热学第三版答案
化工热力学答案(第三版).

化工热力学课后答案(第三版)陈钟秀编著2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+ ()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T === 124.6 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯ 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
工程热力学第三版课后习题答案

工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。
(完整版)化工热力学(第三版)答案陈钟秀

2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学答案(第三版).

化工热力学课后答案(第三版)陈钟秀编著 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008(1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aP V b T V V b =--+ =19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.6991.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴ c r PVZ P RT=迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
∴ P=19.22MPa2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。
已知实验值为1480.7cm 3/mol 。
解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193(1)理想气体方程V=RT/P=8.314×510/2.5×106=1.696×10-3m 3/mol误差:1.696 1.4807100%14.54%1.4807-⨯=(2)Pitzer 普遍化关系式对比参数:510425.2 1.199r c T T T === 2.53.80.6579r c P P P ===—普维法∴ 01.61.60.4220.4220.0830.0830.23261.199rB T =-=-=-01cc BP B B RT ω=+=-0.2326+0.193×0.05874=-0.2213 11c r c rBP BP PZ RT RT T =+=+=1-0.2213×0.6579/1.199=0.8786 ∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m 3/mol 误差:1.49 1.4807100%0.63%1.4807-⨯=2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。
工程热力学(第三版)习题答案全解可打印第九章

π
pV 400 ∴ q m = 400 × 1 es = × R g T1 60
可逆定温功压缩功率为:
Wc ,T = − p1V1 ln =−
p2 p1
400 8 π × 0.1 × 10 6 × 0.786 × × 0.3 2 × 0.2 × ln = 15.4 × 10 3 J = 15.4kW s 60 4 1
n = 3× p1 v1 (π n −1 t1 = 20°C
n −1 n
p4 12.5 =3 =5 p1 0 .1
(1) wc = 3wc , L
Q p1 = 0.1MPa
− 1) ∴v =
1 1.3−1 1.3
R g T1 p1
=
287 × 293.15 0.1× 10
6
= 0.8413 m
3
kg kg
− 1] =
1.4 × 0.1× 10 6 × 140 × [6 1.4 − 1
1.4 −1 1.4
− 1] = 327.9 × 10 5 J
h
327.9 ×10 5 = 9108.3W = 9.11KW 3600 p n p1V1 [( 2 ) n −1 p1
n −1 n
(3)多变压缩
Wt , n = Nn = − 1] = 1 .2 × 0.1×10 6 × 140 × [6 1 .2 − 1
V h = 0.009m 3
π =7
1 n
σ = 0.06
1 n
n = 1.3
1
(1) η v = 1 −
Vc (π Vh
− 1) = 1 − σ (π
− 1) = 1 − 0.06 × (7 1.3 − 1) = 0.792
汪志诚热力学统计物理学答案第三版第二章

第二章 均匀物质的热力学性质习题2.1温度维持为25℃, 压强在0至1000p n 之间,测得水的实验数据如下:(TV∂∂)p =(4.5×10-3+1.4×10-6P)cm 3·mol -1·K -1 若在25℃的恒温下将水从1p n 加压到1000p n , 求水的熵增和从外界吸收的热量。
解:利用麦氏关系:p TV)(∂∂ =-T p S )(∂∂ 求熵增∆S ; 从而∆Q = T ∆S ,∆S =-0.572Jmol -1·K -1 Q =-157J ·mol -1习题2.2已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加。
解:由题意得: )()(V f T V k p +=。
因V 不变,T 、p 升高,故k (V )>0 据麦氏关系(2.2.3)式得:T V S )(∂∂ =V Tp)(∂∂ =k (V ) (k (V )>0) ⎰+=⇒);()(T g dV V k S由于k (V )>0, 当V 升高时(或V 0→V ,V >V 0),于是⎰>0)(dV V k⇒T 不变时,S 随V 的升高而升高。
2.3设一物质的物态方程具有以下形式T V f P )(=,试证明其内能与体积无关。
解: T V f P )(= ,(V T V U ∂∂),()T =T V T P)(∂∂ - p = )()(V Tf V Tf - =0 得证。
习题2.4求证:(ⅰ) H P S )(∂∂ <0 (ⅱ) U VS)(∂∂ >0证: 由式(2.1.2)得: VdP TdS dH += 等H 过程:H H VdP TdS )()(-=⇒(P S ∂∂)H =-TV<0 (V >0; T >0) 由基本方程:PdV TdS dU -=dV TpdU T dS +=⇒1;⇒(VS∂∂)U =T p >0.习题2.5已知 T VU)(∂∂ =0 , 求证 T p U )(∂∂=0。
第三版工程热力学课后思考题答案
第一章1、答:不一定。
稳定流动开口系统内质量也可以保持恒定。
2、答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3、答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4、答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5、答:温度计随物体的冷热程度不同有显著的变化。
6、答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7、答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8、答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。
