层一旦被打开,周围的应力系统会发生变化,岩石颗粒所承受的应力也会变得不平衡,这时如果应力超过岩石,自身的抗压和抗剪程度变小,延时就会发生变形,在进行油气井生产时,流体流入井底,将地层砂带入井底,导致出砂现象的出现,岩石破坏导致储层出砂的机理包括三种:滑移次生破坏、剪切破坏和拉伸破坏。
油井地层的出砂原因有很多,一是地层中充填砂在流动粘滞力和惯性作用的影响下被动的流入井底,引起油气井出砂现象,二是由于岩石超过其及耐受强度而被破坏,产生的松散砂,被地层流体带入到井底之中,也引发油气井出砂现象,滑移次生破坏是导致充填砂进入井底出沙的重要原因,而剪切和拉伸的影响,则导致延时超过极限强度,出现松散砂流入地层的现象。
2 储气库出砂的影响因素
2.1 地质因素
受到地形构造、颗粒胶结、地层流体性质的影响,在进行地层构造勘探的过程中,在断层附近或构造应力很大的部位钻井,打开储层会使得局部,内部骨架发生改变,储存可能发生节理现象或微裂隙现象,使得储存的抵抗剪强度降低,容易出现出砂问题,所以对于这些重点区域,需要重视防砂工作的进行。
颗粒胶结的程度会直接影响到地层的出砂状况,胶结物的种类数量和方式,颗粒尺寸、形状、地层、埋深等都会影响到颗粒胶结的性能,一般来说钙质胶结、孔隙式交结的颗粒,分布较小,岩石强度高,而泥质胶结、接触式胶结,岩石强度低,容易出现开裂现象,地层埋深越深,压实程度越强,地层的岩石强度越高,这样的地层结构不易出现出砂现象。
流体性质对于出砂的影响,主要是由于毛细管力的作用,在其他条件相同的状况下,含油饱和度越高,胶结度越好,而原油性质较差时粘度高,生产流动时产生的表面拖拽力就会增加,容易出现出砂现象。
2.2 完井因素
完井因素涉及到了井眼的尺寸、井斜、射孔参数,会对出砂现象造成很大的影响,井眼尺寸可以根据达西公式得出,井径的自然对数决定了井眼的尺寸,井眼尺寸对于出砂程度的影响较大,预警鞋的影响可以分为直井和水平井,当斜角小于45度時为直井,斜角大于45度时为为水平井,在相同产量的情况下,水平井与油层段的接触面积大于直井,出砂现象得以缓解。
射孔参数对于地层出砂的影响,主要受到孔径孔密合相位的影响,研究表明,大孔径高孔密的射孔参数可以直接减少出砂造成的产量损失,当射孔相位角为90度时,对产量的影响最低。
2.3 开采因素
随着天然气消费量日渐增加,地下储气库的建设越发紧迫和重要。
在储气库的建设中面临着许多技术挑战,确保注采井的安全有效即其中之一。
据统计,地下储气库事故里注采井的风险较大,因此国内外对储气库安全的研究大多着眼于井下管串的安全,同时,由于储气库快速注采的工作制度,气井出砂现象非常普遍,储气库注采经验表明出砂对储层的长期有效运行造成威胁,所以,必须保证油气开采的安全性,降低开采工作对储层的影响。
总之,在储气库开采的过程中,为了有效的降低事故发生的几率,必须认真分析油气开采的动态生产状况,降低人工工作对于底层的影响,提高基层周围的稳定性与安全性,为油气开采的正常运行创造安全的开采环境,认真分析储气库出砂问题出现的因素,制定有效的控制措施,结合先进的生产开采工艺,不断提升开采质量,满足人们日益增长的天然气的需求,为我国的经济建设提供能源支持。
参考文献:
[1]郑得文,胥洪成,王皆明,孙军昌,赵凯,李春,石磊,唐立根.气藏型储气库建库评价关键技术[J].石油勘探与开发,2017,44(05):794-801.
[2]王建军,付太森,薛承文,孙建华,李方坡.地下储气库套管和油管腐蚀
选材分析[J].石油机械,2017,45(01):110-113.。