长工作距变焦显微系统物镜设计

合集下载

50×近红外长工作距离显微物镜光学设计

50×近红外长工作距离显微物镜光学设计

50×近红外长工作距离显微物镜光学设计显微物镜被广泛应用在激光微纳加工设备及激光微束系统上[1-3],在应用过程中,很多时候需要具有工作距离长、数值孔径大、波长覆盖可见光波段和近红外波段的需求。

近年来国内学者进行了很多研究。

其中,在可见光波段,薛金来等人设计了数值孔径为0.75,半视场为6.39°的平场复消色差显微物镜,各项成像指标接近衍射极限;在近红外波段,周恩源等人设计了一套工作波长为785~815nm,数值孔径为0.9,像方视场为22.5mm,放大倍率为40×的近红外平场复消色差显微物镜,在经过公差分析后满足了生产要求。

在众多学者的研究中,我们发现,长工作距离且覆盖可见光及近红外波段的高倍显微物镜鲜少有人进行研究,长工作距离的显微物镜在使用過程中,可有效扩大物镜与待观察物体之间的距离,防止在激光加工过程中高温粒子对物镜的损伤。

由此,本文针对上述需求设计了一款用于在可见光波段同轴观察,近红外(1064nm)激光加工用的长工作距离高倍显微物镜。

1 设计参数根据客户需求及使用场景,我们所确定的近红外长工作距离显微物镜参数如下:工作距离大于14mm,数值孔径为0.45,焦距为4mm (与焦距为200mm的管镜配合,实现50倍放大),波长为1064nm 及可见光波段,观察视野为Φ0.46mm,齐焦距离为95mm。

整个系统采用反向设置。

根据公式式中y为半视野高度,f为焦距,ω为半视场角,我们可以计算出显微物镜的半视场角为3.29°,在这里我们将半视场角度设置为3.45°。

2 光学设计2.1 初始结构选取一般光学系统设计有两种设计思路,第一种是采用PW法,第二种是缩放法。

其中PW法采用的是按照初级像差理论来求取系统的初始结构,这种方法一般适用于初级像差系统,对于存在高级像差的大相对孔径系统,我们按照第二种思路来进行设计,也就是在光学结构数据库ZEBASE中找到一个视场角、数值孔径优于设计要求的结构作为我们光学系统的初始结构。

哈工大工程光学大作业_一种长焦距远摄物镜光学结构介绍

哈工大工程光学大作业_一种长焦距远摄物镜光学结构介绍

工程光学大作业一种长焦距远摄物镜光学结构介绍二零一二年六月摘要大口径长焦距远摄物镜光学结构,折反射主镜(2)位于反射主镜(3)前端,其特点是:在折反射主镜(2)的前端还设置有一分离式的,至少一面为曲面的修正透镜(1)。

本实用新型可使光学仪器短镜身、口径大、焦距长、并可采用普通光学材料制成反射镜、其镜面形状均为球形,极易于生产加工,具有低球差、低彗差、高分辨率的成像质量。

关键词:远摄镜头;光学系统;复消色差一种长焦距远摄物镜光学结构简介绍一、相关领域研究背景二十世纪电子工业的发展达到了一个新的高峰,光的特质性越来越体现其运用的广泛性。

光电结合的产品一数码相机、激光设备等正在不断的发展和完善,现代光学在国防、航天等各个方面如激光信息元件、光电子应用领域已非常很广泛。

光电子信息处理产品包括数码照相机、照相手机、扫描仪、激光读取头、多媒体投影仪、投影电视、网络摄像头等,光学在电子领域的运用已经不断的冲击传统光学领域每一种产品,如何将光学传统产业如照相机、望远镜等合理的与现代光电子学进行接洽、融合是传统光学设计的一大难点。

二、具体光学结构介绍本文所介绍的物镜由折反射主镜、反射主镜、转向机构和镜头简体组成,折反射主镜位于反射主镜前端,其特征是:在折反射主镜的前端还设置有一分离式的,至少一面为曲面的修正透镜;修正透镜所具有的曲面均为球面;修正透镜既可以是一面为凸球面一面为凹球面,也可以是一面为平面一面为凸球面。

本物镜的修正透镜与折反射主镜有效口径D 一致,其有效口径D 范围为60—300ram,其中优选相对口径为D /F :1/6~1/10;本实用新型修正透镜与折反射主镜的间隔距离为,t H H L R R ++=32。

该公式中,2222)2/(2D R R H R --=,2233)2/(3D R R H R --=,;50~0mm t =其中:2R 为修正透镜的第二面半径,R3为折反射主镜的第一面的半径,2R H 为2R 面的弧高,3R H 为3R 面的弧高, D 为修正透镜的有效口径,t 为间隔的最合理变化区域。

