(新课程)高中数学《3.1.2 空间向量的数乘运算(二)》导学案 新人教A版选修2-1

合集下载

(新课程)高中数学《3.1.2 空间向量的数乘运算》课件 新人教A版选修2-1

(新课程)高中数学《3.1.2 空间向量的数乘运算》课件 新人教A版选修2-1
l 上的充要条件是存在实数 t,满足等式O→P=O→A+ta.①
6
其中向量 a 叫直线 l 的方向向量,如图所示.
若在 l 上取A→B=a,则①式可以化为O→P=O→A+tA→B= (1-t)·O→A+t·O→B.② 可得如下结论:对于空间任意点 O,若有O→B=λO→A+ (1-λ)O→C成立,则 A、B、C 三点共线.这一结论可
一点 O 和不共线的三点 A,B,C,有O→P=xO→A+y O→B+z O→C,
且 x+y+z=1 成立,则 P、A、B、C 四点共面.这一结论可作 为判定空间中四个点共面的常用方法.
9
题型一 空间向量的数乘运算
【例1】 已知在空间四边形 OABC 中,M, N 分别是对边 OA,BC 的中点,点 G 在
作为证明三点共线的常用方法.
7
2.共面向量定理的理解 (1)空间一点 P 位于平面 ABC 内的充要条
件是存在有序实数对(x,y),使A→P=xA→B+ yA→C;或对空间任意一点 O,有O→P=O→A+ xA→B+yA→C.如图所示.
8
(2)共面向量的充要条件给出了空间平面的向量表示式,说明空 间中任意一个平面都可以由一点及两个不共线的平面向量表示 出来,它既是判断三个向量是否共面的依据,又是已知共面条件 的另一种形式,可以借此将已知共面条件转化为向量式,以方便 向量运算.另外,若存在有序实数组(x,y,z)使得对于空间任意
∴四边形 EFGH 是梯形.
15
规律方法 判定两向量共线就是寻找x使a=xb(b≠0)成立, 为此可结合空间图形并运用空间向量运算法则化简出a=
MN 上,且 MG=2GN,如图所示,记O→A =a,O→B=b,O→C=c,试用向量 a,b, c 表示向量O→G.

