气力输送的设计要点
安徽气力输送方案

安徽气力输送方案1. 引言气力输送是一种将固体物料通过压缩空气的力量进行输送的技术。
它在各个行业中广泛应用,特别是在粉状物料的输送过程中。
本文档将介绍安徽气力输送方案的设计和实施。
2. 设计方案气力输送方案的设计需要考虑物料特性、输送距离、输送量以及设备选型等因素。
根据在安徽地区的应用需求,我们提出以下设计方案:2.1 物料特性在设计气力输送方案之前,我们首先需要了解要输送的物料特性,包括物料的粒度、粘度、湿度等。
根据安徽地区主要的物料特性,我们可以选择合适的气力输送设备。
2.2 输送距离输送距离是设计气力输送方案时需要考虑的重要因素。
根据安徽地区的实际情况,我们可以根据输送距离选择合适的压缩空气压力以及管道布置。
2.3 输送量根据安徽地区的生产需求,我们需要确定气力输送方案的输送量。
根据输送量的大小,我们可以选择合适的气力输送设备以及管道直径。
2.4 设备选型在设计气力输送方案时,我们还需要考虑设备的选型。
根据物料特性、输送距离和输送量等因素,选择合适的气力输送设备,包括压缩机、气力输送管道、气力输送阀门等。
3. 实施方案设计好气力输送方案后,我们需要进行实施。
以下是实施方案的步骤和注意事项:3.1 设备安装首先,安装气力输送设备,包括压缩机和气力输送管道等。
在安装过程中,需要注意设备的安全操作规范,并确保设备安装正确、牢固。
3.2 管道布置根据设计方案中的输送距离和输送量,进行气力输送管道的布置。
在布置过程中,需要遵循安全规范,并确保管道的连接牢固、无泄漏。
3.3 阀门调试在气力输送方案中,阀门起到控制和调节气流的作用。
在实施过程中,需要进行阀门的调试,并确保阀门的灵活性和准确性。
3.4 系统测试完成设备安装、管道布置和阀门调试后,需要进行系统测试。
测试包括气力输送的正常运行、输送量的稳定性以及系统的安全性等。
4. 维护和管理气力输送方案的维护和管理对于系统的长期稳定运行非常重要。
以下是维护和管理的要点:4.1 定期保养定期对气力输送设备进行保养,包括清洁、润滑以及零部件的更换等。
负压输送__气力输送__设计标准_机械设计

2.负压输送原理及特点
负压输送原理: 在气力输送网络中,利用负压风机,将物料从渠道吸入,
并在进口段渠道中随着带有一定负压速度的气流输送达到 指定地方. 这种输送方式的特点是;
1 可以从几处同时吸取物料,输送到一处集中。 2 适宜于堆积面广,或装在低处深处物料的输送。 3 只要有空气吸入口,就能很容易地把渠道伸入到 一些狭窄的地方
6.负压输送常用设备介绍(1)
6.1 吸料斗之应用扩展:
吸料时,暂存区域上端的气动蝶 阀打开下端气动蝶阀关闭,当物料存贮量 达到设定值时上端阀门关闭下端阀门打开, 物料用于重力作用掉入料仓。同时在这个 过程中物料在吸料中存贮当暂存区域的物 料掉完以后下端阀门关闭上端阀门打开, 物料有掉如暂存区域。如此反覆
此方式无需破真空,物料一直在 吸料,节省了卸料时间从而达到输送量要 求。
6.负压输送常用设备介绍(2)
6.2 旋风分离器之功能:
气流受导向叶片的导流作用而产生强烈
旋转,气流沿筒体呈螺旋形向下进入旋风筒体,
密度大的液滴和尘粒在离心力作用下被甩向器壁,
并在重力作用下,沿筒壁下落流出旋风管排尘口
至设备底部存贮区,从设备底部的卸料口流出。
4.设计依据和主要参数的确定 (3)
(三)负压输送的主要参数确定:
3.输送空气量Qa及输送管径D
(M3/Min)
Qa= Wa /γa = Ws /μγa
D = √4Qa= √4Ws (M)
60πVa 60πμγaVa
Va:空气速度
(M/Sec)
混合比μ与输送方式关系:
