发酵罐设计.doc
机械搅拌通风发酵罐设计

机械搅拌通风发酵罐设计(1). 设计题目50m3谷氨酸机械搅拌通风发酵罐系统的放大设计(2). 设计任务某厂在100L机械搅拌通风发酵罐中发酵生产谷氨酸生产试验,获得良好效果,拟放大到50m3生产罐,此发酵液为牛顿型流体,粘度m=2.0×10-3Pa·S,密度rL=1020kg/m3。
试验罐的尺寸为:直径D=375mm,搅拌叶轮Di=125mm,高径比H/D=2.4,液深HL=1.5D,4块档板的W/D=0.1,装液量为70L,通气强度VVm=1.0,使用两组圆盘六平直叶涡轮搅拌器,转速w=350r/min。
通过实验研究,表明此发酵为高耗氧的生物反应,现按体积溶氧系数相等之原则进行放大。
对生产罐的部份具体要求是:罐体材质为不锈钢,罐体上签证下封头为椭球体;用2组圆盘六平直叶涡轮搅拌器、搅拌转轴直径10cm;采用4组对称布置的竖式蛇管冷却器,蛇管材质为不锈钢管。
罐体表面加隔热层,故可不计罐体表面散热损失。
(3). 操作条件1)生产时,装料系数70%,发酵温度为32°C,保压为0.1Mpa(表压),罐内气体相对湿度为100%;进气压力为0.15Mpa(表压)、温度为25°C,相对湿度为70%;蛇管总传热系数K=3000KJ/(m2·h·°C),冷却水进口温度为-10°C,出口温度为25°C。
主酵阶段最大耗糖速度每小时为发酵液量的0.7%,糖分消耗中发酵占80%,呼吸占20%,1kg糖发酵时产生的呼吸热为15660KJ(或产生的发酵热为4860KJ)。
同实验罐。
罐内灭菌时蒸汽压力为0.25Mpa(表压)。
2)培养基制备工艺流程采用水解设备流程(参见《发酵设备》P55)。
以淀粉为原料,采用分批式操作,分两批在8小时内装完一个发酵罐。
每一批操作中,调浆操作耗时30分钟,调浆后,粉浆密度为1084kg/m3,粉浆比热容为3.6KJ/(kg·k),水解压力为0.25~0.26Mpa(表压),温度为95°C,水解维持时间约30min,水解液经过滤后用列管式冷却加拿大投资移民器(进水温度10°C,出水温度40°C)在60分钟内冷却到70°C后,送入一次中和罐,中和与脱色操作耗时30分钟。
机械搅拌通风发酵罐的设计

课程设计任务书一、课程设计的内容1、通过查阅机械搅拌通风发酵罐的有关资料,熟悉基本工作原理和特点。
2、进行工艺计算3、主要设备工作部件尺寸的设计4、绘制装配图5、撰写课程设计说明书二、课程设计的要求与数据高径比为2.5,南方某地,蛇管冷却,初始水温18℃,出水温度26℃1.应用基因工程菌株发酵生产赖氨酸,此产物是初级代谢产物。
牛顿型流体,二级发酵。
学号末尾数为0 : 15M3发酵罐;1号:50M3发酵罐;2号: 200 M3发酵罐2.应用基因工程菌株发酵生产柠檬酸,此产物是初级代谢产物。
牛顿型流体,二级发酵。
3号: 60M3发酵罐;4号 75M3发酵罐; 5号 100 M3发酵罐3.应用黑曲霉菌株发酵生产糖化酶,此产物是初级代谢产物。
非牛顿型流体,三级发酵。
6号: 15M3发酵罐; 7号: 20 M3发酵罐; 8号: 40 M3发酵罐; 9号:200 M3发酵罐(公称体积)三、课程设计应完成的工作1.课程设计说明书(纸质版和电子版)各1份2.设备装配图(A2号图纸420*594mm)1张四、课程设计进程安排五、应收集的资料及主要参考文献[1]郑裕国. 生物工程设备[M]. 北京:化学工业出版社,2007[2]李功样, 陈兰英, 崔英德. 常用化工单元设备的设计[M]. 广州:华南理工大学出版社,2006[3]陈英南, 刘玉兰. 常用化工单元设备的设计[M]. 杭州:华东理工大学出版社,2005[4]王福源主编.现代发酵技术(第二版)[M]. 北京:中国轻工业出版社,2004[5]潘红良,郝俊文主编.过程设备机械设计. 杭州:华东理工大学出版社,2006[6]吴思方主编.发酵工厂工艺设计概论[M]. 北京:中国轻工业出版社,2005[7]郑裕国主编,薛亚平副主编.生物工程设备[M].北京:化学工业出版社,2007[8] 黄福源主编,生物工艺技术[M] .北京:中国轻工业出版社,2006摘要本文对黑曲霉菌株为原料生产柠檬酸的生产流程和主要反应设备作了设计和计算。
发酵罐的设计范文

发酵罐的设计范文发酵罐是用来进行微生物发酵过程的设备,广泛应用于食品、医药、饲料、酒精等行业。