高中数学第三章 3.1.2空间向量的数乘运算学案含解析新人教A版选修2_1

高中数学第三章 3.1.2空间向量的数乘运算学案含解析新人教A版选修2_1

3.1.2 空间向量的数乘运算内容标准学科素养1.掌握空间向量数乘运算的定义及运算律.2.理解向量共线、向量共面的定义.3.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.提升逻辑推理发展直观想象授课提示:对应学生用书第54页[基础认识]知识点一空间向量的数乘运算预习教材P86-87,思考并完成以下问题平面向量的数乘运算是什么?满足哪些运算律?提示:(1)实数λ和向量a的乘积仍是一个向量.(2)|λa|=|λ||a|.(3)λa的方向.当λ>0时,λa的方向与a方向相同;当λ<0时,λa的方向与a的方向相反.(4)数乘运算的运算律λ(μa)=(λμ)a;λ(a+b)=λa+λb.知识梳理空间向量的数乘运算(1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.(2)向量a与λa的关系λ的范围方向关系模的关系λ>0方向相同λa的模是a的模的|λ|倍λ=0λa=0,其方向是任意的λ<0方向相反若λ,μ是实数,a,b是空间向量,则有①分配律:λ(a+b)=λa+λb;(λ+μ)a=λa+μa;②结合律:λ(μa)=(λμ)a.知识点二共线向量与共面向量思考并完成以下问题(1)在学习平面向量时,共线向量是怎样定义的?如何规定0与任何向量的关系?提示:方向相同或相反的两向量称为共线向量;0与任何向量是共线向量.(2)对空间任意两个向量a与b,如果a=λb,a与b有什么位置关系?反过来,a与b有什么位置关系时,a=λb?提示:类似于平面向量共线的充要条件,对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb(b≠0).(3)对空间任意两个不共线的向量a,b,如果p=x a+y b,那么向量p与向量a,b有什么位置关系?反过来,向量p与向量a,b有什么位置关系时,p=x a+y b?提示:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=x a+y b.知识梳理共线向量与共面向量共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b推论如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OP→=OA→+t a①,其中a叫做直线l的方向向量,如图所示.若在l上取AB→=a,则①式可化为OP→=OA→+tAB→如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MP→=xMA→+yMB→或对空间任意一点O来说,有OP→=OM→+xMA→+yMB →1.已知空间四边形ABCD ,M ,G 分别是BC ,CD 的中点,连接AM ,AG ,MG ,则AB →+12(BD →+BC →)等于( ) A.AG →B.CG →C.BC →D.12BC → 答案:A2.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC → B.AB →-BC →=AC → C.AB →=BC → D .|AB →|=|BC →| 答案:C3.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量D .既不共线也不共面的向量 答案:A授课提示:对应学生用书第55页 探究一 空间向量的数乘运算[教材P 89练习2]如图,已知正方体ABCD -A ′B ′C ′D ′,点E ,F 分别是上底面A ′C ′和侧面CD ′的中心.求下列各式中x ,y 的值:(1)AC ′→=x (AB →+BC →+CC ′→); (2)AE →=AA ′→+xAB →+yAD →;(3)AF →=AD →+xAB →+yAA ′→.解析:(1)在正方体中,AC ′→=AB →+BC →+CC ′→, ∴x =1.(2)AE →=AA ′→+12A ′C ′=AA ′→+12AC →=AA ′→+12(AB →+AD →)∴x =y =12.(3)AF →=AD →+DF →=AD →+12DC ′→=AD →+12(DD ′→+DC →)=AD →+12AA ′→+12AB →,∴x =y =12.[例1] 已知ABCD 为正方形,P 是ABCD 所在平面外的一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值.(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO →+yPQ →+PD →.[解析] (1)如图所示,OQ →=PQ →+OP →,由向量加法的平行四边形法则可得PO →=12(PC →+P A →),∴OP →=-12PC →-12P A →,∴OQ →=PQ →+OP →=PQ →-12PC →-12P A →.∴x =-12,y =-12.(2)∵P A →=PD →+DA →=PD →+2QO → =PD →+2(PO →-PQ →)=PD →+2PO →-2PQ →. ∴x =2,y =-2.方法技巧 1.对向量进行分解或对向量表达式进行化简时,要准确运用空间向量加法、减法的运算法则,要熟悉数乘向量运算的几何意义,同时还要注意将相关向量向选定的向量进行转化.2.在△ABC 中,若D 为BC 边的中点,则AD →=12(AB →+AC →),这一结论可视为向量形式的中点公式,应用非常广泛,应熟练掌握.跟踪探究 1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简:A 1O →-12AB →-12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求实数x ,y ,z 的值.解析:(1)A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1A →.(2)EO →=AO →-AE →=12(AB →+AD →)-AD →-23AA 1→=12AB →-12AD →-23AA 1→, 所以x =12,y =-12,z =-23.