低厚度吸引式:μ为1 ~ 8,Dilute phase,Va:15 ~ 35
在设备布置上,要求在不妨碍操作的前提下,做到 整齐紧凑,这样就有利于缩短提高高度,尽量避免输送管 的弯曲。
气力输送系统的设计原则与程序

气力输送系统的设计原则与程序在设计压送式气力输送装置时,首先必须要对被输送物料的性质和料粒形状,输送条件,现场状况等进行了解和研究,在此基础上充分发挥气力输送的优点,正确选择气力输送的类型,以利于提高生产效率。
一、设计原则1、输送物料的性质和料粒形状物料的粒度常取平均粒度作为物料的计算粒度,并要了解物料粒度的分布情况。
物料的流动性一般用堆积角和摩擦角的大小来间接表示。
同一种物料由于含水量不同,流动性有很大的差别,对物料的含水量需考虑是内部水分还是表面水分,要考虑物料的粘附作用。
●物料的密度和堆密度是直接影响气力输送装置的外形尺寸、结构形式及功率消耗的大小。
●物料破碎率决定气力输送的布置路线、输送距离和选定合适的气流速度。
●物料的腐蚀性对输送管道的材质提出特殊的要求。
●物料有静电效应时,要安装必要的地线和防止带电装置,防止产生静电。
●对爆炸性物料,除防止静电外,必须采取防爆安全措施。
●对输送有害物料,必须考虑采取密闭的搬运安全措施,防止管道和设备磨损或损坏而外泄。
2、输送量在压送式气力输送装置设计时,要根据单位时间的输送量来确定装置的容量及规格。
气力输送装置往往是成套设备中的一部分,必须与其他主机及辅机匹配,如果在输送量的大小上发生矛盾,可以采取中间料斗贮存缓冲的办法予以解决。
输送量还与工艺有关,根据工艺要求决定采用间歇式还是连续式的装置,在选用压送式气力输送形式还应考虑装置的可靠性,要估计气力输送一旦发生故障对生产的影响。
3、输送起点和终点的状况在保证工艺的前提下尽可能缩短输送距离,充分发挥压送式气力输送的优势。
装置的安装高度和给料方式要允分考虑周围的环境,必须不阻碍交通,便于检修,并减少设备维护费用。
4、降噪及环保气源机械的噪声影响环境,在气源进口及出口处,必须采取降低噪声措施。
如风机或空气压缩机安装在单独的房间内,采用消声器等。
气力输送装置必须考虑排气的除尘效果,采用各种类型适合于气力输送特点的除尘器,防止对大气的污染,若采用湿法除尘器时,要考虑污水处理。
气力输送的设计要点

气力输送的设计要点气力输送广泛应用于水泥、石化、电力和冶金等行业中粉粒状物料的输送。
由于其具有布置灵活,所占空间小,可避开已有设备和建筑物等优点,因此特别适合于水泥厂的改造和扩建工程。
目前,新型干法水泥厂的生料入窑或入均化库、煤粉入窑或入分解炉大多采用了气力输送系统。
本文通过分析常用气力输送系统的性能特点和选型要求,指出了每种气力输送方法的差异和限制,并对气力输送的系统选择、供料器选择、空压机 风机 选择、经济性分析、物料特性对系统选型影响这五个设计要点进行了总结。
1系统选择1.1正压及负压系统正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。
在管路系统中安装两路阀就能实现多点卸料和喂料。
但多点喂料供料器过多,会造成大量空气泄漏。
特别是旋转叶片供料器,其泄漏量约占空气总供应量的20%。
目前国内水泥厂输送生料、煤粉及水泥等粉状物料的气力输送系统基本上采用正压系统。
负压系统适宜于从多喂料点输送物料到一个卸料点。
它的优点是通过供料器的空气泄漏和压力降都很小,因而旋转叶片供料器能得到令人满意的使用效果。
该系统在国内常应用于小型散装水泥驳船的卸料。
1.2混合系统混合系统结合了正、负压系统各自的优点,在该系统中,负压部分把物料从多个喂料仓中吸走,而正压部分把物料送入多个卸料仓。
气源靠一台通风机或鼓风机提供。
双级混合系统比普通混合系统能更好地输送物料。
