2014中考数学专题复习——压轴题(含答案)
2014年全国各地中考数学压轴题及答案解析(二)

2014年全国各地中考数学压轴题及答案解析(二)21.(江苏无锡)如图,菱形ABCD 的边长为2cm ,∠DAB =60°.点P 从A 点出发,以cm /s 的速度,沿AC 向C 作匀速运动;与此同时,点Q 也从A 点出发,以1cm /s 的速度,沿射线AB 作匀速运动.当P 运动到C 点时,P 、Q 都停止运动.设点P 运动的时间为t s .(1)当P 异于A 、C 时,请说明PQ ∥BC ;(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?解:(1)∵四边形ABCD 为菱形,∴AB =BC =2,∠BAC =∠DAB又∵∠DAB =60°,∴∠BAC =∠BCA =30°如图1,连接BD 交AC 于点O∵四边形ABCD 为菱形,∴AC ⊥BD ,OA =AC∴OB =AB =1,∴OA =,AC =2运动t 秒时,AP =t ,AQ =t ,∴==又∵∠P AQ =∠CAB ,∴△P AQ ∽△CAB∴∠APQ =∠ACB ,∴PQ ∥BC (2)如图2,设⊙P 与BC 切于点M ,连接PM ,则PM ⊥BC在Rt △CPM 中,∵∠PCM =30°,∴PM =PC =-t由PQ =AQ =t ,即 -t =t解得t =4-6,此时⊙P 与边BC 有一个公共点如图3,⊙P 过点B ,此时PQ =PB ∵∠PQB =∠P AQ +∠APQ =60°∴△PQB 为等边三角形∴QB =PQ =AQ =t ,∴t =1∴当4-6<t≤1时,⊙P 与边BC 有2个公共点如图4,⊙P 过点C ,此时PC =PQ 即2-t =t ,∴t =3-∴当1<t≤3-时,⊙P 与边BC 有一个公共点当点P 运动到点C ,即t =2时,⊙P 过点B此时⊙P 与边BC 有一个公共点∴当t =4-6或1<t ≤3-或t =2时,⊙P 与菱形ABCD 的边BC 有1个公共点当4-6<t≤1时,⊙P 与边BC 有2个公共点22.(江苏苏州)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形AB CD 以lcm /s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为lcm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm.设正方形移动CD图4时间为x (s ),线段GP 的长为y (cm ),其中0≤x≤2.5.(1)试求出y 关于x 的函数关系式,并求当y =3时相应x 的值;(2)记△DGP 的面积为S 1,△CDG 的面积为S 2,试说明S 1-S 2是常数;(3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.解:(1)∵CG ∥AP ,∴∠CGD =∠P AG∴tan ∠CGD =tan ∠P AG ,Error: Reference source not found ∴=∵GF =4,CD =DA =1,AF =x ,∴GD =3-x ,AG =4-x ∴=,即y =Error: Reference source not found∴y 关于x 的函数关系式为y =Error: Reference source not found 当y =3时,Error: Reference source not found=3,解得x =2.5(2)∵S 1=GP ·GD =·Error: Reference source not found·(3-x)=S 2=GD ·CD =(3-x)·1=∴S 1-S 2=-=,即为常数(3)延长PD 交AC 于点Q ∵正方形ABCD 中,AC 为对角线,∴∠CAD =45°∵PQ ⊥AC ,∴∠ADQ =45°∴∠GDP =∠ADQ =45°∴△DGP 是等腰直角三角形,∴GD =GP∴3-x =Error: Reference source not found,解得x =found∵0≤x≤2.5,∴x =Error: Reference source not found 在Rt △DGP 中,PD =Error: Reference source not found=(3-x)=23.(江苏连云港)如图,甲、乙两人分别从A (1,)、B (6,0)两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以4km /h 的速度行走,t h 后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达O 点前,MN 与AB 不可能平行.(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长,设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值.HH FEP GH HF E P G解:(1)∵A (1,),∴OA =2,∠AOB =60°假设MN ∥AB ,则有=∵OM =2-4t ,ON =6-4t ,∴= 解得t =0即在甲、乙两人到达O 点前,只有当t =0时,△OMN ∽△OAB ∴MN 与AB 不可能平行(2)∵甲达到O 点时间为t ==,乙达到O 点时间为t ==∴甲先到达O 点,∴t =或t =时,O 、M 、N 三点不能构成三角形①当t<时,若△OMN ∽△OBA ,则有 =解得t =2>,∴△OMN 与△OBA 不相似②当 <t <时,∠MON >∠OAB ,显然△OMN 与△OBA 不相似③当t > 时, = ,解得t =2>∴当t =2时,△OMN ∽△OBA(3)①当t ≤时,如图1,过点M 作MH ⊥x 轴,垂足为H 在R t △MOH 中,∵∠AOB =60°∴MH =OM ·sin60°=( 2-4t )× =( 1-2t)∴NH = ( 4t -2 )+( 6-4t)=5-2t∴s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28②当 <t ≤时,如图2,作MH ⊥x 轴,垂足为H 在R t △MNH 中,MH = ( 4t -2 )=( 2t -1)NH = ( 4t -2 )+( 6-4t)=5-2t∴s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28③当t > 时,同理可得s =[ ( 1-2t )]2+( 5-2t )2=16t2-32t +28综上所述,s =16t2-32t +28∵s =16t 2-32t +28=16( t -1)2+12∴当t =1时,s 有最小值为12∴甲、乙两人距离的最小值为2km24.(江苏南通)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点.点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.(1)若a =2,△BPQ ∽△BDA ,求t 的值;(2)设点M 在AC 上,四边形PQCM 为平行四边形.①若a =,求PQ 的长;②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.CBDAQ P解:(1)∵BC =12,D 是BC 的中点∴BD =C D =6∵a =2,∴BP =2t ,DQ =t ,BQ =6-t ∵△BPQ ∽△BDA ,∴=∴=,∴t =(2)①∵a =,∴BP =t∵四边形PQCM 为平行四边形,∴PQ ∥AC ∴△BPQ ∽△BAC ,∴=∴=,∴t =,∴BP =∵AB =AC ,∴PQ =BP =②不存在理由:假设存在实数a ,使得点P 在∠ACB的角平分线上则四边形PQCM 为菱形,∴BP =PQ =CQ =6+t 由①知,=,∴=∴t =-<0∴不存在实数a ,使得点P 在ACB 的角平分线上25.(江苏宿迁)如图,在平面直角坐标系xO y 中,已知直线l 1:y =x 与直线l 2:y =-x +6相交于点M ,直线l 2与x 轴相交于点N .(1)求M 、N 的坐标;(2)在矩形ABCD 中,已知AB =1,BC =2,边AB 在x 轴上,矩形ABCD 沿x 轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD 与△OMN 的重合部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).直接写出S 与自变量t 之间的函数关系式(不需要给出解答过程);(3)在(2)的条件下,当t 为何值时,S 的值最大?并求出最大值.解:(1)对于y =-x +6,令y =0,得x =∴点N 的坐标为(6,0)CB DAQ P MBA CDOB由题意,得解得∴点M 的坐标为(4,2)(2)当0≤t≤1时,S =t2当1<t≤4时,S =t -当4<t<5时,S =- t2+t -当5≤t<6时,S =-t +当6≤t≤7时,S =(7-t)2(3)解法一:当0≤t≤1时,S 最大=当1<t≤4时,S 最大=当4<t<5时,S =-(t -)2+∴当t =时,S 最大=当5≤t<6时,S 最大=当6≤t≤7时,S 最大=综上可知,当t =时,S解法二:由(2)中的函数关系式可知,S 当4<t<5时,S =-(t -)2+∴当t =时,S 的值最大,且最大值是 26.(江苏模拟)已知抛物线与x 轴交于B 、C (1,0)两点,与y 轴交于点A ,顶点坐标为(,-).P 、Q 分别是线段AB 、OB 上的动点,它们同时分别从点A 、O 向B 点匀速运动,速度均为每秒1个单位,设P 、Q 运动时间为t (0≤t ≤4).(1)求此抛物线的解析式,并求出P 点的坐标(用t 表示);(2)当△OPQ 面积最大时求△OBP 的面积;(3)当t 为何值时,△OPQ 为直角三角形?(4)△OPQ 是否可能为等边三角形?若可能请求出t 的值;若不可能请说明理由,并改变Q 点的运动速度,使△OPQ 为等边三角形,求出Q 点运动的速度和此时t 的值.解:(1)设抛物线的解析式为y =a (x -)2-∵抛物线过点C (1,0)∴0=a (1-)2-,∴a =∴y =(x -)2-令y =0,得x 1=1,x 2=4,∴B (4,0)令x =0,得y =3,∴A (0,3)A MCD B A C DBB∴AB ==5过点P 作PM ⊥y 轴于M 则△AMP ∽△AOB ,∴==即==,∴AM =t ,PM =t ∴P (t ,3-t )(2)过点P 作PN ⊥x 轴于N ∴S △OPQ=OQ ·PN =·t ·(3-t)=-t2+t =-(t -)2+∴当t = 时,△OPQ 面积最大此时OP 为AB 边上的中线∴S △OBP=S △AOB=××3×4=3(3)若∠OPQ =90°,则OP 2+PQ 2=OQ 2∴( t)2+(3- t)2+(t -t)2+(3-t)2=t2解得t 1=3,t 2=15(舍去)若∠OQP =90°,则PM =OQ ∴t =t ,∴t =0(舍去)∴当t =3时,△OPQ 为直角三角形(4)∵OP 2=( t)2+(3- t)2,PQ 2=(t - t)2+(3- t)2∴OP ≠PQ ,∴△OPQ 不可能是等边三角形设Q 的速度为每秒k 个单位时,△OPQ 为等边三角形则OQ =2PM ,∴kt =2·t ,得k =PN =OP =OQ ,∴3-t = ·t ∴t =27.(江苏模拟)如图,在梯形纸片ABCD 中,BC ∥AD ,∠A +∠D =90°,tan A =2,过点B 作BH ⊥AD 于H ,BC =BH =2.动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作FE ⊥AD 交折线D -C -B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1.设F 点运动的时间是t (秒).(1)当点E 和点C 重合时,求t 的值;(2)在整个运动过程中,设△EFD 1或四边形EFD 1C 1与梯形ABCD 重叠部分面积为S ,求S 与t 之间的函数关系式和相应自变量t 的取值范围;(3)平移线段CD ,交线段BH 于点G ,交线段AD 于点P .在直线BC 上是否存在点Q ,使△PGQ 为等腰直角三角形?若存在,求出线段BQ 的长;若不存在,说明理由.解:(1)过点C 作CK ⊥AD 于K则四边形BHKC 是矩形,∴HK =BC =2,CK =BH =2在Rt △CKD 中,∠DCK +∠D =90°∵∠A +∠D =90°,∴∠DCK =∠AD 1ABCFEDHAB CDH备用图AB CDH K∴tan ∠DCK =tan A =2,即=2∴DK =4,即t =4(2)∵=tan A =2,BH =2,∴AH =1∴AD =AH +HK +DK =1+2+4=7①当0<t≤3.5时,重叠部分为△EFD 1由题意,D 1F =DF =t在Rt △EFD 中,∠DEF +∠D =90°∵∠A +∠D =90°,∴∠DEF =∠A∴tan ∠DEF =tan A =2,即=2,∴EF =t ∴S =S △EFD 1=D 1F ·EF =t ·t = t2②当3.5<t≤4时,重叠部分为四边形AFEM过点M 作MN ⊥AD 于N则tan A =D 1A =2t -7,=tan A =2,得AN =MN=tan D 1=tan D =cot A =即 = ,得MN = ( 2t -7)∴S =S △EFD 1 - S △MD 1A = t 2- ( 2t -7 )·( 2t -7)=- t 2+ t -③当4<t≤5时,重叠部分为五边形AFEC 1MS =S △C 1D 1FE - S △MD 1A = ( t -4+t )·2- ( 2t -7 )·( 2t -7)=- t 2+ t -④当5<t≤6时,重叠部分为梯形AFEBS =S 梯形AFEB = ( 6-t +7-t)·2=-2t +13(3)①当点P 为直角顶点时作QO ⊥AD 于O ,则∠GPH +∠QPO =90°∵∠GPH +∠PGH =90°,∴∠PGH =∠QPO又∵PG =PQ ,∠GHP =∠POQ =90°∴△GHP ≌△POQ ,∴HP =OQ =2,PO =OQ =1∴BQ =HO =3②当点Q 为直角顶点时同①可证△BQG ≌△OQP ,∴BQ =OQ =2③当点G 为直角顶点时同①可证△BQG ≌△HGP ,∴BG =HP =2GH =2BQ∵BG +GH =BH ,∴2BQ +BQ =2,∴BQ =∴在直线BC 上存在点Q ,使△PGQ 为等腰直角三角形,线段BQ 的长为3,2,28.(江苏模拟)如图1,直线l :y =-x +3分别交x 轴、y 轴于B 、A 两点,等腰Rt △CDE 的斜边C D 在x 轴上,且C D =6.若直线l 以每秒3个单位的速度向上匀速运动,同时点C 从(6,0)开始以每秒2个单位的速度向右匀速运动(如图2),设运动后直线l 分别交x 轴、y 轴于N 、M 两点,以OM 、ON 为边作如图所示的矩形OMPN .设运动时间为t 秒.(1)运动t 秒后点E 坐标为______________,点N 坐标为______________(用含t 的代数式表示);(2)设矩形OMPN 与运动后的△CDE 的重叠部分面积为S ,求S 与t 的函数关系式,并写出相应的t 的取值范围;(3)若直线l 和△CDE 运动后,直线l 上存在点Q 使∠OQC =90°,则当在线段MN 上符111A B C DH P O QG A B C DH P O G (Q )A B C DH P G Q合条件的点Q 有且只有两个时,求t 的取值范围;(4)连接PC 、PE ,当△PCE 是等腰三角形时,直接写出t 的值.解:(1)E (9+2t ,3),N (4+4t ,0)(2)运动t 秒时,ON =4+4t ,OC =6+2t ,OD =12+2t 当点N 与点C 重合时,4+4t =6+2t ,得t =1当点E 在边PN 上时,4+4t =9+2t ,得t =2.5当点N 与点D 重合时,4+4t =12+2t ,得t =4①当1<t≤2.5时,重叠部分为等腰Rt △CFN CN =FN =4+4t -(6+2t)=2t -2∴S =(2t -2 )2=2t 2-4t +2②当2.5<t<4时,重叠部分为四边形CEGN ND =12+2t -(4+4t)=8-2t∴S =S △CDE-S △NGD=×6×3-(8-2t)2=-2t 2+16t -23③当t ≥4时,重叠部分为△CDE ∴S =×6×3=9(3)①当直线l 过点C ,即C 、N 重合时,则线段MN 上只存在一点Q 使∠OQC =90°由(2)知,此时t =1②以OC 为直径作⊙O ′,当直线l 切⊙O ′ 于点Q 时,则线段MN 上只存在一点Q 使∠OQC =90°OO ′=O ′Q =OC =3+tO ′N =ON -OO ′=4+4t -(3+t)=1+3t 由=sin ∠O ′NQ =sin ∠MNO =得=,解得t =3所以当在线段MN 上符合条件的点Q 有且只有两个时,t 的取值范围是1<t<3(4)t =,t =,t =,t =1提示:∵P (4+4t ,3+3t ),C (6+2t ,0),E (9+2t ,3∴PC 2=(2t -2)2+(3+3t)2PE 2=(2t -5)2+(3t)2,CE 2=18若PC =PE ,则(2t -2)2+(3+3t)2=(2t -5)2+(3t)2解得t =若PC =CE ,则(2t -2)2+(3+3t)2=18解得t =(舍去负值)若PE =CE ,则(2t -5)2+(3t)2=18解得t =1或t =29.(江苏模拟)如图,抛物线y =ax2+bx +c A 、B (A 在B 的左侧),连接AC 、BC ,得等边△ABC .点的速度向点A 运动,同时点Q 从点C 出发,以每秒个单位的速度向y 轴负方向运动,连接PQ 交射线BC 于点D ,当点P 到达点A 时,点Q 停止运动.