探究二 空间共线向量定理及其应用[教材P 99习题3.1B 组2题改编]如图,已知空间四边形OABC 中,OA =OB ,CA =CB ,点E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是平行四边形. 证明:∵E ,F ,G ,H 分别为OA ,OB ,BC ,CA 的中点, ∴OE →=12OA →,OF →=12OB →,CG →=12CB →,CH →=12CA →.∵AB →=OB →-OA →=2OF →-2OE → =2(OF →-OE →)=2EF →, ∴AB ∥EF ,且|AB →|=2|EF →|. 同理HG ∥AB ,且|AB →|=2|HG →|,∴四边形EFGH 是平行四边形.[例2] 如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,且A 1E →=2ED 1→,点F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c . 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c .所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →.因为EF →与EB →有公共点E ,所以E ,F ,B 三点共线.方法技巧 1.本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别.2.判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.跟踪探究 2.如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.解析:∵M ,N 分别是AC ,BF 的中点,且四边形ABCD ,ABEF 都是平行四边形,∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴2MN →=12CA →+AF →+12FB →-12CA →+CE →-AF →-12FB →=CE →,即CE →=2MN →.∴CE →与MN →共线.探究三 空间共面向量定理及其应用[阅读教材P 88例1]如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使OE OA =OF OB =OG OC =OHOD =k ,求证:E ,F ,G ,H 四点共面.题型:空间四点共面的判定方法步骤:(1)由数乘运算表示出向量OE →,OF →,OG →,OH →. (2)由向量减法运算得出EG →.(3)由AB →、AC →、AD →的关系得出EG →、EF →、EH →的关系,从而判定E ,F ,G ,H 四点共面. [例3] 已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=12OA →+13OB →+16OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解析] (1)因为OM →=12OA →+13OB →+16OC →,所以6OM →=3OA →+2OB →+OC →,所以3OA →-3OM →=(2OM →-2OB →)+(OM →-OC →), 因此3MA →=2BM →+CM →=-2MB →-MC →. 故向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量又有公共点M ,故M ,A ,B ,C 共面,即点M 在平面ABC 内.方法技巧 1.证明空间三个向量共面,常用如下方法:(1)设法证明其中一个向量可以表示成另两个向量的线性组合,即若a =x b +y c ,则向量a ,b ,c 共面;(2)寻找平面α,证明这些向量与平面α平行.2.对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面:(1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →; (3)PM →∥AB →(或P A →∥MB →,或PB →∥AM →).跟踪探究 3.已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,确定在下列条件下,点P 是否与A ,B ,M 一定共面.(1)OM →+OB →=3OP →-OA →;(2)OP →=4OA →-OB →-OM →. 解析:(1)∵OM →+OB →=3OP →-OA →, ∴OP →=OM →+(OA →-OP →)+(OB →-OP →) =OM →+P A →+PB →, ∴OP →-OM →=P A →+PB →, ∴MP →=P A →+PB →,∴MP →,P A →,PB →为共面向量, ∴P 与A ,B ,M 共面.(2)OP →=2OA →+(OA →-OB →)+(OA →-OM →)=2OA →+BA →+MA →,根据空间向量共面的推论,点P 位于平面ABM 内的充要条件是OP →=OA →+xBA →+yMA →, ∴P 与A ,B ,M 不共面.授课提示:对应学生用书第56页[课后小结]利用向量的数乘运算可以判定两个向量共线、三个向量共面问题,进而解决几何中的点共线、点共面、线面平行等问题.[素养培优]混淆共面向量与共线向量的相关结论致误已知e 1,e 2是两个非零空间向量,如果AB →=e 1-2e 2,AC →=3e 1+4e 2,AD →=-e 1-8e 2,则下列结论正确的是( )A .A ,B ,C ,D 四点共线 B .A ,B ,C ,D 四点共面C .A ,B ,C ,D 不一定共面D .无法确定A ,B ,C ,D 四点的位置关系易错分析 由已知条件,AC →与AD →不共线,且AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,由此得(AC →+AD →)∥AB →.若设AC →+AD →=AE →,则A ,B ,E 三点共线,并不是A ,B ,C ,D 四点共线.考查逻辑推理的学科素养.自我纠正 因为AC →+AD →=2e 1-4e 2=2(e 1-2e 2)=2AB →,即AB →=12AC →+12AD →,所以由共面向量定理可知AB →,AC →,AD →三个向量共面.又因为A 是公共点,所以A ,B ,C ,D 四点共面,故选B. 答案:B。