普通混合系统虽对许多车间内部的短距离物料输送较为理想,但由于系统压力小,物料输送量和输送距离均受到限制。
双级混合系统利用中间仓把负压和正压系统分开,并把负压和正压系统所需气源分成两个独立供气装置,这样可以分别选择最佳的真空泵和空压机。
由于存在二个独立系统,故整个系统需要2台料气分离器。
图1为双级混合系统,是一个典型的大中型散装水泥船卸料装置,卸料能力达到100t/h以上。
它的2台空气动力源中1台可选用液环式真空泵;另1台可选用螺杆式或往复式空压机,在较小系统中则选用罗茨风机。
气力输送系统的设计要点

气力输送系统的设计要点【摘要】本文简要介绍了气力输送系统的分类和组成,并对气力输送系统设计中存在的一些重要问题进行归纳总结,为以后的工程设计提供参考。
【关键词】气力输送;分类;组成;设计要点0.前言气力输送是借助负压或正压气流通过管道输送粉料的技术。
与其他机械输送方式如斗提、皮带等相比,具有设备简单、布置灵活、占地面积小、操作及维修方便等特点,在钢铁、煤炭、电力、化工、粮食等行业得到广泛应用[1]。
气力输送系统设计的合理与否,对输送效率、运行成本和使用寿命都有重要影响,因此本文对气力输送系统设计中着重考虑的问题进行归纳总结,希望引起工程设计同行的重视,为将来的工程设计提供参考。
1.气力输送系统1.1气力输送的分类根据输送管中物料的密集程度,气力输送可分为稀相输送和密相输送。
稀相输送的混合比一般为0.1~25,输送气速为18~30m/s,高于浓相输送[2]。
根据输送管中气体的压力大小,气力输送可分为吸送式和压送式。
吸送式的输送管内压力低于大气压,能自吸进料,缺点是必须负压卸料,而且物料输送距离较短;压送式的输送管内压力高于大气压,卸料方便,物料输送距离较长,其缺点是须用给料器将物料送入带压的管道中[3]。
1.2气力输送系统的组成气力输送系统主要包括给料系统、输料系统、集料系统、动力系统和控制系统五大部分。
给料系统的作用是保证粉尘能够连续、均匀地进入输送管中,主要包括粉料缓冲斗、插板阀、旋转给料阀、给料器等。
由于吸送式气力输送的输送管内存在一定负压,能够自吸进料,故其给料器通常采用L型或V型给料器,压送式的给料器较复杂,一般采用船型给料器或仓泵。
输料系统是粉料输送的关键环节,由输送直管、弯管、吸气口、吹扫口等组成,输送管的布置对气力输送系统的压力损失、连续稳定运行有至关重要的影响。
集料系统的作用是使料气分离,并将粉料收集后集中处理,主要包括集料器、卸料阀、粉料储罐等。
集料器即除尘器,烟尘粒径小、混合比大时,应采用二级或以上的除尘设备,一般采用旋风分离器串联布袋除尘器即可满足收尘效率。
确定气力输送的主要参数

气力输送最重要的参数:气流速度和输送浓度(气固比)设计一套气力输送系统时气流速度和输送浓度这两个参数并非是能够计算出来的而是依靠经验设定的,最优先的条件就是确定气流速度和输送浓度,这两个参数至关重要,从设计的最初阶段就必须确定这两个参数,他们设定正确的话则气力输送系统已经成功一半了,反之这两个参数不正确的话则气力输送系统完全不可行。
确定气流速度和输送浓度之后即可计算出其他全部的数据。
1,气流速度和输送浓度(物料量)同时变化的情况下水平管道输送状态试验:⑴当管道内气流速度很快远大于悬浮速度,而物料量则相对较少(输送浓度低)时,水平管道内的物料颗粒基本上接近均匀分布,并在气流中呈完全悬浮状态随气流前进。
这就是稀相输送。
⑵气流速度降低同时增加物料量(输送浓度增加)时,气流作用于颗粒上的推力随之减小,颗粒的运行速度相应地减慢,并伴有颗粒之间的相互碰撞。
致使部分较大颗粒趋向于下沉接近管底,水平管道内的物料颗粒分布变得上稀下密,但所有物料仍处于连续前进状态。
这就是密相输送。