高变倍比连续变焦体视显微镜物镜设计

高变倍比连续变焦体视显微镜物镜设计
m m ,a n d t h e b a c k f o c a l l e n g t h r e a c h e d 2 0 0 mm. Af t e r a n a l y z i n g mo d u l a t i o n t r a n s f e r f u n c t i o n
( 1 . Ke y La b o r a t o r y o f Op t i c a l S y s t e m Ad v a n c e d Ma n u f a c t u r i n g Te c h n o l o g y, Ch a n g c h u n I n s t i t u t e o f Op t i c s ,F i n e Me c h a n i c s a n d P h y s i c s ,CAS,Ch a n g c h u n 1 3 0 0 3 3,Ch i n a ;
实现 0 . 8 ~ 1 6 倍 的 2 O倍 连 续 变 焦 , 系统 工 作 距 离达 到 9 1 mm , 后 工 作 距 离达 到 2 0 0 mm, 双 组
联动 型 结构不仅 实现 了大变倍 比 , 同时保 证 系统 结构 尽 量 简单 。设 计 结 果表 明 : 双组 联 动 型 变
2 . 中 国科 学 院 研 究 生 院 , 北京 1 0 0 0 3 9 )
摘 要 : 为 了 实现 体 视 显 微 镜 物 镜 的 大 变 倍 比 连 续 变 焦 , 同 时 尽 量 避 免 使 用 非 球 面 以及 衍 射 元 件, 采 用 双 组 联 动 型 变倍 补 偿 形 式 , 设 计 了 大 变倍 比 连 续 变 焦 距 体 视 显 微 镜 物 镜 系统 。 该 系 统
Op t i c a l d e s i g n o f h i g h — ma g n i f i c a t i o n z o o m s t e r e o mi c r o s c o p e o b j e c t i v e

长变焦镜头的设计

长变焦镜头的设计

分类号密级U D C大孔径长变焦镜头的设计董春艳导师姓名(职称) 李林(教授)答辩委员会主席安连生申请学科门类工学申请学位专业论文答辩日期 2007.07.05 测试计量技术及仪器2007年06月28日大孔径长变焦镜头的设计北京理工大学研究成果声明本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行的研究工作获得的研究成果。

尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京理工大学或其它教育机构的学位或证书所使用过的材料。

与我一同工作的合作者对此研究工作所做的任何贡献均已在学位论文中作了明确的说明并表示了谢意。

特此申明。

签名:日期:关于学位论文使用权的说明本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存学位论文;③学校可允许学位论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容(保密学位论文在解密后遵守此规定)。

签名:日期:导师签名:日期:摘要近年来,随着计算机技术的飞速发展和变焦距镜头光学设计理论的不断完善以及加工工艺的成熟,变焦距光学系统的种类日益丰富,成像质量逐渐提高,可与定焦系统相媲美,因此广泛的应用到各种工作领域中。

这种情况下,研究变焦距镜头的设计无疑具有重要的意义。

本论文首先对变焦距镜头系统的发展历史进行了回顾,介绍了变焦距镜头的结构型式,变焦方法等的发展过程;第二章分析了变焦距镜头的高斯光学,总结出了变焦距镜头的高斯光学基本表达式,分别对机械补偿法、全动型变焦距镜头的高斯光学建立了数学模型,并对系统各组元的运动情况做了详细的分析,另外还讨论了关于变焦距镜头小型化的一些问题;第三章主要介绍了编制的机械补偿和全动型变焦距镜头计算机辅助设计软件,并利用实例进行了计算分析,在第四章中,利用所得结果,尝试设计了两种不同用途的变焦距镜头,像质良好,达到使用要求,结果表明软件功能基本达到预期目的,同时验证了前面推导的理论公式的正确性。