9、答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10、答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11、答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章1、答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。
化工热力学第三版课后答案完整版朱自强
第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积;1 理想气体方程;2 RK 方程;3PR 方程;4 维里截断式2-7;其中B 用Pitzer 的普遍化关联法计算;解 1 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为2 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ E1其中从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入a, b 表达式得以理想气体状态方程求得的id V 为初值,代入式E1中迭代求解,第一次迭代得到1V 值为第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代;故用RK 方程求得的摩尔体积近似为3用PR 方程求摩尔体积将PR 方程稍加变形,可写为()()()RT a V b V b p pV V b pb V b -=+-++- E2式中 220.45724c cR T a p α=从附表1查得甲烷的ω=;将c T 与ω代入上式 用c p 、c T 和α求a 和b,以RK 方程求得的V 值代入式E2,同时将a 和b 的值也代入该式的右边,藉此求式E2左边的V 值,得563563355353558.314673.152.68012104.053100.10864(1.39010 2.6801210)4.05310[1.39010(1.39010 2.6801210) 2.6801210(1.39010 2.6801210)]1.381102.6801210 1.8217101.3896V ------------⨯=+⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯+⨯+⨯⨯⨯-⨯=⨯+⨯-⨯=33110m mol --⨯⋅再按上法迭代一次,V 值仍为3311.389610m mol --⨯⋅,故最后求得甲烷的摩尔体积近似为3311.39010m mol --⨯⋅; 4维里截断式求摩尔体积根据维里截断式2-711()c r c rBp p BpZ RT RT T =+=+ E3 01ccBp B B RT ω=+ E40 1.60.0830.422/r B T =- E5 1 4.20.1390.172/r B T =-E6其中已知甲烷的偏心因子ω=,故由式E4~E6可计算得到从式E3可得 因pVZ RT=,故 四种方法计算得到的甲烷气体的摩尔体积分别为31.38110-⨯、31.39010-⨯、31.39010-⨯和31.39110-⨯31m mol -⋅;其中后三种方法求得的甲烷的摩尔体积基本相等,且与第一种方法求得的值差异也小,这是由于该物系比较接近理想气体的缘故;2-2 含有丙烷的3m 的容器具有的耐压极限;出于安全考虑,规定充进容器的丙烷为127℃,压力不得超过耐压极限的一半;试问可充入容器的丙烷为多少千克解 从附表1查得丙烷的c p 、c T 和ω,分别为,和;则用普遍化压缩因子关联求该物系的压缩因子Z;根据r T 、r p 值,从附表7-2,7-3插值求得:(0)0.911Z = ,(1)0.004Z =,故丙烷的分子量为,即丙烷的摩尔质量M 为0.00441 kg;所以可充进容器的丙烷的质量m 为从计算知,可充9.81 kg 的丙烷;本题也可用合适的EOS 法和其它的普遍化方法求解;2-3 根据RK 方程、SRK 方程和PR 方程,导出其常数a 、b 与临界常数的关系式;解 1RK 方程式,0.5()RT ap V b T V V b =--+ E1利用临界点时临界等温线拐点的特征,即22()()0c c T T T T p pV V==∂∂==∂∂ E2将式E1代入式E2得到两个偏导数方程,即20.52211()0()()c c c c c RT a V b T b V V b -+-=-+E330.53311()0()()c c c c c RT a V b T b V V b --=-+ E4临界点也符合式E1,得0.5()c c c c c c RT ap V b T V V b =--+ E5式E3~E5三个方程中共有a 、b 、c p 、c T 和c V 五个常数,由于c V 的实验值误差较大,通常将其消去,用c p 和c T 来表达a 和b;解法步骤如下:令c c c c p V Z RT =临界压缩因子,即 c c c cZ RTV p =; 同理,令2 2.5a c cR T a p Ω=,b c c RT b p Ω=,a Ω和b Ω为两个待定常数;将a 、b 、c V 的表达式代入式E3~E5,且整理得222(2)1()()a cbc c b c b Z Z Z Z Ω+Ω=+Ω-Ω E622333(33)1()()a cbc b c c b c b Z Z Z Z Z Ω+Ω+Ω=+Ω-Ω E711()a c c b c bZ Z Z Ω=-+Ω-ΩE8式E6除以式E7,式E6除以式E8得3223330c b c b c b Z Z Z -Ω-Ω-Ω=E9322232320c c b c b c b b Z Z Z Z -++Ω-Ω-Ω-Ω=E10对式E8整理后,得()(1)c c b c b a c bZ Z Z Z +Ω-+ΩΩ=-ΩE11式E9减去E10,得22(13)(2)0c b b c c Z Z Z -Ω+Ω-=E12由式E12解得13c Z =,或1)b c Z Ω=此解不一定为最小正根,或1)b c Z Ω=-b Ω不能为负值,宜摒弃再将13c Z =代入式E9或式E10,得32110327b b b Ω+Ω+Ω-=E13解式E13,得最小正根为将13c Z =和0.08664b Ω=代入式E11,得0.42748a Ω=,故2 2.50.42748c cR T a p =E140.08664ccRT b p =E15式E14和式E15即为导出的a 、b 与临界常数的关系式;2 SRK 方程立方型状态方程中的a 、b 与临界常数间的通用关系式可写为 SRK 方程的α是c T 与ω的函数,而RK 方程的0.5r T α=,两者有所区别;至于a Ω与b Ω的求算方法对RK 和SRK 方程一致;因此就可顺利地写出SRK 方程中a 、b与临界常数间的关系式为220.42748c cR T a p α=⋅E160.08664ccRT b p =E173PR 方程由于PR 方程也属于立方型方程,a 、b 与临界常数间的通用关系式仍然适用,但a Ω、b Ω的值却与方程的形式有关,需要重新推导PR 方程由下式表达 因()c T T pV=∂∂=0 22()20()[()()]c c c T T c c c c c RT V b pa V Vb V V b b V b =+∂=-+=∂-++- E18 经简化,上式可写为2222222()()()4()c c c c