它的设计对于保证发酵过程的顺利进行具有重要意义。
首先,在设计发酵罐时,需要考虑容器的材质选择。
常见的发酵容器材质有玻璃、不锈钢、塑料等。
其中,不锈钢是目前最常用的材料,因为它具有良好的耐腐蚀性能和机械强度,能够适应不同的发酵工艺和条件。
此外,不锈钢材质还易清洗,能够保证发酵过程的卫生安全。
其次,发酵罐的设计应考虑容器的形状和尺寸。
一般而言,发酵罐的形状可以是圆柱形、椭圆形或立方形,尺寸则根据实际需要而定。
圆柱形发酵罐具有较小的基底面积,体积利用率较高,适用于大规模的发酵过程;而椭圆形发酵罐能够减小搅拌时的死角和液流的旋转,有利于发酵物料的均匀混合;立方形发酵罐则容易进行工艺控制和操作。
根据实际需要选择合适的形状和尺寸,以满足发酵工艺的要求。
同时,发酵罐的设计还需要考虑气体供应和排出的设施。
发酵过程中,微生物需要氧气进行呼吸,因此罐体需要有合适的进气装置,以保证微生物的正常生长。
常见的进气装置有机械式搅拌、气体通道等。
同时,还需要考虑废气的排出,避免微生物产生过量气体而影响发酵过程。
此外,温度和酸碱度是影响发酵过程的关键因素,因此在设计发酵罐时需要考虑温度和酸碱度的控制设备。
发酵罐通常会设置恒温装置,以保持适宜的发酵温度。
常见的恒温设备有水浴、电热传导等。
对于酸碱度的控制,可以通过添加酸碱溶液等方式进行调节。
最后,发酵罐的设计还需要考虑搅拌和控制系统。
搅拌过程有助于增加氧气传递、混合反应物料和促进产物的分散。
搅拌系统通常包括电机、搅拌桨和传动装置等。
对于控制系统,需要设置相应的传感器和控制器,以对温度、酸碱度、溶解氧等过程参数进行监测和控制。
总之,发酵罐的设计是一项复杂而重要的任务,需要考虑容器材质选择、形状尺寸、气体供应排出、温度酸碱度控制以及搅拌控制系统等方面。
只有合理设计,才能满足发酵过程的要求,保证产品的质量和产量。
发酵罐设计实验报告

80m3 通用式发酵罐的设计第一章设计方案1.1发酵罐体积确实定1.2发酵罐散热方式确实定1.3搅拌桨的选择和搅拌层数确实定其次章设备参数确实定2.1发酵罐搅拌器搅拌功率的计算2.2发酵罐散热设备的计算第三章设计计算汇总表3.1 设计数据汇总表附图:80m3通用式发酵罐工艺条件图0 第一章 设计方案1.1 发酵罐体积确实定所设计发酵罐为通用式发酵罐,且公称容积为 80m ³。
公称容积近似为圆柱体容积,设 H =3D由于是通用式发酵罐,所以可得D =V =3√π D 2H 4V 0解得发酵罐直径D = 3.24m 取发酵罐直径D = 3.5m通用式发酵罐主要尺寸如下:0.785 × 31. 本设计取H 0 = 3即H = 3D = 10.5mD取发酵罐高H 0 = 10m 2. 搅拌器直径承受六弯叶涡轮搅拌器,直径为D i = D/3 = 3.5 ÷ 3 = 1.2m3. 相邻两组搅拌器的间距本设计S = 3D i = 3.5m 4. 下搅拌器与罐底距离:故本设计取C = D i = 1.2m 5. 挡板宽度和与罐壁距离挡板宽度:W = 0.1D i = 0.12m 挡板与罐壁的距离:B = W /5 = 0.02m 6. 封头高度h = h a + h b当封头公称直径2m 时,h b = 25mm当封头的公称直径大于2m 时,h b = 40mm 。
4本设计D > 2m ,h b = 40mm式中,h a 当为标准封头时取h a = 0.25D = 3.5= 0.9 。
7. 装罐系数h = h a + h b = 0.04 + 0.9 = 0.94m本设计取装罐系数ŋ = 0.7 8. 液柱高度9. 椭圆封头容积H L = ŋH + h a + h b = 0.7 × 10 + 0.94 = 7.94mπ D π3.5 V 2 = 4 D 2(h b + 6) = 4 × 3.52 × (0.04 + 6) = 6m ³10. 全罐高度1.2 发酵罐散热方式确实定H = H 0 + 2h = 11.880m参考有关资料可知大于 5 m ³的发酵罐应承受列管式散热器。
发酵罐 课程设计模版