设运动时间为t 秒.(1)求抛物线的解析式;(2)设△PQC 的面积为S ,求S 关于t 的函数关系式;(3)以点P 为圆心,PB 为半径的圆与射线BC 交于点E ,试说明:在点P 运动的过程中,线段DE 的长是一定值,并求出该定值.解:(1)∵抛物线y =ax2+bx +c 的顶点为C (0,-)∴抛物线的对称轴是y 轴,∴b =0可设抛物线的解析式为y =ax2-∵△ABC 是等边三角形,且CO ⊥AB ,CO =∴AO =1,∴A (-1,0)把A (-1,0)代入y =ax 2-,得a =∴抛物线的解析式为y =x2-(2)当0<t<1时,OP =1-t ,CQ =t ∴S =CQ ·OP =·t ·(1-t)=- t2+t 当1<t<2,OP =t -1,CQ =t ∴S =CQ ·OP =·t ·(t -1)= t2-t(3)连接PE ,过D 作DH ⊥y 轴于H ,设DH =a ①当0<t<1时∵PB =PE ,∠PBE =60°∴△PBE 为等边三角形∴BE =PB =t ∵△QDH ∽△QPO ∴=,即=∴a =,∴DC =1-t∴DE =CB -EB -DC =2-t -(1-t)=1②当1<t<2时同理,△QDH ∽△QPO ,得=∴=∴a =,∴DC =t -1∴DE =DC +CE =t -1+(2-t)=1综上所述,在点P 运动的过程中,线段DE 的长是定值230.(河北)如图,点A (-5,0),B (-3,045°,CD ∥AB ,∠CDA =90°.点P 从点Q (4,0度运动,运动时间为t 秒.(1)求点C 的坐标;(2)当∠BCP =15°,求t 的值;(3)以点P为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 解:(1)∵∠BCO =∠CBO =45°,∴OC =OB =3又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3)(2)当点P 在点B 右侧时,如图2若∠BCP =15°,得∠PCO =30°故OP =OC ·tan30°=此时t =4+当点P 在点B 左侧时,如图3由∠BCP =15°,得∠PCO =60°故OP =OC ·tan60°=3此时t =4+3∴t 的值为4+或4+3(3)由题意知,若⊙P 与四边形ABCD 的边相切,有以下三种情况:①当⊙P 与BC 相切于点C 时,有∠BCP =90°从而∠OCP =45°,得到OP =3,此时t =1②当⊙P 与CD 相切于点C 时,有PC ⊥CD 即点P 与点O 重合,此时t =4③当⊙P 与AD 相切时,由题意,∠DAO =90°∴点A 为切点,如图4PC 2=P A 2=(9-t)2,PO 2=(t -4)2于是(9-t)2=(t -4)2+32,解得:t =5.6∴t 的值为1或4或5.631.(河北模拟)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =6.点P 从点A 出发沿AB 以每秒2个单位长的速度向点B 匀速运动;点Q 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动.运动过程中DE 保持垂直平分PQ ,且交PQ 于点D ,交折线PB -BC 于点E .点P 、Q 同时出发,当点P 到达点B 时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒.(1)当t =______________秒,直线DE 经过点B ;当t =______________秒,直线DE 经过点A ;(2)四边形DPBE 能否成为直角梯形?若能,求t 的值;若不能,请说明理由;(3)当t 为何值时,点E 是BC 的中点?(4)以E 为圆心,EC 长为半径的圆能否与AB 、AC 、PQ 同时相切?若能,直接写出t 的值;若不能,请说明理由.解:(1);2提示:在Rt △ABC 中,∠C =90°,AB =10,AC =6∴BC == =8当直线DE 经过点B 时,连接QB ,则PB =QB ∴(10-2t)2=t2+82,解得t =(舍去)或t =当直线DE 经过点A 时,AP =AQ ∴2t =6-t ,即t =2(2)①当DE ∥PB 时,四边形DPBE 是直角梯形BQ ADCPEBQ ADCP (E )此时∠APQ =90°,由△AQP ∽△ABC ,得=即=,解得t =②当PQ ∥BC 时,四边形DPBE 是直角梯形此时∠AQP =90°,由△APQ ∽△ABC ,得=即=,解得t =(3)连接QE 、PE ,作EG ⊥PB 于G ,则QE =PE ∵QE 2=t2+42PE 2=PG 2+EG 2=(10-2t -×4)2+(×4)2∴t2+42=(10-2t -×4)2+(×4)2解得t =(舍去)或t =(4)不能设⊙E 与AB 相切于F 点,连接EF 、EP 、EQ 则EC =EF ,EQ =EP ,∠ECQ =∠EFP =90°∴△ECQ ≌△EFP ,∴QC =PF∴∠C =90°,∴⊙E 与AC 相切于C 点∴AC =AF ,∴AQ =AP 又AD =AD ,DQ =DP∴△ADQ ≌△ADP ,∴∠ADQ =∠ADP =90°又∠QDE =90°,∴A 、D 、E 三点在同一直线上由(1)知,此时t =2,AQ =6-t =4∵AB =10,AC =6,∴sin B ===设EC =EF =x ,则EB ==x ∴EC +EB =BC ,∴x +x =8∴x =3,∴EC =EF =3∴AE ===3易知△ADQ ∽△ACE ,∴=∴=,∴AD =∴ED =AE -AD =3-==而EC =3=,∴ED >EC ∴此时⊙E 与PQ 相离∴⊙E 不能与AB 、AC 、PQ 同时相切32.(山东青岛)如图,在Rt △ABC 中,∠C =90º,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t<4).解答下列问题:(1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在B 、E 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE :S 五边形PQBCD=1 :29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.A BC备用图EDAB C DBQ ADC P EBQAD CPEBQ ADCEPGBQ ADC PEF1①Rt△ABC C90ºAC6BC8-+×12当t=2时,PM=(4-2)=,ME=(4-2)=EQ=5-2×2=1,MQ=ME+EQ=+1=PQ==∵PQ·h=,∴h=×=33.(山东烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P 从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G.当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H B B解:(1)A (1,4)由题意,可设抛物线解析式为y =a (x -1)2+4∵抛物线过点C (3,0)∴0=a (3-1)2+4,∴a =-1∴抛物线的解析式为y =-(x -1)2+4即y =-x2+2x +3(2)∵A (1,4),C (3,0)∴可求直线AC 的解析式为y =-2x +6P (1,4-t ) 将y =4-t 代入y =-2x +6中,解得点E 的横坐标为x =1+∴点G 的横坐标为1+,代入抛物线的解析式中,可求点G 的纵坐标为4-∴GE =( 4- )-( 4-t )=t -又点A 到GE 的距离为 ,C 到GE 的距离为2-即S △ACG =S △AEG + S △CEG = EG · + EG ( 2- )= ·2( t - )=- ( t -2)2+1当t =2时,S △ACG 的最大值为1(3)t =或t =20-8提示:∵A (1,4),C (3,0),∴AB =4,BC =2∴AC = =2,∴cos ∠BAC = = =∵PE ⊥AB ,AP =t ,∴AE = =t ∴CE =2-t若EQ =CQ ,则在矩形ABCD 内存在点H ,使四边形CQEH 为菱形过点Q 作QN ⊥EC 于N ,则CE =2CN在Rt △QNC 中,CN =CQ ·cos ∠ACD =CQ ·cos ∠BAC =t ∴2- t = t ,解得t =若CE =CQ ,则在矩形ABCD 的AD 边上存在点H ,使四边形CQHE 为菱形∴2-t =t ,解得t =20-834.(山东模拟)把Rt △ABC 和Rt △DEF 按图1摆放(点C 与点B 、C (E )、F 在同一条直线上.∠BAC =∠DEF =90°,∠ABC =45°,BC ==8.如图2,△DEF 从图1的位置出发,以1个单位/秒的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△DEF 的顶点F 出发,以3个单位/秒的速度沿FD 向点D 匀速移动.当点P 移动到点D 时,P 点停止移动,△DEF 也随之停止移动.DE 与AC 相交于点Q ,连接BQ 、PQ ,设移动时间为t (s ).(1)设△BQE 的面积为y ,求y 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)当t 为何值时,三角形DPQ 为等腰三角形?(3)是否存在某一时刻t ,使P 、Q 、B 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(E )AD图1A D图2PQ解:(1)∵∠ACB =45°,∠DEF =90°,∴∠EQC =45°∴EC =EQ =t ,∴BE =9-t ∴y =BE ·EQ =(9-t)t 即y =- t2+t (0<t≤)(2)在Rt △DEF 中,∵∠DEF =90°,DE =6,EF =8∴DF ===10①当DQ =DP 时,则6-t =10-3t ,解得t =2②当PQ =PD 时,过P 作PG ⊥DQ 于G 则DH =HQ =(6-t)∵HP ∥EF ,∴△DHP ∽△DEF ∴=,即 = ,解得t =③当QP =QD 时,过Q 作QH ⊥DP 于H 则DH =HP = ( 10-3t)可得△DHQ ∽△DEF ,∴ =即 = ,解得t =(3)假设存在某一时刻t ,使P 、Q 、B 三点在同一条直线上过P 作PK ⊥BF 于K ,则△PKF ∽△DEF ∴ = = ,即 = =∴PK = t ,KF =t∵P 、Q 、B 三点共线,∴△BQE ∽△BPK ∴ = ,即 = ,解得t =即当t =秒时,P 、Q 、B 三点在同一条直线上35.(山东模拟)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于D ,且BD =8cm .点M 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时直线PQ 由点B 出发沿BA 方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于P ,交BC 于Q ,连接PM ,设运动时间为t (s ).(1)当四边形PQCM 是等腰梯形时,求t 的值;(2)当点M 在线段PC 的垂直平分线上时,求t 的值;(3)当t 为何值时,①△PQM 是等腰三角形;②△PQM 是直角三角形;(4)是否存在时刻t ,使以PM 为直径的圆与BC 相切?若存在,求出t 的值;若不存在,请说明理由.AD P QABD EFPQC G ABD E FHQCPAD PQ解:(1)作PE⊥AC于E,作QF⊥AC于F 若四边形PQCM是等腰梯形,则ME=CF 易知四边形PQFE是矩形,∴EF=PQ∴PQ∥AC,∴△PBQ∽△ABC∴AB=AC,∴PQ=PB=t,∴EF=t∴AB=10,BD=8,∴AD==6易证△APE∽△ABD,∴=即=,∴AE=6-t∴ME=AE-AM=6-t-2t=6-tCF=AC-(AE+EF)=10-(6-t+t)=4-t由ME=CF,得6-t=4-t,解得t=∴当t=s时,四边形PQCM是等腰梯形(2)若点M在线段PC的垂直平分线上,则MP=MC 作MG⊥AB于G,则△AMG∽△ABD∴==,∴==∴AG=t,MG=t∴PG=10-t-t=10-t在Rt△GPM中,MP2=(t)2+(10-t)2=t2-44t+100又∵MC2=(10-2t)2=4t2-40t+100由MP=MC,得t2-44t+100=4t2-40t+100解得t1=,t2=0(舍去)∴当t=s时,点M在线段PC的垂直平分线上(3)①若PQ=PM,则t2=t2-44t+100即8t2-55t+125=0△=(-55) 2-4×8×125=-975<0,方程无实数解若MP=MQ,则点M在线段PQ的垂直平分线上作PE⊥AC于E,∴EM=PQ=t由(1)知,AE=6-t∵AE+EM=AM,∴6-t+t=2t解得t=若PQ=MQ,作PE⊥AC于E,作QF⊥AC于F由(1)知,QF=PE∴△APE∽△ABD,∴=即=,∴QF=PE=8-t又FM=AM-(AE+EF)=2t-(6-t+t)=t-6∴MQ2=(8-t)2+(t-6)2=t2-32t+100由PQ=MQ,得t2=t2-32t+100解得t1=,t2=10(舍去)∴当t=s或t=s时,△PQM是等腰三角形②若∠MPQ=90°,则AM=6-t∴2t=6-t,∴t=若∠PMQ=90°,则PM2+QM2=PQ2∴t2-44t+100+t2-32t+100=t2即12t2-95t+250=0△=(-55) 2-4×8×125=-2975<0,方程无实数解若∠PQM=90°,作PE⊥AC于E则AE=6-t,EM=PQ=t∵AE+EM=AM,∴6-t+t=2tEACFBDPQMAC BDPQMGEAC BDPQMEAC BDPQMFAC BDPQMEAC BDPQM∴t=∴当t=s或t=s时,△PQM是直角三角形(4)设PM的中点为N,分别过P、N、M作BC的垂线,垂足为G、K、H易证△PBG∽△BCD,△MCH∽△BCD∴=,=∵AC=10,AD=6,∴DC=4∴BC==4∴=,=∴PG=t,MH=(10-2t)∴NK=(PG+MH)=(10-t)若以PM为直径的圆与BC相切,则PM=2NK∴PM2=4NK2∴t2-44t+100=(10-t)2解得t1=,t2=∴当t=s或t=s时,以PM为直径的圆与BC相切36.(内蒙古包头、乌兰察布)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P、Q分别从点A和点B同时出发,其中点P以l cm/秒的速度沿AC向终点C运动;点Q以1.25cm/秒的速度沿BC向终点C运动.过点P 作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(3)当t为何值时,△EDQ为直角三角形.解:(1)能.∵点P的速度为l cm/秒,点Q的速度为1.25cm/秒,t=1秒∴AP=1,BQ=1.25∴QD=BC-CD-BQ=5-3-1.25=0.75∵PE∥BC,∴△APE∽△ACD∴=,即=∴PE=0.75,∴PE=QD∴四边形EQDP是平行四边形(2)∵AC=4,BC=5,AP=t,BQ=1.25t∴CP=4-t,CQ=5-1.25t∴=,==∴=,∴PQ∥AB(3)①当∠EQD=90°时易证△EDQ∽△ADC,∴=A图1图1AC BDPQMG HKNA图1图1A图1图1显然点Q 在点D 右侧,DQ =1.25t -2,EQ =PC =4-t ∴=,解得t =2.5②当∠DEQ =90°时易证△DEQ ∽△DCA ,∴=∵PE ∥BC ,∴△APE ∽△ACD ,∴=∵AC =4,CD =3,∴AD =5∴=,∴AE =1.25t ,DE =5-1.25t 显然点Q 在点D 右侧,DQ =1.25t -2∴=,解得t =3.1∴当t =2.5秒或t =3.1秒时,△EDQ 为直角三角形37.(内蒙古呼伦贝尔)如图①,在平面直角坐标系内,Rt △ABC ≌Rt △FED ,点C 、D 与原点O 重合,点A 、F 在y 轴上重合,∠B =∠E =30°,AC =FD =.△FED 不动,△ABC 沿直线BE 以每秒1个单位的速度向右平移,直到点B 与点E 重合为止.设平移时间为x (秒),平移过程中AB 与EF 的交点为M .(1)求出图①中点B 的坐标;(2)如图②,当x =4秒时,求出过F 、M 、A 三点的抛物线的解析式;此抛物线上有一动点P ,以点P 为圆心,以2为半径的⊙P 在运动过程中是否存在与y 轴相切的情况,若存在,直接写出P 点的坐标;若不存在,请说明理由;(3)设移动x 秒后两个三角形重叠部分的面积为S ,求出整个运动过程中S 与x 的函数关系式.解:(1)如图①,在Rt △ABC 中,AC =,∠B =30°∴BC =AC =3,∴B (-3,0)(2)如图②,∵x =4,∴A (4,),B (1,0)过M 作MH ⊥BE 于H由题意,OE =BC =3,∴BE =2∵∠B =∠E ,∴MB =ME∴BH =BE =1,∴OH =2,MH =∴M (2,)设抛物线的解析式为y =ax2+bx +c ,把F 、M 、A 三点坐标代入 解得∴抛物线的解析式为y =x2-x +P 1(2,)或P 2(-2,3)提示:若半径为2的⊙P 与y 轴相切,那么点P 的横坐标为2或-2A图1图1当x =2时,y =x2-x +=当x =-2时,y =x2-x +=3∴存在符合条件的点P ,坐标为P 1(2,)或P 2(-2,3)(3)当点B 、O 重合时,x =3,所以整个运动过程可分为两个阶段:①当0≤x<3时,如图③BO =3-x ,CD =x ,OG =CH =BO = ( 3-x)FG =- ( 3-x )=x∴S =S 梯形FDCH -S △FGM= [ + ( 3-x )]·x -·x ··x=- x2+x②当3≤x ≤6时,如图④,BE =3-( x -3)=6-x∴S =S △BME = ( 6-x )· ( 6-x )·= x2-x +3综上所述,S 与x 的函数关系式为:S =38.