2,下面分别对输送浓度和气流速度进行试验:①输送浓度试验:一个动床试验设备,见下图:输送管道的阻力降正比于输送距离而反比于输送物料的浓度,在其他参数相同且气源的输出压力恒定的情况下如果增加输送距离,其阻力也必然相应地增加,使其超出气源的输出额定压力,为了不增加输送管道的阻力就只能降低输送浓度。
换句话说增加输送距离的话就必须降低输送浓度,也就是输送浓度取决于输送距离。
也可以这样理解,针对采用同样输出压力的气源,如果一定浓度的物料能够被输送100米的话,再让其以同等浓度的物料输送200米的话则肯定送不动了,只能降低输送浓度1倍才能送走,因此输送浓度与输送距离有很大关联。
用一个动床试验设备,加入1公斤物料进行吹送30米,大约用30秒将这些物料吹送完毕。
、将管道长度加长一倍则用70秒才能将相同的1公斤物料吹送完毕。
这说明管道长度增加后其输送时间延长了一倍多,这就意味着输送浓度降低了,即输送浓度反比于输送距离。
气力输送工程方案资料
气力输送工程方案资料背景气力输送工程是一种将物料通过气流传输到指定目的地的方式。
这种工程方案适用于需要大量物料传输的生产工艺。
气力输送工程可以实现高效、快速和自动化的物料传输,提高生产效率。
工程方案设备选择在气力输送工程中,合适的设备是实现成功的关键。
以下是几种常用的设备选项:1. 气流输送系统:该系统由压缩机、传输管道和输送喉组成。
压缩机产生高压气流,将物料沿着传输管道输送到目的地。
输送喉控制气流速度和物料流量。
2. 真空输送系统:该系统利用真空力将物料从源点抽出并通过管道输送到目的地。
真空泵产生负压,使物料进入管道并沿着管道传输。
3. 气力输送搅拌机:该设备结合了气流输送系统和搅拌机的功能。
它可以将物料通过气流输送到目的地,同时保持物料的搅拌和混合。
设计要点在设计气力输送工程时,需要考虑以下要点:1. 物料特性:不同的物料具有不同的流动性和颗粒大小。
这对输送系统的设计和设备选择有重要影响。
确保选择的设备能够适应物料的特性。
2. 管道设计:管道是物料传输的通道,其设计应考虑气流速度、管道直径和长度、弯头和连接件等因素。
合理的管道设计可以减少能量损失和物料堵塞。
3. 安全措施:气力输送工程涉及高压气流和物料传输,存在一定的安全风险。
在工程设计中应考虑安全措施,例如安装安全阀和传感器,定期检查设备和管道的状态等。
示例工程方案以下是一个示例的气力输送工程方案:1. 设备选择:采用气流输送系统,包括压缩机、传输管道和输送喉。
2. 物料特性:传输的物料是粉状颗粒,粒径在0.1mm到1mm之间。
3. 管道设计:采用直径为100mm的不锈钢管道,长度为100m,设有反向弯头和连接件。
4. 安全措施:安装安全阀和压力传感器,定期检查管道和设备的状态。
结论气力输送工程方案能够实现高效、快速和自动化的物料传输。
在设计时,应选择合适的设备、考虑物料特性、设计合理的管道和采取安全措施。
以上是一个示例的气力输送工程方案,可以根据实际需求进行调整和优化。
负压气力输送工厂设计的关键点
粉末负压气力输送粉末负压气力输送工厂的设计是为了实现对粉末物料的高效、安全、稳定的输送流程。
在设计过程中,有几个关键要点需要注意。
选择合适的输送系统
根据粉末物料的特点和输送距离,可以选择不同的输送系统,如压缩空气输送系统、真空输送系统等。
确保输送系统的密封性
由于粉末物料具有易挥发、易结块等特点,必须保证输送系统的密封性,防止粉尘泄漏和物料堵塞。
可靠性和维护保养的便利性
123负压气力输送工厂设计的关键点
在选择输送设备和管道材料时,要考虑其耐磨、耐腐蚀等特性,以保证输送系统的可靠性。
同时,要设计合理的系统清洁和维护通道,方便对设备进行清洁、维修和更换。