c c c RT a V b V b V b bV V b +=-++-E19把c c c c Z RT V p =、22a c c cR T a p Ω=、b c c RT b p Ω=代入式E19中,化简得出222222()1()()4()a cbc b c b c b c b Z Z Z Z Z Ω+Ω=-Ω+Ω-Ω-ΩE20对式E18再求导,得22222322322322222222[()4()()(44124)]()()[()4()]c c c c c c c c c c T T c c c c RT a V b bV V b V b V b V bV b pV V b V b bV V b =++--+++-∂=+∂-++- 0= E21将上式化简后得出E22再将c c c c Z RT V p =、22a c c cR T a p Ω=、b c c RT b p Ω=代入式E22中,化简得出432234387263544536278(3121445)1()8208268208a c b c b c b c b c b c b c b c b c b c b c b c b c b Z Z Z Z Z Z Z Z Z Z Z Z Z Ω+Ω+Ω+Ω-Ω=-Ω+Ω+Ω+Ω-Ω-Ω+Ω-Ω+ΩE23 PR 方程的c Z =,将其分别代入式E21和E23后,就可联立解出a Ω与b Ω,得到a Ω=和b Ω=;最后得到2 2.50.45724c cR T a p =和 2-4 反应器的容积为3m ,内有45.40kg 乙醇蒸气,温度为227℃;试用下列四种方法求算反应器的压力;已知实验值为;1RK 方程;2SRK 方程;3PR 方程;4 三参数普遍化关联法;解 1用R-K 方程法计算从附表1查得乙醇的c p 和T c 分别为 和;则RK 方程参数a, b 为 再求乙醇在该状态下的摩尔体积,V 按R-K 方程求算压力,有350.5335668.314(227273.15)28.0391.22910 5.82810500.15 1.229*10(1.22910 5.82810)(3.55190.7925)10 2.75910 2.759Pa MPa-----⨯+=-⨯-⨯⨯⨯⨯+⨯=-⨯=⨯=2用SRK 方程计算从附表1查得乙醇的ω为;SRK 方程中的a 和b 分别计算如下: 在给定条件下乙醇摩尔体积为3311.22910m mol --⨯⋅,将上述有关数值代入SRK 方程,得3用PR 方程计算 将上述数值代入PR 方程,得3533553568.314500.151.22910 5.233410 1.372031.22910(1.22910 5.233410) 5.233410(1.22910 5.233410)(3.53390.83848)10 2.695p Pa MPa--------⨯=⨯-⨯-⨯⨯⨯+⨯+⨯⨯-⨯=-⨯=3用普遍化维里系数法计算根据临界常数和以RK 方程求出的p 为初值,求出对比温度和对比压力,即2.7590.43246.38r c p p p ===, 500.150.9689516.2r c T T T === 故已知乙醇的偏心因子ω=,按下式求压缩因子Z 的值, 所以因和比较接近,不需再迭代;将4种方法计算得到的结果列表比较;由上表知,所用四种方法的计算误差都不大,但以RK 方程法求得的值和实验值最为接近;其余的方法稍差;第一和第四种方法得到的是负偏差,而第二和第三种方法却是正偏差;2-5 某气体的p -V -T 关系可用RK 方程表述,当温度高于c T 时,试推导出以下两个极限斜率的关系式:10lim()T P Z p→∂∂ ;2lim()T P Zp →∞∂∂ ;两式中应包含温度T和RK 方程的常数a 和b;解 根据压缩因子的定义pVZ RT=E1将式E1在恒T 下对p 求偏导,得1()()()T T T Z V p V V p p p RT RT p RT RT V-∂∂∂=+=+∂∂∂ E2根据RK 方程 可求出()T pV∂∂, 20.522(2)()()()T p RT a V b V V b T V V b ∂+=-+∂-+ E3将E3代入E2,得120.522(2)()[]()()T Z V p RT a V b p RT RT V b T V V b -∂+=+-+∂-+ E4pRT也用RK 方程来表达,即 1.51()p a RT V b RT V V b =--+ E5将E5代入E4,得(1) 当0p →,V →∞,故 (2) 当p →∞,V b →,故1、2两种情况下得到的结果即为两个极限斜率的关系式;2-6 试分别用普遍化的RK 方程、SRK 方程和PR 方程求算异丁烷蒸气在350K 、下的压缩因子;已知实验值为;解 1 将RK 方程普遍化,可见原书中的2-20c 和2-20d,即1.51 4.9340() 11r hZ h T h =--+ E10.08664h=rrP ZT E2式E2的右边的Z 以1为初值代入进行迭代,直至得到一收敛的Z 值;由附表1查得异丁烷的c p 、c T 分别为c p = ,c T =,则3500.8576408.1r c T T T ===, 1.20.32883.65r c p P p === 以Z=1代入式E2右边,得 把1h 代入式E1右边,得再把1=0.8346Z 代入式E2,解得2h ,代入式E1,得 按此方法不断迭代,依次得3=0.7965Z , 4=0.7948Z , 5=0.7944Z5Z 和4Z 已非常接近,可终止迭代;异丁烷蒸气的压缩因子为=0.7944Z2 SRK 的普遍化形式如下见原书式2-211 4.934011FhZ h h=--+ E3 0.521[1(1)]r rF m T T =+- E4 20.480 1.5740.176m ωω=+- E50.08664rrp h ZT =E6迭代的过程为:求m 和F 值→取0Z =1→求h 值−−−−→←−−−−循环迭代求Z 值→得收敛的Z 值;查得异丁烷的偏心因子,0.176ω=,故根据式E5和式E4可得 以0Z =1代入式E6右边,得 再由式E3可得 按上述方法,依次可得2=0.7947Z ,3=0.7864Z ,4=0.7843Z ,5=0.7839Z ,6=0.7837Z6Z 和5Z 已非常接近,可终止迭代;故=0.7837Z(3) 用普遍化的PR 方程计算若要按例2-4的思路来计算,必先导出类似于式2-21的普遍化的PR 方程; 令bh V=,则 (1)bV b h h+=+,(1)bV b h h-=-,hZRTp b=将上述4式代入式2-18,并简化后,得(1)(1)(1)RTahZRTp b b b bbh h b h h h h h =-=-++-,即 211[][](1)(1)11(1)(1)hRT a a h Z h b h b RTh h h bRT h h h h h=-=-+---++-+ E7将PR 方程中的a 、b 代入式E7,则1 5.8771[]1(1)(1)r h h T h h hα=--++- E8令0.5220.5211[1(1)][1(0.37464 1.542260.26992)(1)]r r r rF k T T T T ωω=+-=++--,则1 5.8771[]1(1)(1)hZ F h h h h =--++- E9且0.0778/0.0778/0.0778/c c c c rrRT p RT p p b h V V ZRT p ZT ==== E10 通过式E9和E10就可迭代求得Z; 第一次迭代,设0Z =1,则继续迭代,依次可得Z 2=,Z 3=,Z 4=,Z 5=,Z 6=;由于前后两次迭代出的Z 值已很接近,从而得出异丁烷的Z =,与实验值相比,误差为%;由RK 和SRK 方程计算得到的异丁烷的Z 分别为和,它们与实验值的计算误差分别为%和%;可见,三种方法中,普遍化PR 方程计算结果显得更好些;2-7 试用下列三种方法计算250℃、2000Kpa 水蒸气的Z 和V ;1维里截断式2-8,已知B 和C 的实验值分别为310.1525B m kmol -=-⋅和2620.580010C m kmol --=-⨯⋅;2式2-7,其中的B 用Pitzer 普遍化关联法求出;3用水蒸气表计算;解 1用维里截断式2-8计算先求出理想气体状态时的摩尔体积,id V 维里截断式2-8为21pV B CZ RT V V==++ 2-8以id V 为初值,即0id V V =,代入上式右边,求得1V10200(1)B C V V V V =++ E1将1V 再代入式E1右边得同理,3313 2.00710V m mol --=⨯⋅;2V 和3V 很接近,停止迭代,则水蒸气的摩尔体积为3312.00710V m mol --=⨯⋅;所以2用维里截断式2-7计算 维里截断式2-7为11()c r c rBp p BpZ RT RT T =+=+ E201ccBp B B RT ω=+ E3由附表1查得水蒸气的c p 、c T 和ω分别为, 和,则2.00.090722.05r c p p p ===, 250273.150.8082647.3r c T T T +=== 根据Pitzer 的普遍化关联式,有再由式E3和式E2得 故33310.9319 2.17510 2.02710id ZRTV ZV m mol p---===⨯⨯=⨯⋅ 3用水蒸气表计算从水蒸气表附表3查得250℃,2000Kpa 时的水蒸气的比容为 由于水的摩尔质量为,故 同理 2.0080.92322.175id pV V Z RT V ==== 将三种方法计算得到的结果列表比较;计算结果表明,1、3两种方法所得的结果比较接近;2方法偏差较大,主要是忽略了第三维里系数之故;2-8 试用Magoulas 等法、Teja 等法、CG 法和Hu 等法等估算正十九烷的临界温度、临界压力原书中有误,没有计算压缩因子的要求;查阅其文献值,并与所得计算值进行比较;解 正十九烷的分子式为1940C H ,故19c N = 1用Magoulas 等法 按式2-36, 按式2-37,2用Teja 等式按式2-38, 按式2-39,3用CG 法 按式2-40, 按式2-41,4用Hu 等式 按式2-42, 按式2-43,经查阅,c T 、c p 的手册值如下表所示:从上表知,文献中的c T 、c p 手册值并不完全一致,特别c p 间的差值还有些大;由于Nikitin 等的数据和Poling B E 等专着的手册值更为接近,以Nikitin 等的数据为基准手册值,计算出上述各法的误差列于下表;由表知,对c T 、c p 的推算,分别以Magoulas 等法和Hu 等法为最好,且c p 的推算误差比c T 要大;Nikitin 等也给出了c T 和c p 的推算方程如下:据此也可推算正十九烷的c T 和c p ;误差:756754.611000.18%756-⨯= 误差:11.6011.551000.43%11.60-⨯=由Nikitin 等法估算正十九烷的T c ,其误差仅比Magoulas 等法稍差,但比其它三种方法都要优越些;相反,该法估算p c 的误差却最小,比以上四种方法都好,误差要小近半个数量级,甚至更好;由此可见经常查阅文献,与时俱进是很重要的;2-9 试用Constantinou, Gani 和O ’Connell 法估算下列化合物的偏心因子和时液体摩尔体积;1甲乙酮,2环乙烷,3丙烯酸;解 此题如何计算首先要查阅原书P34脚注中的文献4;从该文献中知晓应用何种方程、并查表此两表已在附表9和附表10中给出获得一阶和二阶的数据1i ω、1i υ和2j ω、2j υ等;1甲乙酮应注意到式2-48仅能用于正烷烃的偏心因子估算;对于甲乙酮则应从查阅的文献中得出求算方程;先估算甲乙酮的偏心因子,查得一阶计算的方程为0.50501exp() 1.15070.4085i i N ωω-=∑E1式中,i N 为要估算化合物分子中基团i 出现的次数;1i ω为i 的偏心因子一阶基团贡献值;甲乙酮可分解为3CH 、2CH 和3CH CO 三种基团,从附表9中可以查得1i ω和1i υ,并列表如下:将有关数据代入式E1,得 解得 0.376ω=;从附表1中查得甲乙酮的0.329ω=,0.3290.37610014.28%0.329-=⨯=-误差;一阶估算的误差较大,试进行二阶估算;从文献得出的计算方程为0.505012exp() 1.15070.4085i i j j N A M ωωω-=∑+∑ E2式中 1A =;j M 是在要估算的化合物分子中基团j 出现的次数;2j ω为j 的偏心因子二阶基团贡献值;经查附表10知,甲乙酮的二阶基团为32CH COCH ,其2j ω和2j υ分别为了和31m kmol -⋅;将相关1i ω和2j ω值代入式E2,得0.5050exp() 1.150710.2960210.146911 1.015221(0.20789)0.40851.458150.20789 1.25026ω-=⨯+⨯+⨯+⨯-=-=将上式简化并解得 0.314ω=,0.3290.314100 4.56%0.329-=⨯=误差;从文献查得估算298K 时的l V 估算式为120.01211l i i j j V N A M ωω-=∑+∑E3一阶估算时,0A =,将已查得的各基团的一阶饱和液体贡献值代入式E3,得从化学化工物性数据手册查得甲乙酮在20℃和40℃时的密度分别为3kg m -⋅和3kg m -⋅;内插得25℃时液体的摩尔密度为3kmol m -⋅,则可得出其摩尔体积为31m kmol -⋅;以此为文献值,进行一阶估算结果的误差计算,得二阶估算时,A=1,除1i υ外,尚需要2j υ,以上都已查得备用,依次代入式E3,得2环乙烷偏心因子的一阶估算时,环乙烷可作如下分解,得出基团,并查出基团贡献值:按式E1从附表1查得环乙烷的偏心因子为,0.2130.207100 2.82%0.213-=⨯=误差偏心因子的二阶估算时,从附表10中查得六元环的基团贡献值为,A=1,则按式E2得298K 时环乙烷的摩尔体积按式E3作一阶估算,此时A=0,则从Poling B E 等着的气体物性估算手册中查得时环乙烷的饱和液体摩尔体积为31m kmol -⋅;以此为文献值,则0.108750.11057100 1.67%0.10875-=⨯=-误差;按式E3作二阶估算时,A=1,从附表10中查得六元环的基团贡献值为31m kmol -⋅,因此对环乙烷而言,不论是ω或是l V ,二阶估算的结果都没有一阶估算的精确; 3丙烯酸丙烯酸可分解成如下的基团,并查得其基团贡献值;一阶估算ω,按式E1,从化学化工物性数据手册查得丙烯酸的ω值为,以此为文献值,进行误差计算,二阶估算ω,按式E2,A=1,一阶估算V,按式E3,A=0,l丙烯酸的密度数据来自化学化工物性数据手册,经换算,丙烯酸在25℃时的液体摩尔体积为31⋅,以此为文献值,则m kmol-二阶估算V,按式E3,A=1,l二阶估算结果显示出,ω的估算结果不如一阶的好,而V则相反,二阶估算结l果要比一阶的好;现把全部所得结果示于下表;由表的结果可以得出如下一些看法和观点:aConsfantinou, Gani 和O ’Connell 法预测估算法,对上述三种不同化合物的偏心因子和298K 饱和液体的摩尔体积都比较成功地进行了预测,误差也不算太大,在工程计算中应该有其应用价值;b 从预期来说,二阶估算的结果应该要比一阶估算的好;但从实际估算结果知,并非如此,例如环乙烷的ω和l