(哈尔滨模拟)如图,在平面直角坐标系中,Ox 轴正半轴上,且OA =4,AB =2,将△OAB 沿某条直线翻折,使OA 与y 轴正半轴的OC 重合.点B 的对应点为点D ,连接AD 交OB 于点E .(1)求AD 所在直线的解析式:(2)连接BD ,若动点M 从点A 出发,以每秒2个单位的速度沿射线AO 运动,线段AM 的垂直平分线交直线AD 于点N ,交直线BD 于点Q .设线段QN 的长为y (y ≠0),点M 的运动时间为t 秒,求y 与t 之问的函数关系式(直接写出自变量t 的取值范围);(3)在(2)的条件下,连接MN ,当t 为何值时,直线MN 与过D 、E 、O 三点的圆相切,解:(1)由题意,△OAB ≌△OCD ∴OC =OA =4,CD =AB =2∴D (2,4)设直线AD 的解析式为y =kx +b ,把A (4,0),D (2,4)代入 解得∴y =-2x +8(2)由B (4,2),D (2,4),可得直线BD 的解析式为y =-x +6∵直线NQ 垂直平分线段AM∴NH ⊥AM ,AH =MH =AM =×2t =t备用图B D OC M H G BDE M∴OH =4-t ,∴H (4-t ,0)∴点Q 、N 的横坐标为为4-t∴QH =-(4-t)+6=t +2,NH =-2(4-t)+8=2t 当0<t<2时,点Q 在点N 上方y =QN =t +2-2t =-t +2当t>2时,点Q 在点N 下方y =QN =2t -(t +2)=t -2(3)过点D 作DF ⊥OA 于F ,则CD ∥OF ,CD =OF =2∴OA =4,∴AF =OF =2∴DF ⊥OA ,∴OD =AD ,∠ODC =∠DOF =∠DAF ∴△OAB ∴△OCD ,∴∠COD =∠AOB∴∠COD +∠AOD =90°,∴∠OED =∠AOB +∠OAD =90°∴OD 为经过D 、E 、O 三点的圆的直径,OD 的中点O ′ 为圆心在Rt △OCD 中,OD ==2tan ∠COD ==,tan ∠ODC ==2∵NH 垂直平分线段AM ,∴∠NMA =∠NAM∴∠DOA =∠NAM ,∠NMA =∠DOA ,∴MN ∥OD设直线MN 与⊙O ′ 相切于G 点,连接O ′G ,作GK ⊥OA 于K ,MI ⊥则∠OO ′G =∠O ′GM =90°∵MI ⊥OD ,∴四边形O ′IMG 为矩形∴IM =O ′G =,MG =O ′I∴OI =,OM =,∴MG =O ′I =∴KG =1,MK =,∴OK =3,∴G (3,1)∴OM +AM =OA ,∴+2t =4,∴t =同理可求当t =时,切点G (-1,3)∴当t =或t =时,直线MN 与过D 、E 、O 1,3)39.(哈尔滨模拟)如图,在平面直角坐标系中,直线y =x +b 与x 轴交于点A ,与正比例函数y =-x 的图象交于点B ,过B 点作BC ⊥y 轴,点C 为垂足,C (0,8).(1)求直线AB 的解析式;(2)动点M 从点A 出发沿线段AO 以每秒1个单位的速度向终点O 匀速移动,过点M 作x 轴的垂线交折线A -B -O 于点P .设M 点移动的时间为t 秒,线段BP 的长为d ,求d 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,动点Q 同时从原点O 出发,以每秒1个单位的速度沿折线O -C -B 向点B 移动,当动点M 停止移动时,点Q 同时停止移动.当t 为何值时,△BPQ 是等腰三角形?备用图备用图解:(1)∵BC⊥y轴,点C为垂足,C(0,8)∴点B的纵坐标为8∴y=-x,当y=8时,x=-6,∴B(-6,8)把(-6,8)代入y=x+b,得8=-6+b,∴b=14 Array∴直线AB的解析式为y=x+14(2)由题意得AM=t∴直线AB:y=x+14交x轴于点A∴A(-14,0),∴OA=14过点B作BD⊥x轴于点D∴B(-6,8),∴BD=8,OD=6∴AD=14-6=8,∴AB==810∴∠BAD45°cos∠DOB∵BP = ( t -8 ),BK = ( 14-t )∴( t -8 )= ( 14-t ),解得t =综上,当t =2或t =10或t = 或t =时,△BPQ 是等腰三角形40.(哈尔滨模拟)如图,直线y = x +12分别与x 轴、y 轴交于点A 、B ,直线BC 交x 轴于点C ,且AB =AC .(1)求直线BC 的解析式;(2)点P 从点C 出发沿线段CO 以每秒1个单位的速度向点O 运动,过点P 作y 轴的平行线,分别交直线BC 、直线AB 于点Q 、M ,过点Q 作QN ⊥AB 于点N .设点P 的运动时间为t (秒),线段MN 的长为d ,求d 与t 的函数关系式,并直接写出自变量t 的取值范围;(3)若经过A 、N 、Q 三点的圆与直线BC 交于另一点K ,当t 为何值时,KQ : AQ = :10?解:(1)∵直线y = x +12分别与x∴A (-9,0),B (0,12),∴OA =9,OB =12∴AB = =15,∴sin ∠BAO = =∵AB =AC ,∴AC =15,∴C (6,0)设直线BC 的解析式为y =kx +b∴ 解得∴直线BC 的解析式为y =-2x +12(2)由题意,PC =t ,∴OP =6-t∴点P 的横坐标为6-t∴PM = ( 6-t )+12,PQ =-2( 6-t )+12∴MQ =PM -PQ =20- t∵∠AMP +∠MAP =∠AMP +∠MQN =90°∴∠MQN =∠MAP =∠BAO∴sin ∠MQN =sin ∠BAO = ∴MN =MQ ·sin ∠MQN = ( 20- t )=16- t∴d =16- t (0≤t <6)(3)连接AK 、AQ∵∠ANQ =90°,∴AQ 为经过A 、N 、Q 三点的圆的直径∴∠AKQ =90°∵OB =12,OC =6,∴BC = =6由S △ABC = AC ·OB = BC ·AK ,得AK =6∵KQ : AQ = :10,∴设KQ =m ,则AQ =m在Rt△AKQ中,AK2+KQ2=AQ2∴(6)2+m2=(m)2,m=2∴AQ=m=10∵tan∠BCO==2,∴PQ=PC·tan∠BCO=2t 在Rt△AQP中,AP2+PQ2=AQ2∴(15-t)2+(2t)2=(10)2解得t1=1,t2=5∴当t=1或t=5时,KQ:AQ=:10。
2014全国各地中考数学压轴题集锦答案(一)

2014全国各地中考数学压轴题集锦答案(一)D②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A(1,2)∴⎩⎨⎧c =2a +3+c =2 解得⎩⎨⎧a =-1c =0∴抛物线y 1的解析式为y 1=-x2+3x x AyO B C P F ED Q GN M xA yO B C PF ED Q GN M H令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a 可得△ODP ∽△OAH ,∴DPOP=AHOH=2∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a ) ∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=79∴OP 的长为79②设直线AC 的解析式为y =kx +b∴⎩⎨⎧2=k +b 0=6k +b 解得k =2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +12 5由题意,OP =t ,PF =2t ,QC =2t ,GQ =45t 当EF 与MN 重合时,则OF +CN =6 O P N Q C xyD AEF M GO P N Q CxyD AE F MG∴3t +2t +4 5 t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6 ∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6∴t +2t +4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6 ∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使OP N QCxyD A EF MGO P NQC xyDA EF MGMQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎨⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-1 3x2+ 13x +4(2)连接DQ ,依题意知AP =t ∵抛物线y =-1 3x2+ 13x +4与y 轴交于点C∴C (0,4)又A (-3,0,B (4,0)xA y OCB D P Q可得AC=5,BC=42,AB=7∵BD=BC,∴AD=AB-BD=7-42∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP∵BD=BC,∴∠DCB=∠CDB∴∠CDQ=∠DCB,∴DQ∥BC∴△ADQ∽△ABC,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP=42-327,∴AP=AD+DP=177∴线段PQ被CD垂直平分时,t的值为17 7(3)设抛物线y=-13x2+13x+4的对称轴x=12与x轴交于点E由于点A、B关于对称轴x=12对称,连接BQ交对称轴于点M则MQ+MA=MQ+MB,即MQ+MA=BQ当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO xAyOCB EQ Mx=∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小4.(北京模拟)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB、AB边交于点E、F.点P与直线l 同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=_________秒时,点P与点E重合;当t =_________秒时,点P 与点F 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点P ′落在EF 上,点F 的对应点为F ′,当EF ′⊥AB 时,求t 的值;(3)作点P 关于直线EF 的对称点Q ,在运动过程中,若形成的四边形PEQF 为菱形,求t 的值;(4)在整个运动过程中,设△PEF 的面积为S ,直接写出S 关于t 的函数关系式及S 的最大值.解:(1)3;4.5提示:在Rt △ABC 中,∠C =90°,AC =6,BC =8∴AB =6 2+8 2=10,∴sin B =ACAB = 35,cos B =BC A P l FEBCA备用图BC Al F E (P)BC AB=45,tan B=ACBC=34当点P与点E重合时,点P在CB边上,CP=CE∵AC=6,点P在AC、CB边上运动的速度分别为每秒3、4个单位∴点P在AC边上运动的时间为2秒,CP=4(t -2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-43t在Rt△BEF中,BEBF=cos B BCAlFE(P)∴8-4 3t5( t -4 )= 4 5,解得t =4.5 (2)由题意,∠PEF =∠MEN∵EF ∥AC ,∠C =90°,∴∠BEF =90°,∠CPE =∠PEF∵EN ⊥AB ,∴∠B =∠MEN∴∠CPE =∠B ,∴tan ∠CPE =tan B ∵tan ∠CPE =CECP,tan B =ACBC=3 4∴CE CP=3 4 ,∴CP = 4 3CE∵AP =3t (0<t<2),CE =43t ,∴CP =6-3t∴6-3t =4 3 ×4 3 t ,解得t =5443(3)连接PQ 交EF 于O∵P 、Q 关于直线EF 对称,∴EF 垂直平分PQ 若四边形PEQF 为菱形,则OE =OF =12EF①当点P 在AC 边上运动时易知四边形POEC 为矩形,∴OE =PC E BO C A P l FQE BMC A P lF N∴PC=12EF∵CE=43t,∴BE=8-43t,EF=BE·tan B=34(8-43t)=6-t∴6-3t=12(6-t),解得t=65②当点P在CB边上运动时,P、E、Q三点共线,不存在四边形PEQF③当点P在BA边上运动时,则点P在点B、F 之间∵BE=8-43t,∴BF=BEcos B=54(8-43t)=10-53t∵BP=5(t-4),∴PF=BF-BP=10-53t-5(t-4)=30-20 3t∵∠POF=∠BEF=90°,∴PO∥BE,∴∠OPF =∠B在Rt△POF中,OFPF=sin BEBCA PlFQO∴12(6-t)30- 20 3t= 3 5 ,解得t =30 7∴当t =6 5 或t = 307时,四边形PEQF 为菱形(4)S =⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧-2 3t2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)8 3t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒).(1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.解:(1)60°(2)∵∠A =∠B =60°,PB =PB ′ ∴△PB ′B 是等边三角形∴PB =PB ′=BB ′=2t ,BE =B ′E =t ,PE =3t 当0<t≤2时ACBD PE B AC BD 备用图AC BD PE BS=S△PB′E=12B′E·PE=12t·3t=32t2当2<t≤4时S=S△PB′E-S△FB′C=32t2-34(2t-4)2=-32t2+43t-4 3当4<t≤5时设PB′、PE分别交DC于点G、H,作GK⊥PH 于K∵△PB′B是等边三角形,∴∠B′PB=60°=∠A ∴PG∥AD,又DG∥AP∴四边形APGD是平行四边形∴PG=AD=4∵AB∥CD,∴∠GHP=∠BPH∵∠GPH=∠BPH=12∠B′PB=30°∴∠GHP=∠GPH=30°,∴PG=GH=4∴GK=12PG=2,PK=KH=PG·cos30°=2 3∴PH=2PK=4 3∴S=S△PGH =12PH·GK=12×43×2=4 3ACBDPEBFACBDPEBG HK综上得,S 与t 之间的函数关系式为: S =⎩⎪⎪⎨⎪⎪⎧3 2t2(0<t≤2)-3 2t2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB ′=90° ∵∠B ′PB =60°,∴∠DPA =30° 又∠A =60°,∴∠ADP =90° ∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB ′=90°作DM ⊥AB 于M ,DN ⊥B ′B 于N 则AM =2,DM =23,NC =3,DN =3 3 PM =|10-2-2t |=|8-2t | NB ′=|3+4-2t |=|7-2t |DP2=DM2+PM2=(23 )2+( 8-2t )2=( 8-2t)2+12 DB ′2=DN2+NB ′=(33 )2+( 7-2t )2=( 7-2t)2+27∵DP 2+DB ′ 2=B ′P2∴(8-2t )2+12+( 7-2t )2+27=( 2t)2解得t 1=15+73 2>5(舍去),t 2=15-732若∠DB ′P =90°,则DB ′2+B ′P2=DP2ACBDP E B A C BD PE BM N∴(7-2t )2+27+( 2t )2=( 8-2t)2+12解得t 1=-1(舍去),t 2=0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为直角三角形,此时t =1或t =15-73 2②若DP =B ′P ,则(8-2t )2+12=( 2t)2解得t =198若B ′D =B ′P ,则(7-2t )2+27=(2t)2解得t =197若DP =DB ′,则(8-2t )2+12=( 7-2t)2+27解得t =0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为等腰三角形,此时t =19 8 或t =1976.(北京模拟)已知二次函数y =-3 3mx2+3mx -2的图象与x 轴交于点A (23,0)、点B ,与y轴交于点C . (1)求点B 坐标;A CB DP E B AC BD PB E(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC 沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-3 3mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S的最大值.