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

高中数学人教A版选修(2-1)3.1.2《空间向量的数乘运算》word导学案

3.1.2 空间向量的数乘运算【学习目标】理解空间向量共线、共面的充要条件 【自主学习】 1.共线向量与平面向量类似,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作b a //.当向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线位置关系如何?2.共线向量定理及其推论:类比平面向量共线定理,请写出空间向量共线定理.______________________________________________________________________. 请证明下面的推论:推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a叫做直线l 的方向向量.由此可见,与利用平面向量判断三点共线一样,可以利用空间向量之间的关系判断空间三点共线.3. 共面向量:一般地,能平移到同一个平面内的向量叫共面向量. 探究:对空间任意两个不共线的向量,,如果b y x p +=,那么p b α与,有什么位置关系?反过来,p b α与,有什么位置关系时,y x +=?由此得:共面向量定理 : 如果两个向量,不共线,那么向量与向量,共面的充要条件是存在有序实数组),(y x ,使得y x +=α.4.回答课本88页的思考。

【典例分析】例1如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA,OB,OC,OD ,在四条射线上分别取点E ,F ,G ,H ,并且使,k ODOHOCOG OB OF OA OE ====求证:E,F,G,H 四点共面。

D【目标检测】已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且AE AN BD BM 31,31==.求证:MN//平面CDE 证明:______________MN =______________=______________= ______________= ______________= ______________=又与不共线,,,MN CD DE ∴共面.由于MN ⊄平面CDE ,所以________________.【总结提升】特别注意共面向量: 若,为不共线且同在平面α内,则与,共面的意义是p 在α内或//p α.。

人教A版数学选修21 3.1.2《空间向量的数乘运算》优秀教学设计(4页)

人教A版数学选修21 3.1.2《空间向量的数乘运算》优秀教学设计(4页)