V 两者的二阶估算结果都比一阶估算结果差;丙烯酸的ω估算,情况也与上述相同;估计出现相仿情况的场合,恐怕为数不少,说明该法应有改进的需要;2-10 估算150℃时乙硫醇的液体的摩尔体积;已知实验值为31m kmol -⋅;乙硫醇的物性参数为c T =499K 、c p =、c V =31m kmol -⋅、ω=,20℃的饱和液体密度为8393kg m -⋅;解 方法1:用Rackett 方程计算液体摩尔体积; Rackett 方程为 其中: 635.49100.207100.27398.314 4.99c c c c p V Z RT -⨯⨯⨯===⨯故0.2857(10.8480)310.207(0.2739)0.0972SL V m kmol --=⨯=⋅乙硫醇的摩尔体积为31m kmol -⋅,该值和实验值31m kmol -⋅相比,误差为%; 方法2:用Lyderson 方法计算由20℃时的饱和液体密度求出此状态的摩尔体积1V ,M 为乙硫醇的摩尔质量,则20℃时的对比温度为根据1r T 值,从图2-11的饱和液体线上查得对比度密度,1r ρ=;同理,根据此值,从图2-11的饱和液体线上查得2 2.15r ρ=;故根据Lyderson 方程,有乙硫醇的摩尔体积计算值为31m kmol -⋅,和实验值相比,误差为%; 2-11 50℃、由摩尔分数的氮和摩尔分数的乙烯组成混合气体,试用下列4种方法求算混合气体的摩尔体积;已知从实验数据, 1.40Z =实;1理想气体方程;2Amagat 定律和普遍化压缩因子图;3 虚拟临界常数法Kay 规则;4 混合物的第二维里系数法;解 1 理想气体方程法根据理想气体方程求得混合物的摩尔体积id m V 为 2 Amagat 定律和普遍化压缩因子图法 根据Amagat 定律()(/)()id id m i i i i i i m m m iiiV V y y Z RT p y Z V Z V ====∑∑∑E1从附表1查得2N 和24C H 的c p 和c T ,2N 1: c p =3.39MPa ,c T =126.2K 24C H 2: c p =5.04MPa ,c T =282.4K根据c p 、c T 值,求出2N 1和24C H 2的r T 和r p 为2N 1:150273.15 2.561126.2r T +==, 160.9717.993.39r p ==24C H 2:250273.15 1.144282.4r T +==, 260.9712.105.04r p ==从普遍化二参数压缩因子图查得相应的i Z 值2N : 1 1.49Z =;24C H :2 1.34Z =代入式E1得3 虚拟临界常数法Kay 规则法根据Kay 规则计算混合物虚拟临界常数, 故可求出混合物的对比温度和对比压力,50273.15 1.470219.8rm T +==, 60.9713.924.38rm p ==根据rm T 和rm p ,查二参数普遍化压缩因子图2-4,得 1.45m Z =,故 4混合物的第二维里系数法 根据式2-712-72e,2211112122222m B y B y y B y B =++E2 01()cij ij ij ij ij cijRT B B B p ω=+E31/2()(0)cij ci c j ij T T T ==这里KE41/31/33()2ci c j cij V V V +=E5()/2cij ci c j Z Z Z =+E6()/2ij i j ωωω=+ E7cij cij cij cijZ RT p V =E80ij B 和1ij B 用Pitzer 的普遍化关联法计算,即0 1.60.0830.422/ij rij B T =- E9 1 4.20.1390.174/ij rij B T =-E10其中 /rij cij T T T =,/rij cij p p p = E11 纯组分的第二维里系数,可按通常的方法求出,即只须用式E3、式E9和式E10,当然此时i=j;而对交叉第二维里系数,须从式E3式E11求出;先从附表1查得各组分的c p 、c T 、c V 、c Z 和ω,具体数值见后面的表1,具体的计算步骤如下: 对2N 1,根据式E11,1111273.1550/ 2.5606126.2r c T T T +===, 111160.97/17.9853.39r c p p p ===根据式E9和E10,011 1.60.4220.0830.010752.5606B =-=-, 1114.20.1740.1390.13572.5606B =-= 代入式E3,得 对24C H 2,根据式E11,2222273.1550/ 1.1443282.4r c T T T +===, 222260.97/12.0975.04r c p p p ===根据式E9和E10,022 1.60.4220.0830.25711.1443B =-=-, 122 4.20.1740.1390.041351.1443B =-= 代入式E3,得交叉第二维里系数12B 的计算如下: 根据式E4式E8, 根据式E11, 代入式E9和E10,012 1.60.4220.0830.095561.7118B =-=-, 112 4.20.1740.1390.12101.7118B =-= 代入式E3得将上述计算结果综合成表1;表1、维里方程计算混合气体的摩尔体积时的一些中间参数i-j T cKp c /MPa V c /m 3kmol -1Z c ω T r B 0 B 1 B/m 3kmol -11-2注:方框中的数值系从附表1查得,其余的分别根据式E3式E11求得;根据式E2求出m B ,得根据维里截断式2-7,求出混合物的压缩因子为若压缩因子为“负值”,意味着摩尔体积为负值;这是没有任何物理意义的,也是不合理的;说明方法4在高达的压力下是不适合的;将四种方法计算结果综合成表2;由表可知,2、3两种方法求出的结果和实验值很接近,而方法1也即理想气体方程求得的结果偏差很大,这是由于系统非理想的缘故;比较2、3两种方法,可以看出2法,也即Amagat 定律,求出的结果为最优;表2、由4种方法计算混合气体的压缩因子和摩尔体积计算方法压缩因子Z m摩尔体积V m/ m 3kmol -1误差 / %实验值计算值1 2 3 4无意义无意义2-12 以化学计量比的2N 和2H 合成氨,在25℃和下,混合气以3311.666710m s --⨯⋅的流速进入反应器;氨的转化率为15%;从反应器出来的气体经冷却和凝缩,将氨分离出后,再行循环;1计算每小时合成氨的量;2若反应器出口的条件为,150℃,求内径为2510m -⨯的出口管中气体的流速;解 先求出2N 1+2H 2混合气体的摩尔体积m V ,拟用Amagat 定律求解; 由附表1分别查得2N 和2H 的c p 、c T 为2N :1 3.39c p MPa =, 1126.2c T K = 2H :2 1.30c p MPa =, 233.2c T K =然后求2N 和2H 的r p 、r T ,2N : 130.3958.9663.39r P ==, 125273.157.237126.2r T +== 2H : 230.39514.401.300.8106r P ==+, 2298.158.96633.28r T ==+根据r P 、r T 查二参数普遍化Z 图得1 1.13Z =,2 1.22Z =因为2N 和2H 是以化学计量比输入,故10.25y =, 20.75y =根据Amagat 定律 故53161.208.314298.159.791030.39510m m Z RT V m mol p --⨯⨯===⨯⋅⨯ 