解:(1)将A(23,0)代入y=-33mx2+3mx-2得0=-33m×(23)2+3m×23-2,解得m=33∴y=-13x2+3x-2令y=0,得-13x2+3x-2=0,解得:x1=3,x2=2 3∴B (3,0)(2)①由y =-1 3x2+3x -2,令x =0,得y =-2∴C (0,-2)∵y =-1 3 x 2+3x -2=- 1 3 ( x 32 3)2+1 4∴二次函数图象的对称轴为直线x = 3 23过A ′作A ′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60°∴∠PQA =150°,∠A ′QH =60°,AQ =A ′Q =2QH∵点A ′在二次函数图象的对称轴上 ∴⎩⎨⎧OQ +QH =3 23OQ +2QH =23 解得QH =3 2∴AQ =3,CP =1∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA ′C ′落在第一象限内的图形为等腰三角形QA ′DAB CO A xP H Cy(Q )DQ=A′Q=3tA′H=AQ·sin60°=3t·32=32tS=S△A′DQ=12·3t·32t=334t2∵当0<t≤1时,S随t的增大而增大∴当t=1时,S有最大值33 4ⅱ)当1<t<2时,四边形PQA′C′落在第一象限内的图形为四边形EOQA′S四边形EOQA′=S梯形PQA′C′-S△OPQ-S△PC′E=[23-32(2-t)2]-32(2-t)2-34t2=-534t2+43t-2 3∵-534t2+43t-23=-534(8)263且1<85<2,∴当t=85时,S有最大值635∵635>334,∴S的最大值是635ABCOAxPQ HDCyABCOAxPQ HECy7.(北京模拟)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t 之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD=2(2)作AH⊥BC于H,交EG于O,DK⊥EF DEA BQ CPF G于K,PM⊥DA交DA的延长线于M ∵AD∥BC,∠A=120°,AB=AD=2 ∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=3 2∵AP=t,∴PM=3 2t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴ENAD=PEPA,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)ABDQCPE FN GS O KHM(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t =6-1,t =6 2-1,t =4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x +42交x 轴于点A ,交y 轴于点B .在线段OA 上有一动点P ,以每秒2个单位长度的速度由点O 向点A 匀速运动,以OP 为边作正方形OPQM 交y 轴于点M ,连接QA 和QB ,并从QA 和QB 的中点C 和D 向AB 作垂线,垂足分别为点F 和点E .设P 点运动的时间为t 秒,四边形CDEF 的面积为S 1,正方形OPQM 与四边形CDEF 重叠部分的面积为S 2.(1)直接写出A 点和B 点坐标及t (2)当t =1时,求S 1的值; (3)试求S 2与t 的函数关系式 (4)直接写出在整个运动过程中,点C 和点D所走过的路程之和.yP A Q xO D C FB M E解:(1)A (42,0)、B (0,42),0≤t≤4(2)过Q 作QH ⊥AB 于H∵C 、D 分别是QA 和QB 的中点 ∴CD ∥AB ,CD =1 2AB =12×42×2=4∵CF ⊥AB ,DE ⊥AB ,∴CF ∥DE ∴四边形CDEF 是平行四边形 又∵CF ⊥AB ,∴四边形CDEF 是矩形 ∵CF ⊥AB ,QH ⊥AB ,∴CF ∥QH 又∵C 是QA 中点,∴CF =12QH连接OQ∵正方形OPQM ,∴∠1=∠2,OP =PQ =QM =MO∵OA =OB ,∴PA =MB∴Rt △QPA ≌Rt △QMB ,∴QA =QB ,∠PQA =∠MQB∵QH ⊥AB ,∴∠3=∠4∴∠1+∠MQB +∠3=180°,∴O 、Q 、H 三点共线∴QH =OH -OQyPA Qx O D C F BM EH 123 4∵t =1,点P 的运动速度为每秒2个单位长度∴OP =2,∴OQ =2 又∵OA =42,∴OH =4∴QH =OH -OQ =4-2=2,∴CF =1 ∴S 1=CD ·CF =4×1=4(3)当点Q 落在AB 上时,OQ ⊥AB ,△QOA 是等腰直角三角形 ∴t =22÷2=2 当0≤t≤2时,S 2=0当点E 落在QM 上,点F 落在PQ 上时,△CFK 和△DEG 都是等腰直角三角形 过C 作CT ⊥PQ 于T则CT =1 2 AP = 1 2 ( 42-2t )= 22( 4-t) ∴CF =2CT =4-t连接OQ ,分别交AB 、CD 于N 、R 则ON =2 2 OA =22×42=4∵OP =2t ,∴OQ =2t ,∴QN =2t -4 ∴CF =12QN =t -2∴4-t =t -2,∴t =3yP A Q xO D C FB M E G H I K N R yP A Qx O DC F B M E G K N R T当2<t≤3时,重叠部分为等腰梯形GHIK△QGK 和△QHI 都是等腰直角三角形 ∵QN =2t -4,RN =CF =t -2,∴QR =t -2 ∴GK =2QR =2t -4,HI =2QN =4t -8∴S 2=1 2 (GK +HI)·RN = 12( 2t -4+4t -8 )( t -2 )=3(t-2)2当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t) ∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT =4( t -2 )- 2( 4-t)·2 2( 4-t)=-t2+12t -24综上得S 2关于t 的函数关系式为: S 2=⎩⎪⎨⎪⎧0(0≤t≤2)3(t -2 )2(2<t≤3)-t2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半y P A Q xO D C FB M E G H I KN R T9.(上海模拟)如图,正方形ABCD中,AB=5,点E是BC延长线上一点,CE=BC,连接BD.动点M从B出发,以每秒2个单位长度的速度沿BD向D运动;动点N从E出发,以每秒2个单位长度的速度沿EB向B运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t秒,过M作BD的垂线MP交BE于P.(1)当PN=2时,求运动时间t;(2)是否存在这样的t,使△MPN为等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)设△MPN与△BCD重叠部分的面积为S,直接写出S与t的函数关系式和函数的定义域.A BDNCPME解:(1)∵正方形ABCD,∴∠DBC=45°∵MP⊥DB,∴△BMP是等腰直角三角形∵BM=2t,∴BP=2BM=2t又PN=2,NE=2t当0<t<2.5时,BP+PN+NE=BE∴2t+2+2t=10,∴t=2当2.5<t<5时,BP-PN+NE=BE∴2t-2+2t=10,∴t=3(2)过M作MH⊥BC于H则△NQC∽△NMH,∴QCCN=MHHN∴QC5-2t=t10-t-2t,∴QC=5t-2t210-3t令QC=y,则y=5t-2t2 10-3t整理得2t2-(3y+5)t+10y=0∵t为实数,∴[-(3y+5)]2-4×2×10y≥0即9y2-50y+25≥0,解得y≥5(舍去)或y≤5 9∴线段QC长度的最大值为5 9(3)当0<t<2.5时ABDNCPMEQHABDPCN EMABDNCP E M∵∠MPN =∠DBC +∠BMP =45°+90°=135° ∴∠MPN 为钝角,∴MN>MP ,MN>PN若PM =PN ,则2t =10-4t解得t =57(4-2)当2.5<t<5时∵∠MNP >∠MBP =∠MPB ,∴MP>MN若MN =PN ,则∠PMN =∠MPN =45° ∴∠MNP =90°,即MN ⊥BP ∴BN =NP ,BP =2BN ∴2t =2(10-2t),解得t =10 3若PM =PN∵PN =BP -BN =BP -(BE -NE)=BP +NE -BE∴2t =2t +2t -10,解得t =57(4+2)∴当t =5 7 (4-2),t =10 3,t =57(4+2)时,△MPN 为等腰三角形(4)S =⎩⎪⎨⎪⎧8t 3-50t2+75t20-6t(0<t<2.5)5t - 252(2.5<t<5)A B DP C N M EADB PC N MEB PC N AD B N C P ME Q10.(重庆模拟)如图,已知△ABC 是等边三角形,点O 是AC 的中点,OB =12,动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在直线OB 上,取OB 的中点D ,以OD 为边在△AOB 内部作如图所示的矩形ODEF ,点E 在线段AB 上.(1)求当等边△PMN 的顶点M 运动到与点O 重合时t 的值;(2)求等边△PMN 的边长(用含t 的代数式表示);(3)设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请直接写出S 与t 的函数关系式及自变量t 的取值范围;(4)点P 在运动过程中,是否存在点M ,使得△EFM 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.AO D CBF E 备用图A O D CBPN F M E AO D CBF E 备用图解:(1)当点M 与点O 重合时 ∵△ABC 、△PMN 是等边三角形,O 为AC 中点∴∠AOP =30°,∠APO =90° ∵OB =12,∴AO =43=2AP =23t 解得t =2∴当t =2时,点M 与点O 重合 (2)由题设知∠ABM =30°,AB =83,AP =3t∴PB =83-3t ,PM =PB ·tan30°=8-t即等边△PMN 的边长为8-tA O D CBPF E (N) (M ) A O D CBP N F M E(3)S =⎩⎪⎪⎪⎨⎪⎪⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-3 2t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t∴S =S 梯形FONG=12(FG +ON)·FO=12(2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段 设PM 交EF 于点I ,则重叠部分为五边形IJONG FJ =AJ -AF =23t -23,FI =2t -2 A O D CBP N F M E G JHA O D CBPNI M E G F J∴S =S梯形FONG-S △FIJ=23t +63-12(23t -23)(2t -2)=-23t2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG∵AP =3t ,∴PE =43-3t∴IG =GE =4-t ,EK =43-3t ∴KD =23-(43-3t)=3t -23,DN =t -2 ∴S =S 梯形IMNG-S △KDN=12(4-t +8-t)·23-12(3t -23)(t -2) =-3 2t2+10 3④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3 ∴ER =2EP =23t -8 3∴RD =23-(23t -83)=103-23tMD =10-2tAO D CB P N F M E G I K A O DC BPN FM E R∴S =S △RMD=12(10-2t)(103-23t)=23t2-203t +50 3⑤当5<t≤8时,S =0(4)∵MN =BN =PN =8-t ,∴MB=16-2t ①若FM =EM ,则M 为OD 中点 ∴OM =3∵OM +MB =OB ,∴3+16-2t =12∴t =3.5②若FM =FE =6,则OM =6 2-( 23)2=2 6 ∵OM +MB =OB ,∴26+16-2t =12 ∴t =2+ 6③若EF =EM =6,点M 在OD 或DB 上则DM =6 2-( 23)2=2 6 ∴DB +DM =MB 或者DB -DM =MB∴6+26=16-2t 或6-26=16-2t ∴t =5-6或t =5+ 6综上所述,当t =3.5、2+6、5-6、5+6时,△MEF 是等腰三角形AO D CBP N F M E A O D C BP N F M E AO D CB P N FM E AO D CBP N F M E11.(浙江某校自主招生)如图,正方形OABC 的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=34x和y=-43x+253.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒53个单位的速度沿射线AO下滑,直至顶点B落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.解:(1)联立 ⎩⎪⎨⎪⎧y =3 4x y =-4 3x +25 3解得⎩⎨⎧x =4y =3∴A (4,3),∴OA =4 2+32=5∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2CB xOAyCBxO AyQP N分两种情况:①当点Q在OA上时,∵PQ≥BA>PC,∴只存在一点Q,使QC=QP作QN⊥CP于N,则CN=12CP=OQ=1∴QA=5-1=4,∴k=42=2②当点Q在OC上时,同理只存在一点Q,使CP=CQ=2∴OQ+OA=10-2=8,∴k=82=4综上所述,当t=2秒时,以所得的等腰三角形CPQ沿底边翻折,翻折后得到菱形的k值为2或4(3)①当点A运动到点O时,t=3当0<t≤3时,设O′C′交x轴于点D则tan∠DOO′=34,即DO′OO′DO′53t=34,∴DO′=5 4t∴S=12DO′·OO′=12·54t·53t=2524t2CBxOAyQPxOyABDCO②当点C 运动到x 轴上时,t =(5×4 3)÷53=4当3<t≤4时,设A ′B ′交x 轴于点E∵A ′O =5 3 t -5,∴A ′E = 3 4 A ′O =5t -154∴S =1 2 (A ′E +O ′D )·A ′O ′= 1 2 ( 5t -15 4 +5 4t)·5=50t -758③当点B 运动到x 轴上时,t =(5+5×4 3)÷53=7当4<t≤7时,设B ′C ′交x 轴于点F∵A ′E =5t -15 4,∴B ′E =5-5t -15 4=35-5t4∴B ′F =4 3 B ′E =35-5t3∴S =52-1 2 ·35-5t 4·35-5t 3 =- 25 24t2175 12t -62524综上所述,S 关于滑行时间t 的函数关系式为:xO yAB FCOExOyA B DCO ES = ⎩⎪⎪⎨⎪⎪⎧25 24t2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ?(2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围;(3)当4<t <8时,求△APE 的面积为S 的变化范围.A B D ECP Q解(1)AP=x cm,BQ=2x cm∵∠BEP=∠BEQ,BE=BE,∠PBE=∠QBE =45°∴△PBE≌△QBE,∴PB=BQ即8-x=2x,∴x=8 3∴点P出发83秒后,∠BEP=∠BEQ(2)①当0<x≤4时,点Q在BC上,作EN ⊥AB于N,EM⊥BC于M∵AD∥BC,∴AEEQ=ADBQ=82x=4x即AEEQ=4x,∴AEAQ=4x+4∴NEBQ=AEAQ,∴NE=AE·BQAQ=8xx+4∴S=12AP·NE=12x·8xx+4=4x2x+4ABDECPQNM即S =4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB于F ,交BD 于H 则AEEQ =ADHQ = 8 16-2x =4 8-x即AEEQ= 48-x,∴AEAQ= 48-x +4=412-x作EN ⊥AB 于N ,则NEFQ=AEAQ∴NE =AE ·FQFQ =3212-x∴S =1 2AP ·NE = 1 2x ·32 12-x =16x 12-x即S =16x 12-x(4<x<8)(3)当4<x<8时,由S =16x 12-x,得x =12S16+S∵4<x<8,∴4<12S16+S<8∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S)A BD ECPQNFH解得8<S<3213.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E .(1)求出经过A 、D 、C 三点的抛物线解析式; (2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由;(3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.xAyED CBF G Q P解:(1)由题意得:D (3,33)、C (9,33) 设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx把D 、C 两点坐标代入上式,得:⎩⎨⎧9a +3b =3381a +9b =33解得:a =-3 9 ,b =43 3∴抛物线的解析式为:y =3 x243x(2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形∴PC =AQ ,即6-2t =t, ∴t =2xA yED C BF G Q P当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值(3)①当点P 在DC 上,即0≤t≤3时∵DP ∥AQ ,∴△DEP ∽△AEQ ∴DEy=DPAQ=2tt=2,∴y13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB ∴AEBP=QAQB,即y12-2t =t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎨⎧2 (0≤t≤3) 12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F ′,由菱形对称性知F ′在DA 上,且DF ′=DF =1作点G 关于抛物线对称轴的对称点G ′,易求DG ′=4连接F ′G ′交DB 于点M 、交对称轴于点N ,则点M 、N 即为所求的两点xAyF D C BF G M NG HxA yED CBFGQP过F′作F′H⊥DG′于H,可得HD=12,F′H=32,HG′=9 2∴F′G′=F′H2+HG′2=21∴四边形FMNG周长最小值为F′G′+FG=21+114.(浙江模拟)如图,直线y=-x+5和直线y=kx-4交于点C(3,m),两直线分别交y轴于点A和点B,一平行于y轴的直线l从点C出发水平向左平移,速度为每秒1个单位,运动时间为t,且分别交AC、BC于点P、Q,以PQ为一边向左侧作正方形PQDE.(1)求m和k的值;(2)当t为何值时,正方形的边DE刚好在y轴上?(3)当直线l从点C出发开始运动的同时,点M也同时在线段AB上由点A向点B以每秒4个单位的速度运动,问点M从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2∴C (3,2),代入y =kx -4得k =2(2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t 当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t∵正方形PQDE ,∴PQ =PEA O C Byxl P Q D E A O C By xlPQ D E。