《空间向量的数乘运算》教学设计浙江省象山县第三中学俞建阳[教学内容解析]空间向量为处理立体几何问题提供了新的视角.空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具.本节课是空间向量教学的第二节课,在本章的教学中有着十分重要的承接作用,一方面,是将向量工具在空间背景下的进一步拓展和推广,另一方面,本节课仍是从向量角度即形的角度进行教学,却为后续的空间向量基本定理与之后从数的角度来学习空间向量打下了基础.[学生学情分析]1.知识储备学生在必修四中就已经学习了平面向量及其运算,空间向量的学习是为引导学生实现对向量本质的认识,从而实现从平面到空间的突破.2.心理储备学生在学习了空间向量与其加减法后,与之前相比,对向量的认识有了很大的提升,也会使得学生产生能否进一步将平面向量的其他的运算在空间向量中类比推广的困惑,正是这种心理上的困惑和需求,这节课的学习将更能让学生对数学知识的发展与联系有足够的认识,以及对知识的探求有更大的欲望.[教学目标设置]1、知识与技能目标:学生能正确掌握空间向量的数乘运算;能根据向量关系确定三点共线;能根据向量关系确定三向量共面或四点共面.2、方法与过程目标:学生能通过自主探究,合作交流,体会类比等数学思想方法,提升类比、分析以及研究问题的能力.3、情感态度与价值观: 学生在自主探究、合作交流的过程中,感悟数学概念的合理性、严谨性、科学性,感悟数学的本质,提高对数学学习的兴趣与信心.并能进一步体会向量中所蕴含的哲学原理:两点论与重点论辩证统一、事物是普遍联系的、事物是变化发展的、透过现象认识本质.[教学重点]共面向量的定义与在四点共面问题证明中的应用.[教学难点]共线向量到共面向量的类比构架.[教学策略分析]课堂设计以点的数目为隐藏主线,以问题链的方式,通过问题引导学生自主探索、动手实践、合作交流、阅读自学,师生互动,使得学生在平面向量及其运算基础上,自主探究空间向量的数乘运算的生成过程及应用,从而能更加深入的理解向量的本质与在空间中的适用性,实现了在探索中发现数学本质,体会数学建构的乐趣.[教学过程]一、开门见山,直入课题师:在前一节课上,我们通过类比,发现空间向量的本质与平面向量的本质没有区别,都是有大小有方向的有向线段.并且平面向量的加减法也适用于空间向量.那么今天,我们就一起来进一步探究一下平面向量的数乘运算是否也能类比推广到空间中呢?二、回顾旧知,类比迁移问题1:什么是平面向量的数乘运算.一个任意实数λ与一个向量的乘积,结果λ仍旧是一个向量.设计意图:温故知新,为新定义寻找知识的生成点.师生活动:教师提出问题,学生回答.问题2:与λ的模长和方向分别有什么关系.λ=,方向任意反向;同向;,0,0,0=<>λλλ.两向量平行.设计意图:温故知新,为新定义寻找知识的生成点.师生活动:教师提出问题,学生回答.2.探究空间向量的数乘运算问题3:在空间向量中存在上述关系么?如何用向量的本质解释.设计意图:从根本概念上认识空间向量,进一步得到空间向量的数乘运算师生活动:学生口述理由,教师补充整理.问题4.1:若设a b λ=,那么在空间中与各自所对应的有向线段所在的直线的位置关系又是怎样的呢?问题4.2:若在空间中a b 与各自所对应的有向线段所在的直线既不平行也不重合,a b 与会平行么?设计意图:明确当我们说a b 与共线时,表示两者的两条有向线段既可能是同一条直线,也可能是平行直线;当我们说b a //时,也具有同样的意义.并整理得到直线方向向量的概念.师生活动:学生探讨概括得出共线向量的定义,教师整理.问题5:如何在空间中刻画一条直线?设计意图: 通过确定一点+直线方向,深化方向向量的概念,并进一步衔接共线向量师生活动:学生口答,教师整理补充生:两点确定一条直线师:在上一章节解析几何的学习中我们用两定点来刻画一条直线,也用一点+方向来刻画一条直线,而这个方向我们用的是倾斜角和斜率.现在在空间中倾斜角和斜率也可以用么?生:不能了,难以确定.师:那有什么可以帮助我们刻画直线方向呢?生:直线的方向向量.问题5.1.若直线l 是空间中过点A 的一条直线,l 的方向向量是,若P 是l 上的一个动点,判断与的位置关系.设计意图:从数乘角度进一步深化共线向量与方向向量师生活动:学生思考、讨论,师生交流.问题5.2. 若在空间中又取一点B ,如何用向量的办法判定点B 在不在直线AP 上呢? 问题5.3.若在空间中任取一点O ,则= .设计意图:整理出空间中直线的向量表达式师生活动:学生思考、讨论,师生交流.问题6.1:若B 不在直线AP 上,此时OP uuu r 与AB 共面么?设计意图:自然过渡到共面向量的探讨.师生活动:学生思考、讨论,师生交流.问题6.2:空间中任意三个向量OP uuu r ,OA u u u r ,OB uuu r 也一定共面么?设计意图:运用类比的方法讨论,总结共面向量的定义.师生活动:学生探讨概括得出共面向量的定义,教师整理.问题6.3:若在空间中又取一点C ,且AB u u u r ,AC u u u r 不共线,如何用向量的方法判定点C 在不在平面APB 上呢?设计意图:运用类比的方法讨论,总结三向量共面或四点共面中平面向量基本定理的应用. 师生活动:学生思考、讨论,师生交流.问题7:类比空间中确定一条直线,试探究如何在空间中确定一个平面.设计意图:深化对类比方法的应用与思考.师生活动:学生思考、讨论,师生交流.三、定义应用,巩固提高1.非零向量21,e e 不共线,使21e e k +与21e k e +共线的k = .设计意图:通过练习学习加深对定义的理解,认识到根据向量共线定义可以解决简单的求参数问题.师生活动:先通过学生思考,让学生回答解题的步骤,然后完成解题过程.2.在“()”中填上适当的数,使M 与C B A ,,三点共面1).++=OB OA OM 2()OC 2)MA MB MD ++=u u u r u u u r u u u u r ()CD设计意图:通过练习进一步学习加深对共面向量的理解师生活动:先通过学生思考,让学生回答解题的步骤,然后完成解题过程.3.如图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OD OC OB OA ,,,,在四条射线上分别取点H G F E ,,,,并且使 k OD OH OC OG OB OF OA OE ====,求证H G F E ,,, 四点共面.设计意图:通过练习进一步学习加深对共面向量的理解师生活动:先通过学生思考,让学生回答解题的步骤,然后完成解题过程.四、归纳总结,提炼提升1、空间向量的数乘运算.2、共线向量的定义与应用.3、共面向量的定义与应用.4、类比法的应用与实践经验.5、哲学思想的提炼总结.设计意图:通过学生总结、教师补充与提炼,深化内容,这既是对整节课堂教学的回顾,又能对教学效果及时反馈评价.五、实践作业,深化巩固1、看书并完成课后练习.2、思考:1).共线,时,共点;当与时当AB AP R n B P n AB n AP ∈==,1,;2).共面,时,共点;当时当AC AB AP R y x C B P y x AC y AB x AP ,,,,,1,∈=++=;试类比1)、2)两结论将3)补充完整3)当,AD z AC y AB x AP ++= ;,,,时当R z y x ∈ .设计意图:通过作业给学生再次实践的机会,也可以让教师根据作业情况对学生新的知识的落实作出判断.思考题给学生以新的挑战,从而引出空间向量基本定理的内容.。