已知混合气体的进口体积流量,331.666710in v m s -=⨯⋅,则混合气体的进口摩尔流速in m 为根据反应的计量关系,22332N H NH −−→+←−−总量 开始 1 3 0 4 结束 330.15-⨯ 20.15⨯ 则每小时合成氨的量可由下式计算得出,2 先求出口气体的组成;因为出口气体中223::(10.15):(330.15):(20.15)N H NH =--⨯⨯,故20.2297N y =,20.6892H y =,30.0811NH y =, 1.000i iy =∑再求出口气体的摩尔流速利用Amagat 定律求出口气体的摩尔体积m V ;先从附表查得3NH 的11.28c p MPa =,405.6c T K =,则可求出各组分的对比性质为2H : 27.8613.201.300.8106r p ==+, 150273.1510.2733.28r T +==+2N : 27.868.2183.39r p ==, 273.151503.353126.2r T +==3NH : 27.86 2.47011.28r p ==, 273.151501.043405.6r T +==根据上述对比参数,查二参数普遍化Z 图,得2 1.15H Z =,2 1.14N Z =,30.380NH Z =则 1.150.0892 1.140.22970.3800.0811 1.085m i i iZ y Z ==⨯+⨯+⨯=∑故43161.0858.314423.15 1.371027.8610m m Z RT V m mol p --⨯⨯===⨯⋅⨯ 出口管中气体的体积流速为出口管中气体的流速,μ,可按下式计算,式中:A 为管子的截面积;计算得出出口管中混合气体的流速为11.10m s -⋅; 58页第2章2-1 求温度、压力的甲烷气体摩尔体积; 解:a 理想气体方程 b 用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V; c 用PR 方程步骤同b,计算结果:1331103893.1--+⋅⋅⋅=mol m V i ; d 利用维里截断式查表可计算r p 、r T 、0B 、1B 和Z 由13310391.1--⋅⋅⋅==⇒=mol m pZRTV RT pV Z 2-2 V=0.5 m 3,耐压 MPa 容器;规定丙烷在T=时,p<;求可充丙烷多少千克 解:a 用理想气体方程136948.815.400314.85.01035.10441.0--⋅⋅=⋅⋅⋅⋅==⇒=⇒=mol m RT MpV m RT M m pV nRT pV b用R-K 方程① 查表求c T 、c p ;② 计算a 、b ;③ 利用迭代法计算V; 则可充丙烷质量计算如下: c 利用维里截断式:查表可计算r p 、r T 、0B 、1B 和Z 由133610257.21035.115.400314.8916.0--⋅⋅⋅=⋅⋅⋅=⇒=mol m V RT pV Z m m 则可充丙烷质量计算如下:2-4 V=1.213 m 3,乙醇45.40 kg,T=,求压力; 解:a 理想气体状态方程 b 用R-K 方程 c 用SRK 方程计算 d 用PR 方程计算 e 用三参数普遍化关联2-6 本题以计算机编程计算提供参考,考试时不能使用aR-K 方程 S-R-K2-7 计算T=,p=2 MPa 的水蒸气的Z 和V 解:a 用维里截断式221pVCRTpV BRT p RT V V C V B RT pV Z ++=⇒++≈=采用迭代法计算V= 之后求得Z= d 利用维里截断式查表可计算r p 、r T 、0B 、1B 可得到Z=; 由13310025.2--⋅⋅⋅==⇒=mol m pZRTV RT pV Z c 水蒸气表 92页第三章 3-4利用三参数压缩因子计算方法,查图表,得到压缩因子: 3-7: 解:注意:J kPa m ⋅=⋅3310 或者 3-9解:乙腈的Antonie 方程为 160℃时,乙腈的蒸气压 2乙腈的标准沸点320℃、40℃和标准沸点时的汽化焓 117页第四章 4-1 4-2 方法一: 经计算得体积流速为:()132210132.02075.0314.32/-⋅⋅=⎪⎭⎫ ⎝⎛⋅⋅=⋅⋅=s m d u V π摩尔流速为:1015.41500000/15.593314.80132.0/-⋅⋅=⋅===s mol p RT V V V n m 根据热力学第一定律,绝热时W s = -△H,所以 方法二:根据过热蒸汽表,内插法应用可查得35kPa 、80℃的乏汽处在过热蒸汽区,其焓值h 2= kJ ·kg -1; 1500 kPa 、320℃的水蒸汽在过热蒸汽区,其焓值h 1= kJ ·kg -1; 4-6 解: 通过112T C H T pmhR+=迭代计算温度,T 2= K 4-7 解:经迭代计算参考101页例题4-3得到T 2=;∆HT1T 2T C p T ()⎛⎜⎜⎠d H 2R T 2()+H 1R-8.32725-103⨯J ⋅mol1-⋅;146页第五章5-1:b 5-2: c 5-4: a 5-5: a 5-1:解:可逆过程熵产为零,即005<∆⇒=--∆=∆-∆=∆sys sys f sys g S T S S S S ; 5-2:解:不可逆过程熵产大于零,即00505T S T S S S S sys sys f sys g ->∆⇒>--∆=∆-∆=∆;即系统熵变可小于零也可大于零; 5-4:解:不可逆绝热过程熵产大于零,即0>∆=∆-∆=∆sys f sys g S S S S ;所以流体熵变大于零; 5-5:解:不可逆过程熵产大于零,即0010010T S T S S S S sys sys f sys g >∆⇒>-∆=∆-∆=∆; 5-3:解:电阻器作为系统,温度维持100℃,即,属于放热;环境温度,属于吸热,根据孤立体系的熵变为系统熵变加环境熵变,可计算如下: 5-6:解:理想气体节流过程即是等焓变化,温度不变,而且过程绝热,所以系统的熵变等于熵产,计算如下: 所以过程不可逆; 5-7: 解:∆S g204.184⋅ln 339363⎛⎝⎫⎪⎭⋅304.184⋅ln 339323⎛ ⎝⎫⎪⎭⋅+0.345kJ ⋅K1-⋅s1-⋅;不同温度的S 值也可以直接用饱和水表查得;计算结果是; 5-12解:1循环的热效率 2 水泵功与透平功之比H 2= kJ ·kg -1,H 3= kJ ·kg -1,H 4= kJ ·kg -1,H 5= kJ ·kg -1,3 提供1 kw 电功的蒸气循环量 5-15题: 194页第六章 6-1:解:水蒸气的摩尔流量为:nm M 3600⋅16801000⋅183600⋅25.926mol ⋅s1-⋅a 通过内插法求出时对应的温度,如下b 6-3 6-6:解:理想气体经一锐孔降压过程为节流过程,0=∆H ,且0=Q ,故0=S W ,过程恒温;则绝热膨胀过程的理想功和损耗功计算如下: 6-8:解:1产品是纯氮和纯氧时,2产品是98% N 2和50% O 2的空气时,设计计算流程如下:总的功6-12:解:6-13解:由1pmh 31()2pmh 32(),可得3 使用内插法可求得66.03℃时的熵值, 1利用熵分析法计算损耗功,2利用火用分析法:或者241页第七章7-2解:假设需水m kg,则产品酒中含水产品酒中含醇所以酒的体积7-3解:7-498% N 2 50% O 2解:根据吉布斯-杜亥姆公式,恒温恒压时 则有0=∑ii i V d x ,所以所以设计的方程不合理;。
化工热力学第三版答案第3章习题
第3章 均相封闭体系热力学原理及其应用 一、是否题1. 体系经过一绝热可逆过程,其熵没有变化。
2. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。
3. 热力学基本关系式dH=TdS+VdP 只适用于可逆过程。
4. 象dU=TdS-PdV 等热力学基本方程只能用于气体,而不能用于液体或固相。
5. 当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质)。
6.[]()0ln ,PPR P T S S ig+-与参考态的压力P 0无关。
纯物质逸度的完整定义是,在等温条件下,f RTd dG ln =。
7. 理想气体的状态方程是PV=RT ,若其中的压力P 用逸度f代替后就成为了真实流体状态方程。
8. 当0→P 时,∞→P f。
9.因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT1ln ϕ,当0→P 时,1=ϕ,所以,0=-P RT V 。
10. 逸度与压力的单位是相同的。
11. 吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-。
12. 由于偏离函数是两个等温状态的性质之差,故不可能用偏离函数来计算性质随着温度的变化。
13. 由于偏离函数是在均相体系中引出的概念,故我们不能用偏离函数来计算汽化过程的热力学性质的变化。
14. 由一个优秀的状态方程,就可以计算所有的均相热力学性质随着状态的变化。
二、选择题1. 对于一均匀的物质,其H 和U 的关系为(B 。
因H =U +PV ) A. H 错误!未找到引用源。
UB. H>UC. H=UD. 不能确定2. 一气体符合P=RT/(V-b)的状态方程从V 1等温可逆膨胀至V 2,则体系的错误!未找到引用源。
S 为(C 。
b V b V R dV b V R dV T P dV V S S V VV V VV V T --=-=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰12ln 212121∆)A.bV bV RT --12lnB. 0C. bV b V R --12lnD. 12ln V V R3. 对于一均相体系,VP T S T T S T ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∂∂∂∂等于(D 。
工程热力学第三版课后习题答案沈维道(第四章)
第四章 理想气体的热力过程
4—1 有 2.3 千克的 CO, 初态 T1 = 477K,p1 = 0.32MPa , 经可逆定容加热, 终温 T2 = 600K , 设 CO 为理想气体,求 ∆U 、 ∆H 、 ∆S ,过程功及过程热量。 (1)设比热容为定值; (2)变 值比热容,按气体性质表。 解: (1)定值比热容
4—3 试由 w = 算式。 解: 可逆过程的过程功 w =
2 2
∫
1
pdv,wt = − ∫ vdp 导出理想气体进行可逆绝热过程时过程功和技术功的计
1
∫
2
1
pdv ,由绝热过程方式可知 p1v1κ = pvκ , p =
p1v1κ vκ
所以
w = p1v1κ ∫
v2
v1
dv 1 1 = ( p1v1 − p2 v2 ) = Rg (T − T ) κ v κ −1 κ −1 1 2
60.08K = 13546.39J/mol 100K
1 ( H m,1 − H m,2 ) M 1 (9123.608 − 13546.39)J/(mol ⋅ K) = −138.21× 103 J/kg = −3 32.0 × 10 kg/mol
4—6 3kg 空气, p1 = 1MPa,T1 = 900K ,绝热膨胀到 p2 = 0.1MPa 。设比热容为定
Rg =
R 8.3145J/(mol ⋅ K) = = 0.260J/(kg ⋅ K) T1 = t1 + 273 = 40 + 273 = 313K M 32.0 × 10−3 kg/mol
p1 0.1MPa = 0.260J/(kg ⋅ K) × 313K ln = −112.82J/kg p2 4MPa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章温度1—1在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1)当时,即可由,解得故在时(2)又当时则即解得:故在时,(3)若则有显而易见此方程无解,因此不存在的情况。
1—2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。
(1)用温度计测量300K的温度时,气体的压强是多少?(2)当气体的压强为68mmHg时,待测温度是多少?解:对于定容气体温度计可知:(1)(2)1—3 用定容气体温度计测得冰点的理想气体温度为273.15K,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
解:根据已知冰点。
1-4用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强;当测温泡浸入待测物质中时,测得的压强值为,当从测温泡中抽出一些气体,使减为200mmHg时,重新测得,当再抽出一些气体使减为100mmHg时,测得.试确定待测沸点的理想气体温度.解:根据从理想气体温标的定义:依以上两次所测数据,作T-P图看趋势得出时,T约为400。
5K亦即沸点为400。
5K.题1-4图1-5铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
当温度计的测温泡与待测物体接触时,铂电阻的阻值为90。
28欧姆。
试求待测物体的温度,假设温度与铂电阻的阻值成正比,并规定水的三相点为273。
16K。
解:依题给条件可得则故1—6在历史上,对摄氏温标是这样规定的:假设测温属性X随温度t做线性变化,即,并规定冰点为,汽化点为.设和分别表示在冰点和汽化点时X的值,试求上式中的常数a和b.解:由题给条件可知由(2)-(1)得将(3)代入(1)式得1—7水银温度计浸在冰水中时,水银柱的长度为4。
0cm;温度计浸在沸水中时,水银柱的长度为24。
0cm。
(1)在室温时,水银柱的长度为多少?(2) 温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。
解:设水银柱长与温度成线性关系:当时,代入上式当,(1)(2)1-8设一定容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强分别为和。
(1)当气体的压强为时,待测温度是多少?(2)当温度计在沸腾的硫中时(硫的沸点为),气体的压强是多少?解:解法一设P与t为线性关系:由题给条件可知:当时有当时得:由此而得(1)(2)时解法二若设t与P为线性关系利用第六题公式可得:由此可得:(1)时(2)时1-9当热电偶的一个触点保持在冰点,另一个触点保持任一摄氏温度t时,其热电动势由下式确定:式中题1—9题(1)题1—9图(2)题1-9图(3)(1) 试计算当和时热电动势的值,并在此范围内作图。
(2)设用为测温属性,用下列线性方程来定义温标:并规定冰点为,汽化点为,试求出a和b的值,并画出图。
(3) 求出与和对应的值,并画出图(4)试比较温标t和温标.解:令(1)(2)在冰点时,汽化点,而,已知解得:(3)当时当时当时当时(4)温标t和温标只有在汽化点和沸点具有相同的值, 随线性变化,而t不随线性变化,所以用作测温属性的温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与虽非线性变化,却能直接反应熟知的温标,因此各有所长。