高变倍比连续变焦体视显微镜物镜设计

高变倍比连续变焦体视显微镜物镜设计

高变倍比连续变焦体视显微镜物镜设计许利峰;张新;曲贺盟;黄欣;王超【摘要】In order to achieve high-magnification in continuous zoom stereo microscope objective system and avoid using aspherical optics and diffractive elements, new methods of zoom compensation were adopted in zoom lens designing with double linkage moving lens groups. By choosing 6 zoom positions for designing and calculation, the zoom of 0. 8X ~16X (20:l) stereo microscope objective system was achieved. The working distance of the system reached 91 mm, and the back focal length reached 200 mm. After analyzing modulation transfer function (MTF) and aberration of the optical system, the results show that this zoom stereo microscope objective system realizes high magnification and high imaging quality.%为了实现体视显微镜物镜的大变倍比连续变焦,同时尽量避免使用非球面以及衍射元件,采用双组联动型变倍补偿形式,设计了大变倍比连续变焦距体视显微镜物镜系统.该系统实现0.8×~16×倍的20倍连续变焦,系统工作距离达到91 mm,后工作距离达到200 mm,双组联动型结构不仅实现了大变倍比,同时保证系统结构尽量简单.设计结果表明:双组联动型变倍补偿形式对实现大变倍比以及简化结构是有利的.通过对系统成像质量以及凸轮拟合曲线进行分析,系统组元移动曲线光滑,成像质量达到要求.【期刊名称】《应用光学》【年(卷),期】2013(034)001【总页数】7页(P38-44)【关键词】光学设计;变焦系统;体视显微镜;双组联动型【作者】许利峰;张新;曲贺盟;黄欣;王超【作者单位】中国科学院长春光学精密机械与物理研究所光学系统先进制造技术中国科学院重点实验室,吉林长春130033;中国科学院研究生院,北京100039【正文语种】中文【中图分类】O439;TH742.2引言体视变倍显微镜是一种特殊的变焦距系统,作为人眼的辅助工具,体视显微镜具有工作距离远、体视感强等特点。

光学显微镜的超长工作距离与深部组织成像

光学显微镜的超长工作距离与深部组织成像

光学显微镜的超长工作距离与深部组织成像光学显微镜是生物学、医学和材料科学等领域的重要工具。

然而,传统的光学显微镜在观察深部组织时存在一定的局限性。

本文将探讨光学显微镜的超长工作距离与深部组织成像的原理和方法。

1. 超长工作距离显微镜的原理超长工作距离显微镜是一种特殊的显微镜设计,其主要特点是具有超长的工作距离。

传统显微镜的工作距离较短,当观察深部组织时,显微镜的物镜容易接触到样品,导致观察不清晰。

而超长工作距离显微镜可以保持物镜与样品之间的距离,从而获得更清晰的深部组织成像。

超长工作距离显微镜的实现主要依赖于两个方面:一是采用超长工作距离物镜,其具有较大的焦距和较小的数值孔径;二是采用超长工作距离载物台,其可以容纳较大的样品厚度。

2. 超长工作距离显微镜的优点超长工作距离显微镜在深部组织成像方面具有以下优点:1.避免物镜与样品的接触:传统显微镜在观察深部组织时,物镜容易接触到样品,导致成像不清晰。

超长工作距离显微镜可以保持物镜与样品之间的距离,避免接触,获得更清晰的成像。

2.适用于较大样品:超长工作距离显微镜的载物台可以容纳较大的样品厚度,适用于观察较大的样品,如切片、组织块等。

3.减少光学干扰:传统显微镜在观察深部组织时,容易受到光学干扰,如反射、散射等。

超长工作距离显微镜可以减少这些干扰,获得更真实的深部组织成像。

3. 深部组织成像的方法为了获得更清晰的深部组织成像,可以采用以下方法:1.光学切片技术:通过调整物镜与样品之间的距离,获得不同深度的光学切片。

然后将这些切片进行合成,形成一个三维图像。

这种方法可以获得较清晰的深部组织成像,但需要较长的处理时间。

2.波段滤光片技术:通过改变波段滤光片的波长,可以选择性地观察不同类型的组织成分。

例如,使用绿色滤光片可以观察到细胞核,而红色滤光片可以观察到血管等。

这种方法可以提高观察的准确性,但需要对样品进行染色处理。

3.激光扫描显微镜:利用激光扫描技术,可以在样品上扫描激光束。

0.5×~2.5×长工作距离变焦距显微物镜设计

0.5×~2.5×长工作距离变焦距显微物镜设计

0.5×~2.5×长工作距离变焦距显微物镜设计冯浩男;梅启升;梁秀玲【摘要】根据变焦距理论和显微物镜的特点,利用Zemax设计了一款可连续变倍的显微物镜.该物镜由4组双胶合透镜组构成,结构简单,成像质量良好,变倍范围在0.5×~2.5×之间,最大数值孔径达到0.1,共轭距346 mm,物距76 mm,空间频率65 lp/mm处,全视场内的调制传递函数均大于0.3,适用于可见光光谱,可以与1/2 inch CCD相匹配.通过对所设计的变倍显微物镜进行公差分析,得到一套比较宽松的公差,适合批量生产.设计结果表明,该变倍显微物镜可以满足工业视频检测的要求.【期刊名称】《光学仪器》【年(卷),期】2018(040)004【总页数】7页(P40-46)【关键词】光学设计;变焦距显微物镜;机械补偿;公差分析【作者】冯浩男;梅启升;梁秀玲【作者单位】福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室,福建福州350007;福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室,福建福州350007;福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室,福建福州350007【正文语种】中文【中图分类】TN202引言随着现代工业、化工业的发展,新型变倍显微系统在各方面展现出巨大的需求。