发酵罐课程设计模版发酵罐课程设计模版课程设计——发酵罐成绩食品发酵工程课程设计说明书题目:机械搅拌通风发酵罐的设计设计人:××学院:××××××班级:××××指导教师:××设计时间:××年×月×日~ ×月×日目录设计任务书1 第一章味精生产工艺 2 1.1 味精生产工艺概述. 3 1.2 味精发酵法生产的总工艺流程 4 第二章发酵罐设备设计与选型 6 2.1 发酵罐的选型. 6 2.2 发酵罐生产能力、数量和容积的确定 6 2.2.1 发酵罐容积的确定 6 2.2.2 生产能力的计算 6 2.2.3 发酵罐个数的确定7 2.3 发酵罐主要尺寸的计算. 7 2.4 发酵罐冷却面积的计算. 8 2.5 发酵罐搅拌器设计. 8 2.6 发酵罐搅拌轴功率的计算. 9 2.6.1 计算Rem . 9 2.6.2 计算不通气时的搅拌轴功率P0 9 2.6.3 计算通风时的轴功率Pg 10 2.6.4 求电机功率P电10 2.7 发酵罐设备结构的工艺计算.10 2.7.1 空气分布器10 2.7.2 密封方式11 2.7.3 冷却管布置11 2.8 发酵罐设备材料的选择. 13 2.9 发酵罐壁厚的计算. 13 2.9.1 计算法确定发酵罐的壁厚S 13 2.9.2 封头壁厚计算13 2.10 发酵罐接管设计. 14 2.10.1 接管的长度h设计. 14 2.10.2 接管直径的确定14 2.11 发酵罐支座. 15 2.12 发酵罐过滤器. 15 2.12.1 过滤器滤层直径计算15 2.12.2 过滤器直径15 2.12.3 过滤器的壁厚15 2.12.4 进出气管15 2.12.5 数量15 2.12.6 滤层厚度15 2.12.7 过滤器高度15 第三章发酵罐参数设计汇总17 主要符号说明.18 参考文献. 19 致谢19 食品发酵工程课程设计任务书学生姓名班级指导教师题目机械搅拌通风发酵罐的设计设计基本参数发酵罐体积:50m³生产能力:年产1万吨味精(99%)原料:淀粉含量86%的工业淀粉生产日:全年320天操作条件:发酵时间:34~36h,发酵温度:32℃发酵冷却水:入口温度:20℃,出口温度:26℃设计要求及内容1、设计方案简介对选定的工艺流程、主要设备的形式进行简要论述2、发酵罐的主要尺寸计算3、搅拌功率及搅拌转速的计算4、冷却面积及冷却水用量计算5、发酵罐壁厚的计算6、局部尺寸及雇主设备的计算7、编写设计说明书将设计所选定的工艺流程方案、主要步骤及计算结果集合成设计说明书。
发酵罐设计说明书

目录前言 (1)第一章、概述 (2)1.1、我酸 (2)1.2、賊酸的新工艺 (2)1.3、机械搅拌通风发酵罐 (3)1.3.1、通用型发酵罐的几彳可尺寸比例 (3)1.3.2、罐体 (3)133、搅拌器和挡板 (3)1.3.4、消泡器 (4)1.3.5、联轴器及轴承 (4)126、变速装置 (4)1.3.7、通气装置 (4)138、轴封 (5)139、附属设备 (5)第二章、设备的设计计算与选型 (5)2.1、发酵罐的主要尺寸计算 (5)2.1.1、圆筒体的径、高度与封头的高度 (5)2.1.2、圜筒体的壁厚 (7)2.1.3、封头的壁厚 (7)2.2、搅拌装置设计 (8)2.2.3、电痕率 (10)2.3、冷却装置设计 (10)2.3.1、 冷却方式 (10)2.3.2、 冷却水耗臺 (10)2.3.3、 冷却管组数和管径 (12)2.4零部件 (13)2.4.1人孔和视谯 (13)2.4.2 接管口 ................................................................. 13 243、梯子 (15)2.6支座的选型蹄总结 附录 (18)符号的总结 ...................................................................... 18 参考文献 . (20)生物工程设备课程设计任务书―、课程设计题目”1000计的机械搅拌发酵罐”的设计。
2.5®体重 ..................................................................15 16 第三章、计算结果的总、结 ............................................................16 17二课程设计容1、设备所担负的工艺操作任务和工作性质,工作参数的确定。
发酵罐设计计算20151114

最大热负荷下耗水量W大=Q大/(c*Δt)(kg/hr)
Δt(℃) 水比热C(kcal/kg.℃) 冷却水流速v1.5~3m/s,取 冷却水管总截面积S(m2)=W/v 进水总管直径d总=√(S/π/4)(m) 取d总=100mm,φ108*4