1-10 用L表示液体温度计中液柱的长度。
定义温标与L之间的关系为。
式中的a、b为常数,规定冰点为,汽化点为.设在冰点时液柱的长度为,在汽化点时液柱的长度,试求到之间液柱长度差以及到之间液柱的长度差。
解:由题给条件可得: (1) (2)解联立方程(1)(2)得:则1-11定义温标与测温属性X之间的关系为,其中K为常数。
(1)设X为定容稀薄气体的压强,并假定在水的三相点为,试确定温标与热力学温标之间的关系。
(2)在温标中,冰点和汽化点各为多少度?(3)在温标中,是否存在0度?解:(1)根据理想气体温标,而X=P (1)由题给条件,在三相点时代入式代入(1)式得: (2)(2)冰点代入(2)式得汽化点代入(2)式得(3)若,则从数学上看,不小于0,说明有0度存在,但实际上,在此温度下,稀薄汽体可能已液化,0度不能实测。
1—12一立方容器,每边长20cm其中贮有,的气体,当把气体加热到时,容器每个壁所受到的压力为多大?解:对一定质量的理想气体其状态方程为因,而故1-13一定质量的气体在压强保持不变的情况下,温度由升到时,其体积将改变百分之几?解:根据方程则体积改变的百分比为1-14一氧气瓶的容积是,其中氧气的压强是,规定瓶内氧气压强降到时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天.解:先作两点假设,(1)氧气可视为理想气体,(2)在使用氧气过程中温度不变。
则:由可有每天用掉的氧气质量为瓶中剩余氧气的质量为天1-15水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精确的气压计的读数为时,它的读数只有。
此时管内水银面到管顶的距离为。
问当此气压计的读数为时,实际气压应是多少。
设空气的温度保持不变。
题1-15图解:设管子横截面为S,在气压计读数为和时,管内空气压强分别为和,根据静力平衡条件可知,由于T、M不变根据方程有,而1—16截面为的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。
今将左侧的上端封闭年,将其右侧与真空泵相接,问左侧的水银将下降多少?设空气的温度保持不变,压强题1—16图解:根据静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为(两管水银柱高度差)设左端水银柱下降常数即整理得:(舍去)1-17图1-17所示为一粗细均匀的J形管,其左端是封闭的,右侧和大气相通,已知大气压强为,今从J形管右侧灌入水银,问当右侧灌满水银时,左侧水银柱有多高,设温度保持不变,空气可看作理想气体。
题1-17图解:设从J形管右侧灌满水银时,左侧水银柱高为h.假设管子的直径与相比很小,可忽略不计,因温度不变,则对封闭在左侧的气体有:而(S为管的截面积)解得:(舍去)1-18如图1-18所示,两个截面相同的连通管,一为开管,一为闭管,原来开管内水银下降了,问闭管内水银面下降了多少?设原来闭管内水银面上空气柱的高度R和大气压强为,是已知的。
题1—18图解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为.对闭管内一定质量的气体有:以水银柱高度为压强单位:取正值,即得1-19 一端封闭的玻璃管长,贮有空气,气体上面有一段长为的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因而使一部分水银漏出。
当大气压为时,六在管内的水银柱有多长?解:题1-19图设在正立情况下管内气体的压强为,以水银柱高度表示压强,倒立时,管内气体的压强变为,水银柱高度为由于在倒立过程温度不变,解之并取的值得1-20求氧气在压强为,温度为时的密度。
解:已知氧的密度1-21容积为的瓶内贮有氢气,因开关损坏而漏气,在温度为时,气压计的读数为。
过了些时候,温度上升为,气压计的读数未变,问漏去了多少质量的氢。
解:当时,容器内氢气的质量为:当时,容器内氢气的质量为:故漏去氢气的质量为1—22 一打气筒,每打一次可将原来压强为,温度为,体积的空气压缩到容器内。
设容器的容积为,问需要打几次气,才能使容器内的空气温度为,压强为。
解:打气后压强为:,题上未说原来容器中的气体情况,可设原来容器中没有空气,设所需打气次数为,则得:次1-23一气缸内贮有理想气体,气体的压强、摩尔体积和温度分别为、和,现将气缸加热,使气体的压强和体积同时增大。
设在这过程中,气体的压强和摩尔体积满足下列关系式:其中为常数(1)求常数,将结果用,和普适气体常数表示。
(2)设,当摩尔体积增大到时,气体的温度是多高?解:根据理想气体状态方程和过程方程有(1)(2)而,则1—24图1-24为测量低气压的麦克劳压力计的示意图,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。
继续上提瓶R,水银就进入两根相同的毛细管和内,当中水银面的高度差,设容器的容积为,毛细管直径,求待测容器中的气压。
题1-24图解:设管体积,当水银瓶R上提时,水银上升到虚线处,此时B内气体压强与待测容器的气体压强相等。
以B内气体为研究对象,当R继续上提后,内气体压强增大到,由于温度可视为不变,则根据玻-马定律,有由于1-25用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:(1)打开活拴K,使管AB和罩C与大气相通。
上度移动D,使水银面在n处。
(2)关闭K,往上举D,使水银面达到m处.这时测得B、D两管内水银面的高度差。
(3)打开K,把400g的矿物投入C中使水银面重密与对齐,关闭K。
(4)往上举D,使水银面重新到达m处,这时测得B、D两管内水银面的高度差已知罩C和AB管的容积共为,求矿物的密度.题1-25图解:设容器B的容积为,矿物的体积为,为大气压强,当打开K时,罩内压强为,步骤(2)中罩内压强为,步骤(4)中,罩内压强为,假设操作过程中温度可视不变,则根据玻—马定律知未放矿石时:放入后:解联立方程得1—26一抽气机转速转/分,抽气机每分钟能够抽出气体,设容器的容积,问经过多少时间后才能使容器的压强由降到。
解:设抽气机每转一转时能抽出的气体体积为,则当抽气机转过一转后,容器内的压强由降到,忽略抽气过程中压强的变化而近似认为抽出压强为的气体,因而有,当抽气机转过两转后,压强为当抽气机转过n转后,压强设当压强降到时,所需时间为分,转数1-27按重量计,空气是由的氮,的氧,约的氩组成的(其余成分很少,可以忽略),计算空气的平均分子量及在标准状态下的密度.解:设总质量为M的空气中,氧、氮、氩的质量分别为。
氧、氮、氩的分子量分别为。
空气的摩尔数则空气的平均摩尔质量为即空气的平均分子量为28.9。
空气在标准状态下的密度1—28把的氮气压入一容积为的容器,容器中原来已充满同温同压的氧气。
试求混合气体的压强和各种气体的分压强,假定容器中的温度保持不变.解:根据道尔顿分压定律可知又由状态方程且温度、质量M不变。
1—29用排气取气法收集某种气体(见图1-29),气体在温度为时的饱和蒸汽压为,试求此气体在干燥时的体积。
题1-29图解:容器内气体由某气体两部分组成,令某气体的压强为则其总压强干燥时,即气体内不含水汽,若某气体的压强也为其体积V,则根据PV=恒量(T、M一定)有1—30通常称范德瓦耳斯方程中一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化碳和氢分别为和,试计算这两种气体在,0.01和0.001时的内压强,解:根据内压强公式,设内压强为的内压强。