10-14年广州中考数学压轴题及答案详解

24. (2014?广州)(本小题满分14分)已知平面直角坐标系中两定点A( -1, 0), B( 4, 0),抛物线「过点A B,顶点为C.点P( m n)( n<0)为抛物线上一点.(1) 求抛物线的解析式与顶点C的坐标.(2) 当/ APB为钝角时,求m的取值范围.(3) 若」,当/ APE为直角时,将该抛物线向左或向右平移t ( • I )个单位,点P、2 2C移动后对应的点分别记为「-、」,是否存在t ,使得首尾依次连接A E」所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.【考点】动点问题.(1)二次函数待定系数法;(2) 存在性问题,相似三角形;(3) 最终问题,轴对称,两点之间线段最短a-b-2^0解得:;16滋+ 4占-4 = 01 , 3抛物线解析式为;' ■::2 2一b 3 3 1 .顶点横坐标,将:- 代入抛物线得r -2a2 2 2] 3⑵如图,当二七三—时,设' ,1 2 3沪一沪一2过-作直线' | 轴,.;匸匚亠;一MED-出FD.AE_DF_1 a~-2b = -2【答案】(1)解:依题意把.丨「的坐标代入得:_x,-_x n~ 22 2 4-心.. ------------------------ =------------------ ------ (注意用整体代入法)知+1 2 3严-尹2解得—丄工.:——二当「在止丄N之间时,―二—.丁「或二:•〔:: 一时,_■_■ 11 为钝角.(3)依题意m>3,且山哥二吋■■刊3厂2)设丨'移动- :厂向右,-,向左)玖3+盒*(和厂字)2 8连接又匚「’」的长度不变.四边形周长最小,只需最小即可将一"一]沿T轴向右平移5各单位到处13三“「上一最小,且最小为,此时「「--2医讣+—兰2 8[(3^t)k+b = 2"直+2 28 即^ "'I.:28 28二宀厶:」,解得:28 281541;沿.T轴对称为厂•••当且仅当、B、r三点共线时, 二■:.J., 设过的直线为-二,代入如图7,梯形O中,土」二,八E J厂-,丄’:,芒;—四,二:|,点二为线段CD上一动点(不与点C重合),ABCS 关于BE的轴对称图形为丄三,连接一丁,设二,..,_匸「的面积为的面积为:.(1)当点「落在梯形ABCD的中位线上时,求.丁的值;、、一爲…卄(2)试用」.表示,,并与出」.的取值氾围;S.(3)当的外接圆与,丄相切时,求,的值.【答案】解:(1)如图1,£:为梯形丄二「二的中位线,则CH 二HB=2,过点匸作>:丄上二于点丄,则有:厂厂一、一;.工一’厂一■.在―二中,有.在二_ a 中,■■一 d 口厂卩工丁又m ::.<-■-- ■丿厂-+解得:(2)如图2,二:交」「于点「,厂r二「了与吭上关于,亏对称, 则有:—二,又-亠」二:伽-出CJ 护黑€又川二上与二—关于丄丄对称,-工;「二•'江岚,-,「门二";|-- 二邑二涯二隆二工(0“金)■ 5 汕16(3)如图3,当m;文的外接圆与,匕,相切时,则匚「为切点• 的圆心落在丄丄的中点,设为二则有.口」”过点[作,「丄y丄汇.mT 连接—「得恥=耐?,则陀=『罔占韦i又匸亠二一―亠..色辿」x2石丄耐+竺+《丄+竺2 2 2 2 2 2 2 解得:.〔—「*•[ :...-二丄匚(舍去).笙匕(J2+20舛川9-8常右16 16① ② ③24. (2013?广州)(本小题满分14分)已知AB是O O的直径,AB=4,点C在线段AB的延长线上运动,点D在O O上运动(不与点B重合),连接CD,且CD=OA.(1) 当OC= 2 .2时(如图12),求证:CD是O O的切线;(2) 当OC> 2.2时,CD所在直线于O O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE-ED的值;若不存在,请说明理由。
2014年中考数学压轴题复习⒂(含答案,共20期)

2014年中考数学压轴题复习⒂281.(福建省厦门市)如图,矩形ABCD 的边AD 、AB 分别与⊙O 相切于点E 、F ,AE =3.(1)求EF ︵的长;(2)若AD =3+5,直线MN 分别交射线DA 、DC 于点M 、N ,∠DMN =60°,将直线MN 沿射线DA 方向平移.设点D 到直线MN 的距离为d ,当时1≤d ≤4,请判断直线MN 与⊙O 的位置关系,并说明理由.282.(福建省厦门市)在平面直角坐标系中,点O 是坐标原点,点P (m ,-1)(m >0).连结OP ,将线段OP 绕点O 按逆时针方向旋转90°得到线段OM ,且点M 是抛物线y =ax2+bx +c 的顶点.(1)若m =1,抛物线y =ax2+bx +c 经过点(2,2),当0≤x ≤1时,求y 的取值范围;(2)已知点A (1,0),若抛物线y =ax2+bx +c 与y 轴交于点B ,直线AB 与抛物线y =ax2+bx +c 有且只有一个交点,请判断△BOM 的形状,并说明理由.283.(福建省厦门市集美区初中毕业班质量检查)如图,直线y =21x +b 分别与x 轴、y 轴相交于A 、B ,与双曲线y =xkx >0)相交于第一象限内的点P (2,y 1),作PC ⊥x 轴于C ,已知△APC 的面积为9.(1)求双曲线所对应的函数关系式;(2)在(1)中所求的双曲线上是否存在点Q (m ,n )(其中m >0),作QH ⊥x 轴于H ,当QH>CH 时,使得△QCH 与△AOB284.(福建省厦门市思明区初中毕业班质量检查)已知平面直角坐标系上有A (a ,0)、B (0,-b )、C (b ,0)三点,且a≥b >0,抛物线y =(x -2)(x -m )-(n -2)(n -m )(m 、n 为常数,且m +2≥2n >0)经过点A 和点C ,顶点为P .(1)当m 、n 满足什么关系时,△AOB 的面积最大?(2)如图,当△ACP 为直角三角形时,判断以下命题是否正确:“直角三角形DEF 的三个顶点都在这条抛物线上,且DE ∥x 轴,那么△ACP 与△DEF 斜边上的高相等”,如果正确请予以证明,不正确请举出反例.285.(福建省厦门市海沧区初中毕业班质量检查)如图,在平面直角坐标系中,已知A (1,0),B (0,1),E、F 是线段AB 上的两个动点,且∠EOF =45°,过点E 、F 分别作x 轴和y 轴的垂线CE 、DF 相交于点P ,垂足分别为C 、D .设P 点的坐标为(x ,y ),令x y =k . (1)求证:△AOF ∽△BEO ; (2)当OC =OD 时,求k 的值;(3)在点E 、F 运动过程中,点P 也随之运动,探索:k 是否为定值?请证明你的结论.286.(福建省厦门市海沧区初中毕业班质量检查)如图,抛物线y =-94x2-94mx +98m2(m >0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点D 是抛物线的顶点,以AB 为直径的圆C 交y 轴于E 、F 两点,且EF =24.287.(福建省厦门市同安区初中毕业班质量检查)如图,直线y =-31x +1与y 轴交于点D ,抛物线y =ax2-2x +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴是直线x =1,顶点为E ,且抛物线向右平移一个单位后经过坐标原点O . (1)求抛物线的解析式;(2)若∠DBC =α,∠CBE =β,求α-β的值;(3)在(2)的前提下,P 为抛物线对称轴上一点,且满足PA =PC ,在y 轴右侧的抛物线上是否存在点Q ,使得△BDQ 的面积等于PA 2,若存在,求出点Q 的坐标,若不存在,请说明理由.288.(福建省厦门市翔安区初中毕业班质量检查)如图,已知直线l :y =kx +2(k<0),与y 轴交于点A ,与x 轴交于点B ,以OA 为直径的⊙P 交l 于另一点C ,将AC ︵沿直线l 翻转后与y 轴交于点D . (1)当k =-2时,求点D 的坐标;(2)若沿直线l 将AC ︵翻转后所得的弧与y 轴相切,求k 的值;(3)是否存在实数k (k <0),使得沿直线l 将AC ︵翻转后,AD ︵=2DC ︵?若存在,请求出此时k 的值,若不存在,请说明理由.289.(福建省南平市)如图1,在△ABC 中,AB =BC ,P 为AB 边上一点,连接CP ,以P A 、PC 为邻边作□APCD ,AC 与PD 相交于点E ,已知∠ABC =∠AEP =α(0°<α<90°). (1)求证:∠EAP =∠EP A ;(2)□APCD 是否为矩形?请说明理由;(3)如图2,F 为BC 中点,连接FP ,将∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN (点M 、N 分别是∠MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系,并证明你的结论.290.(福建省南平市)如图1,已知点B (1,3)、C (1,0),直线y =x +k 经过点B ,且与x 轴交于点A ,将△ABC 沿直线AB 折叠得到△ABD . (1)填空:A 点坐标为(____,____),D 点坐标为(____,____);(2)若抛物线y =31x2+bx +c 经过C 、D 两点,求抛物线的解析式;(3)将(2)中的抛物线沿y 轴向上平移,设平移后所得抛物线与y 轴交点为E ,点M 是平移后的抛物线与直线AB 的公共点,在抛物线平移过程中是否存在某一位置使得直线EM ∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.【提示:抛物线y =ax2+bx +c (a ≠0)的对称轴是x =-a b 2,顶点坐标是(-ab2,a b ac 442 )】291.(福建省南平市初中毕业班质量检查)如图1,在平面直角坐标系中,O 为坐标原点,点A (0,1)在y 轴上,点B (3,0)在x 轴上,M (x ,0)是线段OB 上一动点,N 是平面内一动点,且满足:ON =OA ,MN =MB .(1)求直线AB 的解析式;(2)若△OMN 为直角三角形,求点M 的坐标;(3)当x =35时,判断点N 与直线AB 的位置关系,并说明理由.292.(福建省龙岩市)如图,抛物线交x 轴于点A (-2,0),点B (4,0),交y 轴于点C (0,-4). (1)求抛物线的解析式,并写出顶点D 的坐标;(2)若直线y =-x 交抛物线于M ,N 两点,交抛物线的对称轴于点E ,连接BC ,EB ,EC .试判断△EBC 的形状,并加以证明;(3)设P 为直线MN 上的动点,过P 作PF ∥ED 交直线MN 下方的抛物线于点F .问:在直线MN 上是否存在点P ,使得以P 、E 、D 、F 为顶点的四边形是平行四边形?若存在,请求出点P 及相应的点F的坐标;图1备用图图1 备用图若不存在,请说明理由.293.ABC 绕其直角顶点C 顺时针旋转α角(0°<α<90°),得△A 1B 1C ,A 1C 交AB 于点D ,A 1B 1分别交BC 、AB 于点E 、F ,连接AB 1. (1)求证:△ADC ∽△A 1DF ; (2)若α=30°,求∠AB 1A 1的度数; (3)如图②,当α=45°时,将△A 1B 1C 沿C →A 方向平移得△A 2B 2C 2,A 2C 2交AB 于点G ,B 2C 2交BC 于点H ,设CC 2=x (0<x <2),△ABC 与△A 2B 2C 2的重叠部分面积为S ,试求S 与x 的函数关系式.294.(福建省龙岩市初中毕业班质量检查)在平面直角坐标系中,点A 、B 的坐标分别为(10,0),(2,4). (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的解析式; (2)若P 为抛物线上异于C 的点,且△OAP 是直角三角形,请直接写出点P 的坐标;(3)若抛物线顶点为D ,对称轴交x 轴于点M ,探究:抛物线对称轴上是否存在异于D 的点Q ,使△AQD 是等腰三角形,若存在,请求出点Q 的坐标;若不存在,请说明理由.295.(福建省龙岩市初中毕业班质量检查)如图,将含30°角的直角三角板ABC (∠A =30°)绕其直角顶点C 逆时针旋转α角(0°<α<90°),得到Rt △A ′B ′C ,A ′C 与AB 交于点D ,过点D 作DE ∥A ′B ′ 交CB ′于点E ,连结BE .易知,在旋转过程中,△BDE 为直角三角形.设BC =1,AD =x ,△BDE 的面积为S . (1)当α=30°时,求x 的值;(2)求S 与x 的函数关系式,并写出x 的取值范围; (3)以点E 为圆心,BE 为半径作⊙E ,当S =41S △ABC 时,判断⊙E 与A ′C 的位置关系,并求相应的tanα值.296.(福建省莆田市)如图,A 、B 是⊙O 上的两点,∠AOB =120°,点D为劣弧AB ︵的中点.30°αCABA ′B ′DE图① D(1)求证:四边形AOBD 是菱形;(2)延长线段BO 至点P ,交⊙O 于另一点C ,且BP =3OB ,求证:AP 是⊙O 的切线.297.(福建省莆田市)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法表示出(x ,y )的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在反比例函数y =x4的图象上的概率; (3)求小明、小华各取一次小球所确定的数x 、y 满足y<x4的概率.298.(福建省莆田市)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现有甲、乙两车要从M 地沿同一公路运输救援物资往玉树灾区的N 地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y (km ),甲车行驶时间为t (h ),y (km )与t (h )之间函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变): (1)乙车的速度是_________km /h ; (2)求甲车的速度和a 的值.299.(福建省莆田市)如图1,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分∠CDB 交边BC 于点E ,EM ⊥BD 垂足为M ,EN ⊥CD 垂足为N . (1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?(3)探究:AD 为何值时,四边形MEND 与△BDE 的面积相等?300.(福建省莆田市)如图1,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且OD =45. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得△DMC 为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线y =-x2经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且△ODE 沿DE 折叠后点O 落在边AB 上O ′处?)图1 E C A B N 图2(备用图) C A B 图3(备用图) C A B答案281.