工厂的布局和空间利用
根据工艺要求和现场条件,合理规划输送系统的布局和设备的摆放位置,充分利用空间,提高生产效率。
安全问题
在设计过程中,要充分考虑粉尘爆炸、静电积聚等安全隐患,选择安全可靠的设备和防护措施。
对于特殊要求的物料,还可以考虑添加防尘装置和防火系统,提高工厂的安全性能。
总之,粉末负压气力输送工厂的设计要点包括选择合适的输送系统、确保密封性、考虑可靠性和维护保养便利性、合理布局和利用空间、考虑安全问题等。
通过合理设计,可以提高工厂的生产效率和安全性能,实现良好的输送效果。
45。
气力输送设计
气力输送设计气力输送设计5.1已知条件:5.2系统选择5.2.1正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。
5.2.2 供料器的选择:螺旋泵5.2.3 风机选择大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。
当排气压力小于100kPa时,广泛使用罗茨鼓风机。
该类型具有宽广的体积流量范围并能提供无油空气。
此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。
5.3设计计算5.3.1输送速度选择据输送速度表的粒径和和密度,选v=18m/s5.3.2输送料气比据GALOTER炉资料料气比C=2424/398=6.09,本设计取料气比C=6㎏/㎏则气体量为Q0=G/6=77821/6=12970㎏,折标态12970/1.293=10031 m3/h 考虑系统漏风和储备,风机风量Q=K4Q0=1.25×10031=12538.8 Nm3/h5.3.2 输送管道有效内径计算5.3.2.1风量换算系数计算风量换算系数体积换算系数C=V质量换算系数0t m C ρρ=20000/273/273HP t t t mp T C p T P tρρ==*=+当已知海拔高度为H 时,大气压与标准大气压的关系为:P h/ P 0= (1-0.022569H)5。
256式中:T o --标况气体温度,℃;T 1一该风量中气体的工况温度,℃; P 0—海平面上的气压,Pa P h 一水泥厂厂区的气压,paH--水泥厂厂区海拔高度,km0 5.256(273480) 1.711273(1-0.0225690.5)0t T P C t C VT P t ρρ+====?? 5.3.2.2管道流量计算Qt= Q0?C V =10031×1.711=17163 m3/h5.3.2.3管道直径计算有效管径D1应为:1171630.4930.78543600250.78543600t Q D v === m圆整,取D1=0.5m5.4 气力输送系统总压损气力输送系统总压损是由输送管道总压力损失、管道出口阻力、喷煤管阻力和气力输送设备阻力组成。
气力输送料仓设计要点
料仓设计要点
料仓设计的基本要求:
1、在满足足够的强度和刚度条件下,自重轻;
2、能最充分地利用有效容积;
3、物料能在自重作用下,通过料仓的卸料口以整体流动方式可靠而完全地卸出;
4、能适应机械化系统的生产要求。
料仓的形状:
料仓的几何形状有锥形、角锥形和圆柱形等,通常采用带锥底的圆筒形的组合式料仓。
这种形状有利于物料的整体流动,材料最省,仓壁受力均匀。
料仓直径:
由于仓内物料压力的增量并不与深度的增量成正比,深度增加压力增大不多,因此,选取较大高径比是经济的。
通常料仓直筒部分的高度为其直径的2~3倍。
其直筒部分是主要储料部位,其尺寸视储存定额而定。
料仓下部的锥面倾角与夹角:
1、料仓下部的锥面倾角对物料在仓内的流动有重大影响;
2、至少要等于物料的休止角,必须大于物料与仓壁的摩擦角,否则,物料就不能全部从仓内流出;