9.1.1.5.1内蛇管 选冷拔无缝钢管GB8163-88 取冷却管竖直蛇管组数n 冷却蛇管直径d0(m)=√(S/n/(π/4)) 取d0=40mm,φ45*2.5 冷却管总长L=A/A0=A/(πd0)(m) 外加连接管(m)
10 0.5 9.424777961 48.04750063
5.5
1.125 0.9
2.025 1.6875
4.6125
57585.9375
1050 0.05 130
9.1.1.6.1不通气搅拌功率 底层弯叶涡轮搅拌功率准数Np1 中间及上层平叶旋桨搅拌功率准数Np2,3 底层弯叶涡轮搅拌功率P1=Np1*n3*d5*ρ/1000(kw) 中间及上层平叶旋桨搅拌功率P2,3=Np2,3*n3*d5*ρ/1000(kw) 校正系数f=1/3√((D/d)*(HL/d)) 底层弯叶涡轮校正搅拌功率P1*(kw) 中间及上层平叶旋桨校正搅拌功率P2,3*(kw) 搅拌桨层数m 中间及上层平叶旋桨校正总搅拌功率P2,3m(kw)=P2,3*(1+0.6 (m-1)) ΣP=P1*+P2,3m(kw)
9设备计算及选型 9.1设备衡算 如无特别说明,设备均采用不锈钢材质
9.1.1发酵罐 9.1.1.1发酵罐的选型 公称容积V0(m3)=Vc+Vd=(π/4)*H*D2+(π/24)D3=((π /4)*(H/D)+0.13)D3 髙径比H/D D(m) H(m) 圆整D(m) 圆整H(m) ha封头椭圆高(m) hb封头直边高度(m) 封头高(m)=ha+hb 封头容积Vd(m3) 直筒部分容积Vc(m3) 验算公称容积V0(m3)=Vc+Vd 验算全容积V(m3)=V0+Vd 符合设计要求,可行。 计算后的公称容积 (m3)取 计算后的全容积 (m3)取 人孔取 视镜取 支座采取
通用式发酵罐的设计与计算

一、通用式发酵罐的尺寸及容积计算1. 发酵罐的尺寸比例不同容积大小的发酵罐,几何尺寸比例在设计时已经规范化,具体设计时可根据发酵种类、厂房等条件做适当调整。
通用式发酵罐的主要几何尺寸如下图。
(1)高径比:H 0︰D =(1.7~4)︰1。
(2)搅拌器直径:D i =31D 。
(3)相邻两组搅拌器的间距:S =3D i 。
(4)下搅拌器与罐底距离:C =(0.8~1.0)D i 。
(5)挡板宽度:W =0.1 D i ,挡板与罐壁的距离:B =(81~51)W 。
(6)封头高度:h =h a +h b ,式中,对于标准椭圆形封头,h a =41D 。
当封头公称直径≤2 m 时,h b =25 mm ;当封头的公称直径>2 m 时,h b =40 mm 。
(7)液柱高度:H L =H 0η+h a +h b ,式中,η为装料系数,一般情况下,装料高度取罐圆柱部分高度的0.7倍,极少泡沫的物料可达0.9倍,对于易产生泡沫的物料可取0.6倍。
2. 发酵罐容积的计算 圆柱部分容积V 1:214H D V π=式中符号所代表含义见上图所示,下同。
椭圆形封头的容积V 2:)61(4642222D h D h D h D V b a b +=+=πππ公称容积是指罐圆柱部分和底封头容积之和,其值为整数,一般不计入上封头的容积。
其计算公式如下:)6140221D h H D V V V b ++=+=(公π罐的全容积V 0:)]61(2[4202210D h H D V V V b ++=+=π如果填料高度为圆柱高度的η倍,那么液柱高度为:b a L h h H H ++=η0装料容积V :)61(40221D h H D V V V b ++=+=ηπη 装料系数η:0V V =η二、通用式发酵罐的设计与计算1. 设计内容和步骤通用式发酵罐的设计已逐渐标准化,其设计内容及构件见表6-6。