解:(1)连接OE 、OF∵矩形ABCD 的边AD 、AB 分别与⊙O 相切于点E 、∴∠A =90°,∠OEA =∠OF A =90° ∴四边形AFOE 是矩形 ································ 1分 ∵OE =OF∴四边形AFOE 是正方形 ···························· 2分∴∠EOF =90°,OE =AE =3 ··················· 3分 ∴EF ︵的长=180390⨯π=π23 ····································································· 4分(2)如图,将直线MN 沿射线DA 方向平移,当其与⊙O 相切时,记为M 1N 1,切点为R ,交AD于M 1,交BC 于N 1,连接OM 1、OR ∵M 1N 1∥MN ,∴∠DM 1N 1=∠DMN =60° ∴∠EM 1N 1=120°∵MA 、M 1N 1切⊙O 于点E 、R ∴∠EM 1O =21∠EM 1N 1=60° ······················ 5分 在Rt △EM 1O 中,EM 1=O EM OE 1tan ∠= 60tan 3=1 ∴DM 1=AD -AE -EM 1=3+5-3-1=4 ············································· 6分 过点D 作DK ⊥M 1N 1于K 在Rt △DM 1K 中DK =DM 1²sin ∠DM 1K =4×sin60°=32,即d =32 ······························· 7分 ∴当d =32时,直线MN 与⊙O 相切;当1≤d <32时,直线MN 与⊙O 相离 ····················································· 8分 当直线MN 平移到过圆心⊙O 时,记为M 2N 2则点D 到M 2N 2的距离d =DK +OR =32+3=33>4 ······················ 9分 ∴当32<d ≤4时,MN 直线与⊙O 相交 ················································ 10分282.解:法一:(1)∵线段OP 绕点O 按逆时针方向旋转90°得到线段OM∴∠POM =90°,OP =OM过点P (m ,-1)作PQ ⊥x 轴于Q ,过点M 作MN ⊥y 轴于N ∵∠POQ +∠MOQ =90°,∠MON +∠MOQ =90° ∴∠MON =∠POQ ∵∠ONM =∠OQP =90°∴△MON ≌△POQ ······················································································· 1分 ∴MN =PQ =1,ON =OQ =m ∴M (1,m ) ∵m =1∴M (1,1) ····································································· 2分 ∵点M 是抛物线y =ax2+bx +c 的顶点∴可设抛物线为y =a (x -1)2+1 ∵抛物线经过点(2,2),∴a =1∴y =(x -1)2+1 ······························································· 3分 ∴此抛物线开口向上,对称轴为x =1∴当0≤x ≤1时,y 随着x 的增大而减小 ······················ 4分 ∵当x =0时,y =2,当x =1时,y =1∴y 的取值范围为1≤y ≤2 ·············································· 5分 (2)∵点M (1,m )是抛物线y =ax2+bx +c 的顶点∴可设抛物线为y =a (x -1)2+m ···································· 6分 ∵y =a (x -1)2+m =ax2-2ax +a +m∴点B (0,a +m ) ··························································· 7分 又∵A (1,0)∴直线AB 的解析式为y =-(a +m )x +(a +m ) ·············· 8分解方程组⎩⎨⎧y =ax2-2ax +a +m y =-(a +m )x +(a +m )得ax2+(m -a )x =0法1:∵直线AB 与抛物线y =ax2+bx +c 有且只有一个交点∴△=(m -a )2=0 ························································································ 9分 ∴m =a∴B (0,2m ) ······························································································ 10分法2:解得x 1=0,x 2=a ma - ····································································· 9分∵直线AB 与抛物线y =ax2+bx +c 有且只有一个交点∴ama -=0 ∵a ≠0,∴m =a∴B (0,2m ) ······························································································ 10分 ∵m >0,∴OB =2m ∴BN =ON =m法1:∵MN ⊥y 轴,∴BM =OM∴△BOM 是等腰三角形 ············································································· 11分法2:由勾股定理得:在Rt△BNM中,BM2=MN2+BN2=1+m2在Rt△ONM中,OM2=MN2+ON2=1+m2∴BM=OM∴△BOM是等腰三角形·············································································11分法二:(1)连结PM,交x轴于点C∵线段OP绕点O按逆时针方向旋转90°得到线段OM∴∠POM=90°,OP=OM∵P(1,-1),∴∠POC=45°∴∠MOC=45°·····························································································1分∴PM⊥OC,PC=MC∴M(1,1) ··································································································2分∵点M是抛物线y=ax2+bx+c的顶点∴可设抛物线为y=a(x-1)2+1∵抛物线经过点(2,2),∴a=1∴y=(x-1)2+1 ····························································································3分∴此抛物线开口向上,对称轴为x=1∴当0≤x≤1时,y随着x的增大而减小 ···················································4分∵当x=0时,y=2,当x=1时,y=1∴y的取值范围为1≤y≤2 ···········································································5分(2)过点P(m,-1)作PQ⊥x轴于Q,过点M作MN⊥y轴于N∵∠POQ+∠MOQ=90°,∠MON+∠MOQ=90°∴∠MON=∠POQ∵∠ONM=∠OQP=90°∴△MON≌△POQ∴MN=PQ=1,ON=OQ=m∴M(1,m)∵点M(1,m)是抛物线y=ax2+bx+c的顶点∴可设抛物线为y=a(x-1)2+m ·································································6分∵y=a(x-1)2+m=ax2-2ax+a+m∴点B(0,a+m) ························································································7分又∵A(1,0)∴直线AB的解析式为y=-(a+m)x+(a+m) ···········································8分解方程组⎩⎨⎧y =ax2-2ax +a +m y =-(a +m )x +(a +m )得ax2+(m -a )x =0法1:∵直线AB 与抛物线y =ax2+bx +c 有且只有一个交点∴△=(m -a )2=0 ························································································ 9分 ∴m =a∴B (0,2m ) ······························································································ 10分法2:解得x 1=0,x 2=a ma - ····································································· 9分∵直线AB 与抛物线y =ax2+bx +c 有且只有一个交点∴ama -=0 ∵a ≠0,∴m =a∴B (0,2m ) ······························································································ 10分 ∵m >0,∴OB =2m ∴BN =ON =m法1:∵MN ⊥y 轴,∴BM =OM∴△BOM 是等腰三角形 ············································································· 11分 法2:由勾股定理得:在Rt △BNM 中,BM 2=MN 2+BN 2=1+m 2在Rt △ONM 中,OM 2=MN 2+ON 2=1+m 2∴BM =OM∴△BOM 是等腰三角形 ············································································· 11分283.解:(1)y =0代入y =21x +b ,得x =-2b ∴A (-2b ,0) 把x =2代入y =21x +b ,得y 1=1+b ∴P (2,1+b ) 由题意得:S △APC=21AC ²PC =21(2+2b )(1+b )=整理得:(1+b )2=9,解得b =-4(舍去)或b =∴P (2,3) 把P (2,3)代入y =xk,得k =6 ∴双曲线所对应的函数关系式为y =x6(2)由(1)知AO =4,BO =2设Q (m ,m6)当点Q 在点P 左侧时,CH =2-m ,QH =m6 若△QCH ∽△BAO ,则有AO CH =BO QH ,即42m -=26m整理得:m2-2m +12=0,此方程无实数解若△QCH ∽△ABO ,则有BO CH =AO QH ,即22m -=46m整理得:m2-2m +3=0,此方程无实数解当点Q 在点P 右侧时,CH =m -2,QH =m6若△QCH ∽△BAO ,则有AO CH =BO QH ,即42-m =26m整理得:m2-2m -12=0,解得m =1-13(负值,舍去)或m =1+13当m =1+13时,CH =13-1,QH =2131+ QH -CH =2131+-(13-1)=2133-<0,即QH<CH ∴m =1+13不合题意,舍去若△QCH ∽△ABO ,则有BO CH =AO QH ,即22-m =46mm2-2m -3=0,解得m =-1(负值,舍去)或m =3当m =3时,CH =1,QH =2,QH>CH ,符合题意∴Q (3,2)综上所述,存在点Q (3,2),使得△QCH 与△AOB 相似284.解:(1)令y =0,得(x -2)(x -m )-(n -2)(n -m )=0整理得:(x -n )(x -m -2+n )=0∴x 1=n ,x 2=m +2-n ·················································································· 2分 ∵m +2≥2n >0,∴m +2-n ≥n >0∴OA =m +2-n ,OC =n ·············································································· 3分 ∵B (0,-b )、C (b ,0),∴OB =OC∴S △AOB=21OA ²OB =21OA ²OC=21(m +2-n )n =-21n2+21(m +2)n ··········································· 4分 ∴当n =-)()(212221-⨯+m =21(m +2)时,S △AOB最大 ········································· 5分(2)命题正确 ······································································································· 6分∵P 为抛物线的顶点,∴由抛物线的对称性可知,当△ACP 为直角三角形时,△ACP 为等腰直角三角形,且∠CP A =90°,△ACP 斜边上的高PG =21AC ················ 7分如图,当直角三角形DEF 的边DE ∥x 轴时,过D 或E 作DE 的垂线,与抛物线没有其它的交点,所以DE 不可能是直角边,只能是斜边,即直角顶点为F ,且点F 在DE 的下方. 不妨设p =-(m +2),q =mn -n2+2n ,则y =x2+pxx 1+x 2=-p ,x 1x 2=q∴AC 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=p2-4q ,PG 2=∵AC =2PG ,∴AC 2=4PG 2,∴p2-4q =4[442p q -]整理得p2=4q +4,∴PG 2=[4444--q q ]2=1∴PG =1设直线DE 的解析式为y =k ,点F 的纵坐标为t由x2+px +q =k 得x2+px +q -k =0从而得D 点的横坐标x D =-2p -1+k ,E 点的横坐标x E =-2p+1+k∴DE 2=[-2p +1+k -(-2p -1+k )]2=4k +4由x2+px +q =t ,得x2+px +q -t =0从而得F 点的横坐标x F =-2p-1+t∴DF 2=[-2p -1+k -(-2p -1+t )]2+(k -t )2=k +t +2-))((112++t k +(k -t )2EF 2=[-2p +1+k -(-2p -1+t )]2+(k -t )2=k +t +2+))((112++t k +(k -t )2∵△DEF 为直角三角形,∴DF 2+EF 2=DE2代入并整理得(k -t ) 2-(k -t )=0,∵k ≠t ,∴k -t =1=PG ······················· 10分 即△ACP 与△DEF 斜边上的高相等,命题得证. ····································· 11分285.(1)证明:由已知得OA =OB =1,∠AOB =90°∴∠OAF =∠OBE =45°,又∵∠OF A =∠ABO +∠BOF =∠EOF +∠BOF =∠EOB ∴△AOF ∽△BEO ························································································ 4分(2)解:如图,过O 作OM ⊥AB 于M ,则OM =21AB =22∵OA =OB =1,OC =OD ,∴AC =BD ,∴CE =DF又∠OCE =∠ODF =90°,∴△OCE ≌△ODF ····························∴OE =OF ,∴△EOF 是等腰三角形,∠EOM =21∠EOF =22.而∠COE =∠AOM -∠EOM =45°-22.5°=22.5°=∠EOM。