高中数学 3.1.2空间向量的数乘运算(2)导学案(无答案)新人教A版选修2-1

高中数学 3.1.2空间向量的数乘运算(2)导学案(无答案)新人教A版选修2-1

3.1.2 空间向量的数乘运算(二)【学习目标】1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点难点】空间向量的数乘运算律用空间向量的运算意义及运算律解决简单的立体几何中的问题.【学习过程】一、自主预习(预习教材P86~ P87,找出疑惑之处)复习1:什么叫空间向量共线?空间两个向量,a b,若b是非零向量,则a与b平行的充要条件是复习2:已知直线AB,点O是直线AB外一点,若1233OP OA OB=+,试判断A,B,P三点是否共线?二、合作探究归纳展示探究任务一:空间向量的共面问题:空间任意两个向量不共线的两个向量,a b有怎样的位置关系?空间三个向量又有怎样的位置关系?新知:共面向量:同一平面的向量.2. 空间向量共面:定理:对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件是存在,使得 .推论:空间一点P与不在同一直线上的三点A,B,C共面的充要条件是:⑴存在,使⑵ 对空间任意一点O ,有试试:若空间任意一点O 和不共线的三点A,B,C 满足关系式111236OP OA OB OC =++,则点P 与 A,B,C 共面吗?三、讨论交流 点拨提升若空间任意一点O 和不共线的三点A,B,C 满足关系式OP xOA yOB zOC =++,且点P 与A,B,C 共面,则x y z ++= .四、学能展示 课堂闯关例1 下列等式中,使M ,A ,B ,C 四点共面的个数是( ) ①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++=.A. 1B. 2C. 3D. 4变式:已知A,B,C 三点不共线,O 为平面ABC 外一点,若向量()17,53OP OA OB OC R λλ=++∈则P,A,B,C 四点共面的条件是λ=例2 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G,H,并且使,OE OF OG OHk OA OB OC OD ====求证:E,F,G,H 四点共面.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.※ 动手试试练1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否一定共面?A BCD FE GH练2. 已知32,(1)8a m n b x m n =-=++,0a ≠,若//a b ,求实数.x五、学后反思 ※ 学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论.※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 【课后作业】:1. 若324,(1)82a m n p b x m n yp =--=+++, 0a ≠,若//a b ,求实数,x y .2.已知两个非零向量21,e e 不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共面.。