表6-6 发酵罐设计内容及构件设计内容 构件的选取与计算设备本体的设计 筒体、封头、罐体压力、容积等附件的设计与选取接管尺寸、法兰、开孔及开孔补强、人孔、传热部件、挡板、中间轴承等搅拌装置的设计传动装置、搅拌轴、联轴器、轴承、密封装置、搅拌器、搅拌轴的临界转速等设备强度及稳定性检验设备重量载荷、设备地震弯矩、偏心载荷、塔体强度及稳定性、裙座的强度、裙座与筒体对接焊缝验算等2. 发酵罐的结构及容积的计算【例1】某厂间歇式发酵生产,每天需用发酵罐3个,发酵罐的发酵周期为80h ,问需配备多少个发酵罐?根据公式 N =11124803=+⨯(个)根据生产规模和发酵水平计算每日所需发酵液的量,再根据这一数据确定发酵罐的容积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录前言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2方案的定 ................................................................................... (3)(1)、机械拌生物反器的型式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.3(2)、反器用途⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. ⋯⋯⋯⋯ 3(3)、冷却水及冷却装置⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. ⋯⋯⋯⋯⋯⋯⋯ ..3(4)、力罐内 0.4MPa;套 0.25 Mpa ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4表- 酵罐主要⋯ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4工及算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ⋯⋯⋯ ..5(1)生能力、数量和容的确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ⋯5(2)主要尺寸算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5(3)冷却面的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6(4)拌器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ⋯⋯⋯ 6(5)拌功率的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ⋯⋯7(6)i 求最高荷下的耗水量 W⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ... ⋯⋯⋯ .8 ii 冷却管数和管径⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9iii 冷却管度 L 算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10iv 每管 l0和管高度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10V 每管子圈数n 0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10Vi 校核布置后冷却管的面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10(7)材料的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10(8)酵罐壁厚的算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11(9)接管⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12(10)支座⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14参考料 ... ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .14 酵罐心得体会⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..15附及前言生化工程设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求我们综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养我们全面的理论知识与工程素养,健全合理的知识结构具有重要作用。