2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上28229m ∴--+=解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点1F ⎛ ⎝⎭ ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =-(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得6k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos30322OF OM ===.1sin 3032MF OM ===.∴点M 坐标为32⎛ ⎝⎭············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠32k =,k ∴= ····· 7分∴切线OM 的函数解析式为y =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==113P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==在2Rt OP H △中,223cos 4OH OP AOP =∠==,2221sin 2P H OP AOP =∠==2344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若A M P △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,A M t =,tg 603PM AM t ∴==.2133(01)2y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2363y t t t t t =-=-+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30)QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△. ··············································································· 9分除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQ t ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y =23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,。
2014年中考数学压轴题精编--浙江篇(试题及答案)

2014年浙江中考数学压轴题精编1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =41x2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时. ①求t 关于x 的函数解析式和自变量x②当梯形CMQP 的两底的长度之比为1 :2时,求t2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果MK 2+CK 2=AM 2,请直接写出∠CDF 的度数和AMMK的值.3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y .(1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值;(3)当x 为何值时,△HDE 为等腰三角形?4.(浙江省湖州市)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的D B C A F EM K 图1 D B C A (F ,K )EM 图2 D B C A FE K图3 (M ) D B C A FE M K 图4正半轴、x 轴的正半轴于E 和F .(1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值.5.(浙江省衢州市、丽水市、舟山市)△ABC 中,∠A =∠B =30°,AB =32.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1)当点B 在第一象限,纵坐标是26时,求点B 的横坐标; (2)如果抛物线y =ax2+bx +c (a ≠0)的对称轴经过点C ,请你探究:①当a =45,b =-21,c =-553时,A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.6.(浙江省宁波市)如图1,在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G . (1)求∠DCB 的度数;(2)当点F 的坐标为(-4,0)时,求点G 的坐标;(3)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△OEF ′,记直线EF ′与射线DC 的交点为H .①如图2,当点G 在点H 的左侧时,求证:△DEG ∽△DHE ; ②若△EHG 的面积为33,请直接写出点F 的坐标.(图2)(图1)(备用图)7.(浙江省金华市)如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点的坐标分别为(3,0)和(0,33).动点P 从A 点开始沿折线AO -OB -BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为1,3,2(长度单位/秒).一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点.设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动. 请解答下列问题:(1)过A ,B 两点的直线解析式是___________________;(2)当t =4时,点P 的坐标为____________;当t =________,点P 与点E 重合;(3)①作点P 关于直线EF 的对称点P ′,在运动过程中,若形成的四边形PEP ′F 为菱形,则t 的值是多少? ②当t =2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在,求出点Q 的坐标;若不存在,请说明理由.8.(浙江省绍兴市)如图,设抛物线C 1:y =a (x +1)2-5,C 2:y =-a (x -1)2+5,C 1与C 2的交点为A ,B ,点A 的坐标是(2,4),点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG .记过C 2顶点M 的直线为l ,且l 与x 轴交于点N . ①若l 过△DHG 的顶点G ,点D 的坐标为(1,2),求点N 的横坐标; ②若l 与△DHG 的边DG 相交,求点N 的横坐标的取值范围.9.(浙江省嘉兴市)如图,已知抛物线y =-21x2+x +4交x 轴的正半轴于点A ,交y 轴于点B .(1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.10.(浙江省义乌市)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标; (3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.11.(浙江省舟山市)(本题满分12分)如图,在菱形ABCD 中,AB =2cm ,∠BAD =60°,E 为CD 边中点,点P 从点A 开始沿AC 方向以每秒32cm 的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x =0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.(备用)图1图2OE ACQ DBP12.(浙江省东阳市调研测试卷)已知抛物线y =-x2+bx +c 经过点A (0,4),且抛物线的对称轴为直线x =2. (1)求该抛物线的解析式;(2)若该抛物线的顶点为B ,在抛物线上是否存在点C ,使得A 、B 、O 、C 四点构成的四边形为梯形?若存在,请求出点C 的坐标;若不存在,请说明理由。
2014年中考数学压轴题精编--浙江篇(试题及答案)
初中数学公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
九年级数学中考压轴题2014年全国各地中考数学真题分类解析汇编:13 二次函数
二次函数一、选择题1. (2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个考点:二次函数图象与系数的关系.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.4.(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x 的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B. 1 C. 2 D. 3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c 和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.(2014•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()),的顶点坐标是(﹣,6.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()或C或或﹣或,=或﹣y=2x2,y=﹣2x2,共有的性质是()x<﹣时,﹣取得最小值<﹣时,﹣取得最大值8.(2014•孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()﹣=1﹣9.(2014·台湾,第26题3分)已知a 、h 、k 为三数,且二次函数y =a (x ﹣h )2+k 在坐标平面上的图形通过(0,5)、(10,8)两点.若a <0,0<h <10,则h 之值可能为下列何者?( )A .1B .3C .5D .7分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x =h ,由于抛物线过(0,5)、(10,8)两点.若a <0,0<h <10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h ﹣0>10﹣h ,然后解不等式后进行判断.解:∵抛物线的对称轴为直线x =h ,而(0,5)、(10,8)两点在抛物线上,∴h ﹣0>10﹣h ,解得h >5.故选D .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.10.(2014·浙江金华,第9题4分)如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】A .1x 3-≤≤B .x 1≤-C .x 1≥D .x 1≤-或x 3≥【答案】D .【解析】试题分析:由图象可知,当y 1≤时,x 1≤-或x 3≥. 故选D .考点:1.曲线上点的坐标与方程的关系;2.数形结合思想的应用11.(2014•浙江宁波,第12题4分)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )﹣=12.(2014•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是().,13.(2014•济宁,第8题3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()14.(2014年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.15.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B. 3个C. 2个D. 1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a <0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x 值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b ﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.16.(2014•滨州,第9题3分)下列函数中,图象经过原点的是()=的图象是双曲线,不经过原点;故本选项错误;二.填空题1. (2014•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:根据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.2.(2014年云南,第16题3分)抛物线y=x2﹣2x+3的顶点坐标是.考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.3.(2014•浙江湖州,第16题4分)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c 时,都有y1<y2<y3,则实数m的取值范围是.分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a最小可以取2以及对称轴的位置是解题的关键.4. (2014•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5.)②>5. (2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是.考点:二次函数与不等式分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解答:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.6. (2014•扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.(第3题图)7.(2014•菏泽,第12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则= _______.,,,的横坐标相同,为,3=3,=﹣.8. (2014•珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.=三.解答题1. (2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. (2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA=,,的顶点.OAOB)(+,,二次函数<﹣时,时,时,取得最小值时,>﹣时,时,3. (2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.==12h===•﹣=﹣,4. (2014•广东,第25题9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.5. (2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E 两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.OF得关系式再代入,2)=2===,=1(﹣,,x xOF=(﹣,(﹣,,﹣x,x﹣<<①当﹣,﹣===+•••﹣﹣(x﹣)x 时,,﹣•)﹣••﹣.x,<﹣x,解得﹣<<<<6. 2014•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM 平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据题意可设函数的解析式为y=ax2,将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x,14x2),根据PF=PM=FM,可得关于x的方程,求出x的值即可得出答案.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,14)代入y=ax2得:a=14,∴二次函数的解析式为y=14x2;(2)证明:∵点P在抛物线y=14x2上,∴可设点P的坐标为(x,14x2),过点P作PB⊥y轴于点B,则BF=14x2﹣1,PB=x,∴Rt△BPF中,PF==14x2+1,∵PM⊥直线y=﹣1,∴PM=14x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴14x2+1=4,解得:x=±2,∴14x2=14×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、角平分线的性质及直角三角形的性质,解答本题的关键是熟练基本知识,数形结合,将所学知识融会贯通.7. (2014•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a 的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.=0中,若不能使其结果为x x,+﹣,∴顶点(﹣,﹣=1﹣,﹣.==,.===0=﹣﹣,﹣x﹣==x=8.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.9.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A (3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.考点:二次函数综合题.分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE 交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.解答:解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.10.(2014•温州,第21题10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.=)).11.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x 刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.=>12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.的坐标,根据== =②可得=,==,2==,即的面积为的坐标为(===========13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,。