(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1

(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1

§3.1.1空间向量及其运算1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.8486复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则.2. 实数与向量的积:实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:(1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb二、新课导学※ 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = ,试试:1. 分别用平行四边形法则和三角形法则求,.a b a b +- a .2. 点C 在线段AB 上,且52AC CB =,则 AC = AB , BC = AB .反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※ 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC + ⑴;'AB AD AA ++ ⑵;1'2AB AD CC ++ ⑶ 1(')2AB AD AA ++ ⑷.变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.例2 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- .变式:化简下列各式: ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ; ⑺ NQ QP MN MP ++- .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法,也可按减法法则进行运算,加法和减法可以转化.※ 动手试试练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式: ⑴ 111AA A B + ; ⑵ 11111122A B A D + ; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++ .三、总结提升※ 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( ) A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同; B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC += . 2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( ) A. 00a b = B. 00a b = 或00a b =- C. 01a = D. ∣0a ∣=∣0b ∣ 4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )A. 矩形B. 菱形C. 正方形D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量1. 在三棱柱中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB2. 如图,平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a = ,AD b = ,1A A c = , 则下列向量中与1B M 相等的是( )A. 1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D. 1122a b c --+。

向量的数乘运算(两课时) 导学案-高一下学期数学人教A版(2019)必修第二册

向量的数乘运算(两课时) 导学案-高一下学期数学人教A版(2019)必修第二册

6.2.3 向量的数乘运算第一课时【学习目标】理解向量数乘的含义及向量数乘的运算律;【自主学习】1.向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |.(2)λa (a ≠0)的方向: 当0>λ时,与a 的方向相同;当0<λ时,与a 的方向相同;特别地,当λ=0时,λa =0.,当λ=-1时,(-1)a =-a . 2.向量数乘的运算律(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .特别地,(-λ)a =-λa =λ(-a ),λ(a -b )=λa -λb . 3. 向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .【合作探究】【探究一】 已知向量a 和向量b ,求作向量-2.5a 和向量2a -3b .【探究二】 计算:(1)3(a -b )-(a +2b );(2)(2a +6b -3c )-2(-3a +4b -2c ).【探究三】 如图,在任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:b aEF DC AB 2=+。

【探究四】 如图,解答下列各题.(1)用a d e ,,表示DB ;(2)用b c ,表示DB ;(3)用a b e ,,表示EC ;(4)用d c ,表示EC .【当堂检测】1.计算:(1)3(-4a +5b ); (2)6(2a -4b )-(3a -2b ).2.如图,已知向量a ,b ,求作向量:(1)-2a ; (2)-a +b ; (3)2a -b.3.(1)已知向量a =e 1+2e 2,b =3e 1-5e 2,求4a -3b (用e 1,e 2表示).(2)已知向量为,a b ,未知向量为y x ,向量,a b ,y x ,满足关系式32,43x y a x y b -=-+=,求向量y x ,.ab4.已知OA 和OB 是不共线的向量,()R AP t ABt =∈,试用OA 和OB 表示OP .5.(2021·云南·罗平县第二中学高一月考)如图,四边形ABCD 中,已知2AD BC =. (1)用AB ,AD 表示DC ;(2)若2AE EB =,34DP DE =,用AB ,AD 表示AP .6.如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使13DB OB =,DC 与OA 交点为E ,设,OA a OB b ==,用a ,b 表示向量OC ,DC .6.2.3 向量的数乘运算第二课时 向量共线定理【学习目标】1.理解两个向量共线的含义,并能运用它们证明简单的几何问题;2.培养学生在学习向量共线定理的过程中能够相互合作,在不断探求新知识中,培养学生抽象概括能力和逻辑思维能力.【自主学习】向量共线定理:如果有一个实数λ,使b λ=a (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b λ= a.【合作探究】例1 判断下列各小题中的向量a ,b 是否共线(其中12,e e 是两个非零不共线向量). (1)115,10a e b e ==-;(2)121211,3223a e eb e e =-=-; (3)1212,33a e e b e e =+=-.例2 设,a b 是不共线的两个非零向量.(1)若233OA a b OB a b OC a b =-=+=-,,,求证:A B C ,,三点共线; (2)若8a kb +与2ka b +共线,求实数k 的值;(3)若232AB a b BC a b CD a kb =+=-=-,,,且A C D ,,三点共线,求实数k 的值.例3 如图2-2-11,ABC ∆中,C 为直线AB 上一点,−→−AC λ=)1(-≠−→−λCB求证:λλ++=−→−−→−−→−1OB OA OC .思考:上例所证的结论λλ++=−→−−→−−→−1OB OA OC 表明:起点为O ,终点为直线AB 上一点C 的向量−→−OC 可以用,−→−OA −→−OB 表示,那么两个不共线的向量,−→−OA −→−OB 可以表示平面内任一向量吗?例4 已知ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则ABP △与ABC 的面积比为 .【当堂检测】1.已知→→b a ,是起点相同的不共线向量,当t 取多少时,)(31,,→→→→+b a b t a 三个向量的终点在一条直线上.2.如图,在ABC ∆中,点O 是BC 的中点,过点O 的直线交直线AC AB ,于不同的两点N M ,,若→→=AM m AB ,→→=AN n AC ,求n m +的值.3.若点M 是ABC 所在平面内的一点,点D 是边AC 靠近A 的三等分点,且满足5AM AB AC =+,则ABM 与ABD △的面积比为( )A .15B .25C .35D .9254.已知D 是ABC 的边AB 的中点,点M 在DC 上,且满足53AM AB AC =+,则ABM 与ABC 的面积之比为( )A .15B .25C .35D .455.如图,在ABC 中,D ,F 分别是BC ,AC 的中点,23AE AD =,AB a =,AC b =. (1)用a ,b 表示AD ,AE ,AF ,BE ,BF ;(2)求证:B ,E ,F 三点共线.。