在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对我们进行一次生化过程发酵设备设计的基本训练,使我们初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。
设计方案的拟定3我们设计的是一台25M机械搅拌通风发酵罐 , 发酵生产味精。
设计基本依据(1)、机械搅拌生物反应器的型式通用式机械搅拌生物反应器,其主要结构标准如下:①高径比: H/D=1.7-4.0②搅拌器:六弯叶涡轮搅拌器,D i :d i :L:B=20:15:5:4③搅拌器直径: D i =D/3④搅拌器间距: S=(0.95-1.05 )D⑤最下一组搅拌器与罐底的距离:C=( 0.8-1.0 ) D⑥挡板宽度: B=0.1D,当采用列管式冷却时,可用列管冷却代替挡板(2)、反应器用途用于味精生产的各级种子罐或发酵罐,有关设计参数如下:①装料系数:种子罐0.50-0.65发酵罐 0.65-0.8②发酵液物性参数:密度1080kg/m32粘度 2.0 ×10-3N.s/m导热系数 0.621W/m.℃3③高峰期发酵热3-3.5 ×104kJ/h.m-6④溶氧系数:种子罐5-7 × 10 molO2-6发酵罐 6-9 × 10 molO2⑤标准空气通风量:种子罐0.4-0.6vvm发酵罐 0.2-0.4vvm(3)、冷却水及冷却装置冷却水:地下水18-20 ℃冷却水出口温度: 23-26 ℃发酵温度: 32-33 ℃冷却装置:种子罐用夹套式冷却,发酵罐用列管冷却。
(4)、设计压力罐内0.4MPa;夹套 0.25 MPa发酵罐主要由罐体和冷却列管,以及搅拌装置,传动装置, 轴封装置,人孔和其它的一些3附件组成。
这次设计就是要对25M通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定, 完成整个装备图,完成这次设计。
这次设计包括一套图样,主要是装配图,还有一份说明书。
而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本視图,和各种表达方式,有合理的选择比例,大小,和合理的安排幅面。
说明书就是要写清楚设计的思路和步骤。
表- 发酵罐主要设计条件项目及代号参数及结果备注发酵产品味精工作压力0.4MPa 由任务书确定设计压力0.4MPa 由任务书确定发酵温度33℃根据任务书选取(工作温度)设计温度150℃由工艺条件确定冷却方式列管冷却由工艺条件确定发酵液密度由工艺条件确定发酵液黏度由工艺条件确定25m3机械搅拌发酵罐的设计工艺设计及计算:(1)生产能力、数量和容积的确定①发酵罐容积V=25m 3②生产能力计算:现每天产 99%纯度的味精 2t ,谷氨酸发酵周期为 48h(包括发酵罐清洗、灭菌、进出物料等辅助操作时间),则每天需糖化液体积为 V糖。
每天产纯度为 99%的味精 2t ,每吨 100%的味精需糖液 15.66m3。
V糖 =15.66 ×2×99%=31m设发酵罐填充系数φ =70%,则每天需要发酵罐的总容积为 V 0 (发酵周期为 48h )V0 = V 糖 / φ=31/0.7=44.3m 3③发酵罐个数的确定:计算发酵罐容积时有几个名称需明确。
a 、 装液高度系数,指圆筒部分高度系数,封底则与冷却管、辅助设备体积相抵消。
b 、公称容积,指罐的圆柱部分和底封头容积之和,并圆整为整数。
c 、罐的全容积,指罐的圆柱部分和两封头容积之和。
本次设计所需发酵罐个数为: N=V V 0 24 =3.5 个总取圆整得: N=4个实际产量验算:250.7 2300 =677.42t/a15.5富裕量: 677.42 600 100% =12.9% 能满足产量要求。