3、一般锥面倾角要比摩擦角大 5 °~10°,比储存物料的自然休止角约大10°~15°。
对于整体流的料仓,锥面倾角一般取 55°~75°。
考虑到较大的倾角会使建筑高度增加,对于直径大于6m的料库,宜采用2~4个卸料口。
4、减小粉体的壁摩擦角及料仓锥形部分的倾斜角,可以使料仓内的粉粒体呈整体流;反之,成漏斗流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气力输送的设计要点气力输送广泛应用于水泥、石化、电力和冶金等行业中粉粒状物料的输送。
由于其具有布置灵活,所占空间小,可避开已有设备和建筑物等优点,因此特别适合于水泥厂的改造和扩建工程。
目前,新型干法水泥厂的生料入窑或入均化库、煤粉入窑或入分解炉大多采用了气力输送系统。
本文通过分析常用气力输送系统的性能特点和选型要求,指出了每种气力输送方法的差异和限制,并对气力输送的系统选择、供料器选择、空压机风机选择、经济性分析、物料特性对系统选型影响这五个设计要点进行了总结。
1 系统选择1.1 正压及负压系统 正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。
在管路系统中安装两路阀就能实现多点卸料和喂料。
但多点喂料供料器过多,会造成大量空气泄漏。
特别是旋转叶片供料器,其泄漏量约占空气总供应量的20%。
目前国内水泥厂输送生料、煤粉及水泥等粉状物料的气力输送系统基本上采用正压系统。
负压系统适宜于从多喂料点输送物料到一个卸料点。
它的优点是通过供料器的空气泄漏和压力降都很小,因而旋转叶片供料器能得到令人满意的使用效果。
该系统在国内常应用于小型散装水泥驳船的卸料。
1.2 混合系统 混合系统结合了正、负压系统各自的优点,在该系统中,负压部分把物料从多个喂料仓中吸走,而正压部分把物料送入多个卸料仓。
气源靠一台通风机或鼓风机提供。
双级混合系统比普通混合系统能更好地输送物料。
普通混合系统虽对许多车间内部的短距离物料输送较为理想,但由于系统压力小,物料输送量和输送距离均受到限制。
双级混合系统利用中间仓把负压和正压系统分开,并把负压和正压系统所需气源分成两个独立供气装置,这样可以分别选择最佳的真空泵和空压机。
由于存在二个独立系统,故整个系统需要2台料气分离器。
图1为双级混合系统,是一个典型的大中型散装水泥船卸料装置,卸料能力达到100t/h以上。
它的2台空气动力源中1台可选用液环式真空泵;另1台可选用螺杆式或往复式空压机,在较小系统中则选用罗茨风机。
2 供料器的选择2.1 供料器的选用因素 供料器的选择是系统设计中最重要因素。
各类供料器对系统压力均有最适宜的使用范围(见图2)。
其中,仓式泵一般在高压、间歇操作中使用;旋转叶片供料器和双翻板阀供料器可用于正压和负压输送,但通常局限在较低压差范围内;螺旋泵在高压下也能很好地工作,但实际使用中它们仍被限定在中低压范围内;负压吸嘴仅在负压系统及混合系统中使用。
总之,供料器的选用应依据其额客压力值、空气泄漏量、压力降和流量控制以及对具体物料适宜程度等综合因素来决定。
(1)额定压力值。
由于多种多样的管线压力降和管道内径适用于某具体装置,故应考虑选择一个具有较高额定压力值的供料器来供给一个较小管径的线路使用。
对给定的管道内径,具有最大额定压力值的供料器将产生最大输送量。
(2)压力降。
通过供料器的压力降应尽可能小。
普通螺旋泵、M型富勒螺旋泵和仓式泵的压力降分别约为:50kPa、21kPa和20kPa;文丘里式供料器的压力降近似等于输送管线压力降;旋转叶片供料器和双翻板阀供料器的压力降可忽略不计。
(3)流量控制。