高二数学选修2《空间向量的数乘运算》导学案

高二数学选修2《空间向量的数乘运算》导学案

第三章 空间向量与立体几何3.1.2 空间向量的数乘运算一、学习目标1.理解空间向量的概念,掌握空间向量的数乘运算.2.用空间向量的运算意义和运算律解决立体几何问题.【重点、难点】重点:空间向量的数乘运算及运算律;难点:用向量解决立体几何问题.二、学习过程【复习回顾】(1)平面向量有加减运算,空间向量也有;平面向量有数乘运算,那空间向量有吗?它们相同吗?(2)向量经加法以后仍然是向量,经减法运算以后也是向量,那经数乘运算以后呢?【探究新知】1.空间向量的数乘运算(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个 ,称为向量的数乘运算.(2)向量a 与λa 的关系.λ的范围 方向关系 模的关系λ>0 方向λa 的模是a 的模的 倍λ=0 λa =0,其方向是任意的 λ<0 方向 (3)空间向量的数乘运算律设λ、μ是实数,则有①分配律:λ(a +b )= ; ②结合律:λ(μa )= .2.共线向量与共面向量共线(平行)向量 共面向量定义 表示空间向量的有向线段所在的直线 ,则这些向量叫做共线向量或平行向量平行于 的向量叫做共面向量充要 条件 对于空间任意两个向量a ,b(b≠0),a∥b 的充要条件是存在实数λ使a =λb 若两个向量a ,b 不共线,则向量p 与a ,b 共面的充要条件是存在唯一的有序实数对(x ,y),使p =xa +yb推论 如果l 为经过点A 且平行于已知非零向量a 的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+ta①,其中a 叫做直线l 的方向向量如图所示. 若在l 上取AB →=a ,则①式可化为OP →=OA →+tAB →如图,空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y),使AP →=xAB →+yAC →,或对空间任意一点O 来说,有OP →=OA →+xAB →+yAC →.【典型例题】例1. 已知在空间四边形OABC 中,M ,N 分别是对边OA ,BC 的中点,点G 在MN 上,且MG =2GN ,如图所示,记OA →=a ,OB →=b ,OC →=c ,试用向量a ,b ,c 表示向量OG →.例2.如图所示,已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是CB 、CD 上的点,且CF →=23CB →,CG →=23CD →.利用向量法求证四边形EFGH 是梯形.例3. 如图所示,P 是平面四边形ABCD 所在平面外一点,连结PA ,PB ,PC ,PD ,点E ,F ,G ,H 分别是△PAB ,△PBC ,△PCD ,△PDA 的重心,分别延长PE ,PF ,PG ,PH ,交对边于M ,N ,Q ,R ,并顺次连结MN ,NQ ,QR ,RM .应用向量共面定理证明:E 、F 、G 、H 四点共面.例4.已知在平行六面体ABCDA 1B 1C 1D 1中,M 、N 分别是对角线AC ,A 1D 的三等分点,且满足AM →=12MC →,A 1N →=2ND →.记AB →=a, AD →=b ,AA1→=c ,试用a ,b ,c 来表示向量MN →.【变式拓展】1. 在平行六面体ABCDA 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( ).A .-12a +12b +c B.12a +12b +c C.12a -12b +c D .-12a -12b +c 2. 设两非零向量e 1、e 2不共线,AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2).试问:A 、B 、D 是否共线,请说明理由.3. 已知平行四边形ABCD (如图),从平面AC 外一点O 引向量OE →=kOA →,OF →=kOB →,OG →=kOC →,OH →=kOD →,求证:(1)四点E 、F 、G 、H 共面; (2)平面EG ∥平面AC .三、总结反思1.向量共线的充要条件及其应用(1)空间共线向量与平面共线向量的定义完全一样,当我们说a ,b 共线时,表示a ,b 的两条有向线段所在直线既可能是同一直线,也可能是平行直线;当我们说a ∥b 时,也具有同样的意义.(2)“共线”这个概念具有自反性a ∥a ,也具有对称性,即若a ∥b ,则b ∥a .(3)如果应用上述结论判断a ,b 所在的直线平行,还需说明a (或b )上有一点不在b (或a )上.AB =λBC →或AB =μAC →即可.也可用“对空间任意一点O ,有OB →=tOA →+(1-t )OC →”来证明三点共线.2.向量共面的充要条件的理解MP =xMA →+yMB →.满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.(2)共面向量的充要条件给出了空间平面的向量表示式,即任意一个空间平面可以由空间一点及两个不共线的向量表示出来,它既是判断三个向量是否共面的依据,又可以把已知共面条件转化为向量式,以便于应用向量这一工具.另外,在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有OB =(1-t )OA →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.四、随堂检测1.设空间四点O ,A ,B ,P 满足,OP mOA nOB =+其中m+n=1,则( )A .点P 一定在直线AB 上B .点P 一定不在直线AB 上C .点P 可能在直线AB 上,也可能不在直线AB 上D. AB 与AP →与AP →的方向一定相同2.如图所示,平行六面体A 1B 1C 1D 1- ABCD ,M 分AC 成的比为12,N 分A 1D →成的比为12,N 分A 1D →成的比为2,设AB = a ,AD →=b ,AA 1→=c ,试用a 、b 、c 表示MN .3. 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1.2 空间向量的数乘运算(二)
学习目标
1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;
2. 理解共线向量定理和共面向量定理及它们的推论;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
学习过程
一、课前准备
8687
复习1:什么叫空间向量共线?空间两个向量,a b,若b是非零向量,则a与b平行的充要条件是
复习2:已知直线AB,点O是直线AB外一点,若
12
33
OP OA OB
=+,试判断A,B,P三点是
否共线?
二、新课导学
※学习探究
探究任务一:空间向量的共面
问题:空间任意两个向量不共线的两个向量,a b有怎样的位置关系?空间三个向量又有怎样的位置关系?
新知:共面向量:同一平面的向量.
2. 空间向量共面:
定理:对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件是存在,使得 .
推论:空间一点P与不在同一直线上的三点A,B,C共面的充要条件是:
⑴存在,使
⑵对空间任意一点O,有
试试:若空间任意一点O和不共线的三点A,B,C满足关系式
111
236
OP OA OB OC
=++,则点
P 与 A,B,C 共面吗?
反思:若空间任意一点O 和不共线的三点A,B,C 满足关系式OP xOA yOB zOC =++,且点P
与 A,B,C 共面,则x y z ++= .
※ 典型例题
例1 下列等式中,使M ,A ,B ,C 四点共面的个数是( ) ①;OM OA OB OC =--
②111
;532
OM OA OB OC =++
③0;MA MB MC ++=
④0OM OA OB OC +++=.
A. 1
B. 2
C. 3
D. 4
变式:已知A,B,C 三点不共线,O 为平面ABC 外一点,若向量()17
,53
OP OA OB OC R λλ=++∈
则P,A,B,C 四点共面的条件是λ=
例2 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,在四条射线上
分别取点E,,F,G,H,并且使,OE OF OG OH
k OA OB OC OD
====
求证:E,F,G,H 四点共面.
变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的
中点,求证:E,F,G,H 四点共面.
小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.
※ 动手试试
练1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122
555
OP OA OB OC =++,试判
断:点P 与,,A B C 是否一定共面?
练2. 已知32,(1)8a m n b x m n =-=++,0a ≠,若//a b ,求实数.x
三、总结提升 ※ 学习小结
1. 空间向量的数乘运算法则及它们的运算律;
2. 空间两个向量共线的充要条件及推论.
※ 知识拓展
平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平
A B
C D F
E G H
※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11A C 是( ) A. 有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量.
2. 正方体''''ABCD A B C D -中,点E 是上底面''''A B C D 的中心,若''BB xAD y AB z AA =++,
则x = ,y = ,z = .
3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP OA + OB .
4. 平行六面体''''ABCD A B C D -, O 为A 1C 与B 1D 的交点,则'1
()3
AB AD AA ++= AO .
5. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ).
A .0 B.1 C. 2 D. 3 课后作业:
1. 若324,(1)82a m n p b x m n yp =--=+++,
0a ≠,若//a b ,求实数,x y .
2.已知两个非零向量21,e e 不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:
,,,A B C D 共面.。

相关文档
最新文档