变倍显微系统是指焦距在一定范围内连续或者间隔改变而像面保持不动的光学系统,在固定像面上可以获得放大倍率不同的像,从而起到代替多个固定倍率镜头的作用。

变倍显微系统通过变倍物镜把观测物成像在CMOS或CCD靶面上,并将图像显示在显示器中,因不易产生疲劳,适合不间断观察。

由于其放大倍数可变,无需更换镜头就可以满足不同视场的观测要求。

该系统具有直观、真实、方便记录以及观察不同视场不需更换镜头的特点,故其广泛应用于印刷线路板、集成电路、液晶屏的检验,以及其他一些行业,如食品、药物的检验,植物、生物的观察等。

光学设计实例——显微镜物镜、双高斯照相物镜

光学设计实例——显微镜物镜、双高斯照相物镜

底片尺寸(36mm×24mm)是打印纸 的1/7.06倍, 则底片上成像弥散斑直径为 0.003/7.06=0.00042英寸=0.0107mm;
对于一个真正的照相系统,通常对 MTF Nhomakorabea更复杂的技术要求。
8
146
双高斯物镜设计实例
双高斯物镜
双高斯物镜是一个对称型结构,借以校正垂轴像差——彗差、畸变和垂轴色差, 因此其每一半应能校正轴向像差——球差、像散、场曲和轴向色差;保持其对称性很 重要。 为校正场曲,必须有两个正负光焦度且分离的薄透镜组,最简单的就是弯月厚透 镜;高斯结构的特点是凸面靠外,这有利于其提高相对孔径,但它不能校正球差和轴 向色差,为此把弯月厚透镜变成双胶合透镜,但双胶合透镜内的光焦度分配主要考虑 的是校正场曲,轴向色差可能得不到很好校正,为此又加了一个分离的正透镜,它也 分担了双胶合正透镜的一部分光焦度。 用正负光焦度分配校正场曲;有了正负光焦度的透镜,选择折射率并弯曲透镜, 可使球差校正,选择色散可以使轴向色差校正。光阑的恰当位置可以使像散校正。
18
双高斯物镜设计实例(Zemax数据8) 双高斯物镜设计实例(Zemax数据8) (Zemax数据
19
MTF(47) MTF(47)
20
双高斯物镜设计实例(Zemax数据) 双高斯物镜设计实例(Zemax数据) (Zemax数据
21
MTF(50) MTF(50)
22
11
双高斯物镜设计实例(原始数据) 双高斯物镜设计实例(原始数据)
12
双高斯物镜设计实例(设计结果1) 双高斯物镜设计实例(设计结果1)
13
双高斯物镜设计实例(设计结果2) 双高斯物镜设计实例(设计结果2)
14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长工作距变焦显微系统物镜设计
激光内雕机在进行激光内雕时,经常会存在激光“炸点”不均匀的情况,需要对其进行放大分析,从而更好地控制激光束的能量。

本文根据企业激光内雕“炸点”观察需求,设计了一款长工作距变焦显微物镜。

玻璃内部的“炸点”观察范围为9mm~32mm,系统采用光学变焦方式,分辨率小于5μm,变焦范围为6mm~24mm,放大倍率为4~×~16~×,变倍比为4倍。

探测器采用了一款型号为VA-1MG2的1/2英寸CCD,其像元大小为5.5μm。

利用Zemax进行光学系统设计优化,在截止频率91lp/mm处,各组态下各视场的MTF值均大于0.4,在中心视场和0.7视场处均接近衍射极限。

点列图的RMS 半径也均小于艾里斑半径,满足长工作距变焦显微系统的各项指标需求。

长工作距变焦显微系统在变焦显微镜的基础上增加了工作距较长的优点。

因此,如何设计一款具有长工作距离的变焦显微系统成了一个研究的重要方向。

本文完成的长工作距变焦显微物镜设计主要为:首先对变焦光学系统的国内外研究现状进行介绍;其次对激光“炸点”观测的工作原理进行了阐述;然后对变焦光学系统原理及其补偿方式介绍;根据设计参数指标选取了合适的长工作距变焦显微系统的初始结构并对其进行优化设计;最后进行了长工作距变焦显微系统的像差分析、公差分析以及机械结构设计。

相关文档
最新文档