当供料量须保持恒定时,应优选能定量地供料并满足锁风要求的螺旋泵、锁风型旋转叶片供料器和双翻板阀供料器。
文丘里式供料器不能提供空气锁风并且需要计量装置才能保持一个稳定的供料量。
仓式泵在卸料时需要通过调节料气混合物的流化比例来实现流量控制。
2.2 供料器选择 供料器类型很多,如旋转叶片供料器、螺旋泵、仓式泵、文互里式等等,其使用性能各不相同。
表1给出了各种供料器的选型指南。
在使用表1时,应考虑供料器的操作压力范围(见图2)和对输送量及输送距离的限制。
3 空压机(风机)选择 空压机(风机)的选择主要取决于已知的空气需要量和系统管路操作压力,并加上空气损失和任何所需的附加裕量以及安全系数,就可从满足需要的几类空压机(风机)中作出最佳选择。
大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。
3.1 供气压力 空压机(风机)排气压力等于输送线路的压降加上供料器、收尘器、阀等压降之和,再乘以一个安全系数(约为1.1);如果空压机(风机)和供料器之间管道较长(如超过50m),还需加上传递压损;在供气线路中调节空气量装置如节流喷嘴等的压损也必须考虑进去。
3.2 体积流量 如果空气的质量流量ma(kg/s)已确定,那末可用近似方法求得标准状态下的体积流量V0(m3/s) ,见式(1)。
V0=0.816ma (1)体积流量也可通过输送空气初始速度来表达。
首先依据输送参数(由理想气体定律产生)可计算输送空气初始速度;然后根据式(2)可求得V0值,见式(4)。
v=4p0VoT/πd2pTo (2)式中:v--输送空气初始速度m/s;p0--标准大气压,101.3kPa(绝对);T--输送空气温度,K;d--管道内径,m;p--管道起始端空气压力,kPa;T0--标准空气温度,288K。
由式(2)得到(3): V0=πd2pT0v/4p0T (3)将p0和T0值代入(3)得: V0=2.23d2pv/T (4) 需要说明的是V′O值是在管道内输送物料所需空气的体积流量,而所选空压机风机排气量必须考虑供料器和管道阀门等的泄漏量。
对正压系统来说,旋转叶片供料器的空气泄漏量约为鼓风机排气量的15%~20%,而双翻板阀供料器的空气泄漏量约为鼓风机排气量的10%。
3.3 压力适用范围 正压系统中各类空压机(风机)的压力适用范围如图3所示。
对低压系统 ( 约10kPa),,轴流式或离心式风机都是适宜的,具体选择取决于系统负荷和需要的操作压力特性。
这类风机常用于稀相输送,作为文丘里式和旋转叶片供料器的供气源,系统中使用薄壁管道。
当排气压力小于100kPa时,广泛使用罗茨鼓风机。
该类型具有宽广的体积流量范围并能提供无油空气。
此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。
当排气压力大于100kPa时,往复式和螺杆式空压机都能满足气力输送系统中所需最高压力。
单级回转滑片式空压机的工作压力可达到400kPa(表压)。
真空泵在图3中没有列出,因为这类设备选用比较少。
对负压系统,如真空不是太大,常使用离心式通风机和罗茨鼓风机;对于较高真空,则采用水环或液环式真空泵。
4经济性分析 当几种气力输送系统都适用于某一具体应用时,应选择最经济的。
这里主要以仓式泵的实测数据为例,证实通过选择最佳罐尺寸和最佳操作压力可大大降低能耗和操作费用。
4.1 投资费用 总的来说,高压密相输送中空压机和供料器的价格比较昂贵;低压稀相输送系统中管道和收尘器的费用较贵。
当输送距离小于50m,使用稀相系统的投资费用低;超过50m,密相系统的投资费用较低。
对磨琢性物料的输送,用能周期性更换的零件如弯管等代替昂贵的耐磨合金零件可降低投资费用。