600(2) 主要尺寸计算发酵罐全体积为 V 0 =25m3椭圆形封头体积: V 1 = D 2h bD 2h a4 6式中: h b - 椭圆封头的直边高度, mh b =0.05m1 h a - 椭圆封头短半轴长度,h a = D4而,V 0= D 2H 2V 1 ≈ D 2 H 0.26D 3 (忽略 h b ) =2544将 H/D=2代入上式得: D=2.4m ,H=2D=4.8mV1= D 2 h a D 2 h b ≈ 2m3646公称体积 V N = V 0 -V 封 =25-2=23m3验算全容积 V==V 全 :’全=V 筒 +2 V 封D 2 H 2 ( D 2 h b D 2h a )4 4620.05 )D (1.20.22≈ 25.7(3) 冷却面积的计算: 为了保证发酵罐在最旺盛、 微生物消耗基质最多以及环境气温最高时也能冷下来, 必须按发酵生成热量高峰、 一年中最热的半个月的气温下, 冷却水可能达到最高温度的恶劣条件下,设计冷却面积。
计算冷却面积使用牛顿传热定律公式,即:F=Q 总km发酵过程的热量计算有许多方法,但在工程计算时更可靠的方法仍然是实际测得的每1m3发酵液在每 1h 传给冷却器的最大热量。
对谷氨酸发酵:高峰期发酵热,3× 10 4 KJ/h.m3采用竖式蛇管换热器,取经验值K=4.18 ×500KJ/ (m3.h. ℃)平均温差△ t m :△ t m =t 1t 2t 1lnt 232 ℃→ 32℃ 20℃→ 26℃126代入△t m =12 6=8.656 ℃ln126对总容量为 25m3的发酵罐,每罐实际装液量为 V ,0=31/2=15.5m3 Q 总 =Q ×15.5=3 × 10 4 KJ/h.m3× 15.5m3=4.65×10 5 KJQ 总=4.65 105换热面积: F==25.7 ㎡k t m 4.18 500 8.656(4) 搅拌器设计机械搅拌通风发酵管的搅拌涡轮有三种形式,可根据发酵特点、基质以及菌体特性7选用。
本次设计,由于谷氨酸发酵过程有中间补料操作,对混合要求较高,因此选用六弯叶涡轮搅拌器。
该搅拌器的各部分尺寸与罐径 D 有一定比例关系,现将主要尺寸列出:搅拌器叶径 D i =D/3=2.4/3=0.8m取 d=0.8m叶宽 B=0.2 Di =0.2 ×0.8=0.16m弧长 l=0.375d=0.375× 0.8=0.3m 底距 C=0.8D=0.8 ×2.4=1.9m 盘径di =0.75 ×D i =0.75 ×0.8=0.6m叶弦长 L=0.25D=0.25 ×0.8=0.2m叶距 S=D=2.4m弯叶板厚δ=12mm取两档搅拌,搅拌转速 N 2 可根据 50m3罐,搅拌器直径 1.05m ,转速 N 1 =110r/min ,以等 P 0 /V 为D1 2 1.05 2基准放大求得: N = ( 3 3 ))110 (0.8 ) =132( r/min2N1 D 2(5)搅拌轴功率的计算通风搅拌发酵罐,搅拌轴功率的计算有许多种方法,现用修正的迈凯尔式求搅拌轴功率,并由此选择电机。
淀粉水解糖液低浓度细菌醪,可视为牛顿流体,计算步骤如下:①计算 R emR em= D 2 NP式中 D —搅拌器直径, D=0.8mN--- 搅拌器转速, N=132r/hρ--- 醪液密度,ρ =1080Kg/m3μ—醪液粘度,μ =2.0 ×10 3 N.S/ ㎡将数代入上式: R em = D 2 NP 0.82 132 1080 =4.56 ×107 >10 42.0 10 3视为湍流② 计算不通气时的搅拌轴功率P0:7式中 N p ——在湍流搅拌状态时其值为常数 4.7N——搅拌转速, N=132r/hD=0.8m ,ρ =1080Kg/m3代入上式,得: P0, = 4.7 2.230.85108017.7Kw两档搅拌: P0 =2P , =35.42Kw③计算通风时的轴功率 P g:P g 2.25 10 3 p0 ND 3 0.39(Kw)( 0.08 )Q式中,P0 ——不通风时轴功率(Kw),P0=35.42Kw Q——通风量( ml/min ),取通风比为 0.2 ,则Q=0.2×15.5 ×10 6 =3.1 ×10 6 ml/min Q 0. 08 =3.306代入上式,得P g 2.25 10 3 p0 ND 3) 0. 39 ( 0.08Q= 2.25 10 3 (25.422132 803 ) 0.393.306=25.8Kw④求电机功率 P电:P 电= P g1.011 2 3采用三角带传动η1 =0.92 ,滚动轴承η2 =0.99 ,滚动轴承η3 =0.98 ,端面密封增加的功率为1%,代入公式得P 电= P g1.011 2 3= 25.8 1.010.92 0.99=29.2Kw0.98查手册选取合适的电机。