4.2 操作费用 主要动力费用来自空压机,其次是旋转叶片供料器和螺旋泵及袋除尘器,其它设备的动力消耗相对空压机来说是很小的。
使用集中气源可减少系统投资费用,但其操作费用比单独供气要高得多。
如工厂集中气源压力为(600~700)kPa,而气力输送系统所需压力仅为100kPa,则使用集中供气费用要比单独供气高出一倍左右。
如果必须使用集中供气,那末高压空气将主要用于仓式泵和分级管道。
密相系统的操作费用总是较低的。
当输送距离为50m时,稀相输送操作费用是密相输送的5倍以上(依据仓式泵使用情况);随输送距离增大,这个差异将减少。
操作费用主要来自电机的功率消耗,可用式(5)进行粗略估算。
P=165ma1n(p1/p2) (5) 或P=202VO1n(p1/p2) (5-1)式中:P--电机消耗功率,kWp1--空气进气压力,kPa(绝对)p2--空气排气压力,kPa(绝对)电机消耗功率乘以单位电价即为每小时操作费用。
4.3 仓式泵实测结果 4.3.1 最佳罐尺寸 仓式泵的压力罐有效容积VB影响系统所需能量。
图4为一个实际运行仓式泵输送装置的压力罐有效容积特性曲线。
其中实际输送阶段功率消耗P是在空压机联轴节处测得。
在双仓系统中,VB,ges是二个相同的单罐容积之和(=2VB)。
输送水泥时空压机输出压力为pv=400kPa(表压),输送粉煤灰时空压机输出压力为pv=300kPa(表压)。
图中还定性地显示了随着罐尺寸减少,每小时所需输送周期次数nch增加的趋势。
如图4所示,当罐尺寸大于临界容积时,其功率消耗独立于罐尺寸;当罐尺寸小于临界容积并降至极限容积时,相应的无效时间会成倍增加。
为了完成给定的额定输送量Ge,就需要在剩余的有效输送时间内用一个较高的实际输送量GS来补偿。
双仓系统(一个罐加压和输送,另一个罐排气和进料)罐的临界容积比单仓系统罐的临界容积低。
比较图4中两个系统功率消耗P可以看出,双仓系统比单仓系统的能耗更低。
从能量观点来看,最佳罐容积就是其临界容积。
粉煤灰和水泥相比,粉煤灰具有更好流动和输送性能,其能耗也明显减少。
4.3.2 最佳操作压力 单仓泵系统输送同样物料时功率消耗值P与空压机输出压力Pv之间的函数关系见图5。
其中输送水泥的压力罐有效容积为VB=5m3,输送粉煤灰的压力罐有效容积为VB=10m3。
图中还定性地画出了随着压力pv的减少,对应管道直径dR变大的趋势。
该图还表明这个装置输送水泥和粉煤灰时均有最小电耗值,这些最小值的位置与理论计算值比较一致。
因此设计一个在最佳操作点(p*v,d*R)工作的装置,可以节省大量的能量。
5 物料特性对系统选型的影响 (1)粘着性和附着性。
粘性物料会粘结或堵塞卸料斗、供料器和输送管道。
因而在旋转叶片供料器中应优选吹扫式旋转叶片供料器。
(2)易燃易爆性。
输送塑料、化学品、金属粉末和煤粉等易燃易爆性物料时,应使用防爆阀和自动灭火装置等安全措施。
(3)湿含量。
如果湿物料中50μm以下的细粉量<10%,多数能在传统气力输送系统中输送。
若湿物料中湿含量高,湿细粉会粘附在弯管的内壁,引起管道堵塞,则供料器应选用吹扫式旋转叶片供料器。
如物料不是太潮湿,通过加热输送空气就能减轻粘堵问题。
(4)静电。
物料电荷聚集会引起粘附并影响物料流动性,此时可通过空气在线增湿解决。
在密相输送中,因使用空气量较少,故增湿费用较低。
(5)磨琢性。
为降低输送管道和零部件磨损,输送磨琢性物料时应选用较低输送速度。
在稀相系统中要避免使用有运动部件的供料器,并通过使用短半径弯管R/D=2~3、一端不通铸铁T形管和自蔓延高温合成技术制造的陶瓷钢铁复合管等措施来延长管道的使用寿命。
(6)易碎性。
输送过程中,大多数物料的破损发生在弯管或螺旋泵这类供料器中。