2014浙江省各市中考压轴题集锦及答案
浙江省杭州市2014年中考数学试卷10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()cos∠AGB=15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.浙江省丽水市、衢州市2014年中考数学试卷9.(3分)(2014•丽水)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A. B. C.4 D.310.(3分)(2014•丽水)如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣14.(4分)(2014•丽水)有一组数据如下:3,a,4,6,7.它们的平均数是5,那么这组数据的方差为.16.(4分)(2014•丽水)如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是,△OEF的面积是(用含m的式子表示)22.(10分)(2014•丽水)如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.23.(10分)(2014•丽水)提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.24.(12分)(2014•丽水)如图,二次函数y=ax2+bx(a≠0)的图象经过点A (1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y 轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?浙江省台州市2014年中考数学试卷9.(4分)(2014•台州)如图,F是正方形ABCD的边CD上的一个动点,BF 的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A .45°B.50°C.60°D.不确定10.(4分)(2014•台州)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A .4:3 B.3:2 C.14:9 D.17:914.(5分)(2014•台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.15.(5分)(2014•台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.16.(5分)(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n= (用含字母x和n的代数式表示).23.(12分)(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.24.(14分)(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD 与AF分别有什么位置关系?证明你的结论②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC 与EF,CD与AF相等吗?证明你的结论③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?2014年浙江省绍兴市中考数学试卷9.(4分)(2014年浙江绍兴)将一张正方形纸片,按如图步骤①,②,沿虚线对着两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.10.(4分)(2014年浙江绍兴)如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为()A.50秒B.45秒C.40秒D.35秒14.(5分)(2014年浙江绍兴)用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是.15.(5分)(2014年浙江绍兴)如图,边长为n的正方形OABC的边OA,OC 在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为.(n为正整数)16.(5分)(2014年浙江绍兴)把标准纸一次又一次对开,可以得到均相似的“开纸”.现在我们在长为2、宽为1的矩形纸片中,画两个小矩形,使这两个小矩形的每条边都与原矩形纸的边平行,或小矩形的边在原矩形的边上,且每个小矩形均与原矩形纸相似,然后将它们剪下,则所剪得的两个小矩形纸片周长之和的最大值是.21.(10分)(2014年浙江绍兴)九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.22.(12分)(2014年浙江绍兴)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?23.(6分)(2014年浙江绍兴)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.25.(14分)(2014年浙江绍兴)如图,在平面直角坐标系中,直线l平行x 轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.。
2014年全国各地中考数学压轴题集锦答案(三)
2014年全国各地中考数学压轴题集锦答案(三)41.(哈尔滨模拟)如图,直线y=-kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)点P从点O出发,以每秒2个单位的速度沿折线OA-AB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB 相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=12时,求t的值.解:(1)∵y=-kx+6k,当x=0时,y=6k;当y=0时,x=6 ∴OA=6,OB=6k∵S△AOB=24,∴12×6×6k=24,∴k=43∴直线AB的解析式为y=-43x+8(2)根据题意,OE=t,EF∥OA,∴△BEF∽△BOA∴EFOA=BEBO,即EF6=8-t8,∴EF=34(8-t)①当0<t≤3时,点P在OA上运动过点P作PH⊥EF于H,则PH=OE=t∴S=12EF²PH=12²34(8-t)²t=-38t2+3t②当点P在AB上运动时过点P作PG⊥OA于G,设直线PG与EF相交于点M,则MG=OE=t易知△APG∽△ABO,∴PGBO=APAB∵OA=6,OB=8,∴AB=62+82=10∴PG8=2t-610,∴PG=45(2t-6)当点P与点F重合时,有PG=OE∴45(2t-6)=t,解得t=8,即PG=8点P 与点F 重合前,MP =MG -PG =t -4 5 (2t -6)=-3 5 t +245∴S =12EF ²MP =1 2 ²3 4 (8-t)(-3 5 t + 245 )= 9 40 t 2- 18 5 t +725综上,S =⎩⎨⎧-38t2+3t (0<t≤3)9 40 t 2- 18 5 t + 725(3<t<8)(3)①当点P 在OA 上,点M 在点F 左侧时 作MC ⊥AB 于C ,FD ⊥OA 于D则FD =OE =t ,EM =OP =2t ,MF =EF -EM =34(8-t)-2t在Rt △CMF 中,CMCF=tan ∠MFC =tan ∠BAO =OBOA=43设CM =4k ,则CF =3k ,MF =(4k)2+(3k)2=5k在Rt △MAC 中,CMAC=tan ∠MAC =tan ∠MAB =12∴AC =2CM =8k ,∴AF =5k ,∴MF =AF 在Rt △AFD 中, FDAF=tAF=sin ∠F AD =sin ∠BAO =4 5∴AF =54t ,∴3 4 (8-t)-2t =5 4 t ,解得t =32当点P 在OA 上,点M 在点F 右侧时,可求得t =114②当点P 在AB 上时,过点M 作MK ⊥AB 于K 在Rt △PMK 中,MKPK=tan ∠MPK =tan ∠ABO =34设MK =3m ,则PK =4m ,MP =5m ,AK =6m∴AP =AK -PK =2m ,∴2t -6=2m ∵MP =t -4 5 (2t -6),∴t -45(2t -6)=5m∴t -4 5 (2t -6)=5 2 (2t -6),解得t =9928综上所述,满足条件的t 值是32或 114或992842.(哈尔滨模拟)如图,在平面直角坐标系中,O 为坐标原点,点A 在x 轴的正半轴上,△AOB 为等腰三角形,且OA =OB =10,过点B 作y 轴的垂线,垂足为D ,直线AB 的解析式为y =-3x +30,点C 在线段BD 上,点D 关于直线OC 的对称点在腰OB 上. (1)求点B 坐标;(2)点P 从点B 出发,以每秒1个单位的速度沿折线BC -CO 运动;同时点Q 从点O 出发,以每秒1个单位的速度沿对角线OB 向终点B 运动,当一点停止运动时,另一点也随之停止运动.设△PQC 的面积为S ,运动时间为t ,求S 与t 的函数关系式,并写出自变量t 的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°-∠AOB时,求t的值.解:(1)过点B作BF⊥OA于F,设B(a,-3a+30)在Rt△OBF中,a2+(-3a+30)2=102解得a1=10(舍去),a2=8当a=8时,-3a+30=6∴B(8,6)(2)设点D关于直线OC的对称点为D′,连接CD′∵D′在腰OB上,∴OD=OD′,∠DOC=∠D′OC又OC=OC,∴△DOC≌△D′OC∴CD′=CD,∠CDO′=∠CDO=90°∴S△POQ=12OD²BD=12OD²CD+12OB²CD′∴CD=OD²BDOD+OB=6×86+10=3,∴BC=5①当0≤t<5时,点P在线段BC上过点Q作QE⊥BD于E,则△BQE∽△BOD∴QEOD=BQBO,即QE6=10-t10,∴QE=6-35t∴S=12PC²QE=12(5-t)(6-35t)即S=310t2-92t+15②当5<t≤10时,点P在线段CO上过点Q作QF⊥OC于F∵COQ=∠COD,∠QFO=∠CDO=90°∴△QFO∽△CDO,∴QFCD=OQOC即QF3=t35,∴QF=55t∴S=12PC²QF=12(t-5)²55t即S=510t2-52t(3)①当0≤t<5时 ∵α=90°-∠AOB =∠BOD ,即∠PQB =∠DOB ∴PQ ∥DO ,∴△BPQ ∽△BDO∴BPBD=BQBO,即 t8 =10-t10 ,∴t =409②当5<t≤10时,过点P 作PH ⊥OB 于H∵∠PQO =∠BOD ,∴tan ∠PQO =∠BOD =4 3设PH =4k ,则QH =3k ,OH =8k ,OP =45k ∴OQ =11k ,∴11k =t ,∴k =t11∴OP =45k =4511t 又∵OP =35-(t -5)=35+5-t ∴4511t =35+5-t ,∴t =1435-55 41∴当α=90°-∠AOB 时,t 的值为409或 1435-554143.(哈尔滨模拟)如图,在平面直角坐标系中,点A (256,0),点B (3,4),将△OAB沿直线OB 翻折,点A 落在第二象限内的点C 处. (1)求点C 的坐标;(2)动点P 从点O 出发,以每秒5个单位的速度沿OB 向终点B 运动,连接AP ,将射线AP 绕着点A 逆时针旋转与y 轴交于一点Q ,且旋转角α=12∠OAB .设线段OQ 的长为d ,点P 运动的时间为t 秒,求d 与t 的函数关系式(直接写出时间t 的取值范围);(3)在(2)的条件下,连接CP .点P 在运动的过程中,是否存在CP ∥AQ ,若存在,求此时t 的值,并辨断点B 与以点P 为圆心,OQ 长为半径的⊙P 的位置关系;若不存在,请说明理由.解:(1)过点B 作BG ⊥x 轴于G ,过点C 作CH ⊥x 轴于H ∵A (256,0),B (3,4),∴OA =256,OG =3,BG =4∴AG=76,∴AB=AG2+BG2=256,∴AB=OA∵△OAB沿直线OB翻折得到△OCB∴△OAB≌△OCB,∴AB=OA=BC=CO ∴四边形ABCO是菱形∴CO∥AB,∴∠COH=∠BAG∴Rt△CHO≌Rt△BGA,∴CH=BG=4,OH=AG=7 6∴C(-76,4)(2)连接AC交BO于点E∵菱形ABCO,∴AC⊥BO,∠OAE=12∠OAB∵α=12∠OAB,∴∠OAP=∠OAE,∴∠OAQ=∠EAP∵∠AOQ=∠AEP=90°,∴△AOQ≌△AEP∴PEOQ=AEAO由(1)知,CH=4,AH=16 3∴AC=AH2+CH2=203,∴AE=103,同理OE=52①当0≤t<12时∵OP=5t,∴PE=52-5t,∴52-5td=103256∴d=-254t+258②当12<t≤1时,同理可求d=254t-258(3)过点P作PK⊥AB于K∵AQ∥CP,∴∠PCE=∠QAE ∵AE=CE,AC⊥BO,∴PC=P A∴∠P AE=∠PCE=∠QAE=12∠P AQ∴∠P AB=∠QAE,∴∠P AE=∠P AB,∴PE=PK ∵菱形ABCO,∴∠PBK=∠OBF∴sin∠PBK=sin∠OBF=OFOB=PKPB=45∵OP=5t,OB=5,∴PE=5t-52,PB=5-5t∴5t -52 5-5t=4 5 ,解得t =13 18∴存在CP ∥AQ ,此时t =1318∵1 2<13 18<1,∴当t =13 18 时,OQ =d = 25 4 t - 25 8 =25 18BP =OB -OP =5-5t =2518∴BP =OQ ,即点B 与圆心P 的距离等于⊙P 的半径,点B 在⊙P 上 ∴存在CP ∥AQ ,此时t =1318,且点B 在⊙P 上 44.(黑龙江大庆)已知等边△ABC 的边长为3个单位,若点P 由A 出发,以每秒1个单位的速度在三角形的边上沿A →B →C →A 方向运动,第一次回到点A 处停止运动,设AP =S ,用t 表示运动时间.(1)当点P 由B 到C 运动的过程中,用t 表示S ;(2)当t 取何值时,S 等于7(求出所有的t 值);(3)根据(2)中t 的取值,直接写出在哪些时段AP <7? 解:(1)当点P 在BC 上时,有3≤t≤6作PM ⊥AB ,垂足为M由PB =t -3,∠B =60°,得PM =32 (t -3 ),BM = 12( t -3) ∴AM =3-12(t -3)于是S =AP =AM 2+BM 2=(t -3 )2-3( t -3 )+9(3≤t≤6)(2)当S =7时(i )当点P 在AB 上时,有t =7 (ii )当点P 在CA 上时,有t =9-7(iii )当点P 在BC 上时,S =(t -3 )2-3( t -3 )+9=7解得t =4或t =5综上t =7或t =9-7或t =4或t =5(3)根据(2)可知0<t<7,4<t<5,9-7<t≤9 这三个时间段内AP <7 45.(黑龙江大兴安岭、鸡西、齐齐哈尔、黑河、七台河)如图,在平面直角坐标系中,已知Rt △AOB 的两条直角边OA 、OB 分别在y 轴和x 轴上,并且OA 、OB 的长分别是方程x2-7x +12=0的两根(OA <OB ),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 运动;同时,动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点AA CB运动,设点P 、Q 运动的时间为t 秒. (1)求A 、B 两点的坐标.(2)求当t 为何值时,△APQ 与△AOB 相似,并直接写出此时点Q 的坐标.(3)当t =2时,在坐标平面内找一点M ,使以A 、P 、Q 、M 为顶点的四边形是平行四边形,求M 点的坐标;(4)在P 、Q 运动过程中,在坐标平面内是否存在点N ,使以A 、P 、Q 、N 为顶点的四边形是菱形?若存在,请直接写出N解:(1)解方程x2-7x +12=0,得x 1=3,x 2=4∵OA <OB ,∴OA =3,OB =4∴A (0,3),B (4,0)(2)由题意得,AP =t ,AQ =5-2t 可分两种情况讨论:①当∠APQ =∠AOB 时,△APQ ∽△AOB如图1, t3=5-2t5,解得t =1511∴Q (2011,1811) ②当∠AQP =∠AOB 时,△APQ ∽△ABO 如图2, t5=5-2t3,解得t =2513∴Q (1213,3013)(3)当t =2时,AP =2,AQ =5-2t =1 ∴PO =1,∴P (0,1), 点Q 的横坐标为:1×cos ∠ABO = 45,纵坐标为:3-1×sin ∠ABO = 125∴Q (45,125)若AP 是平行四边形的边,则MQ ∥AP ,MQ =AP =2,如图3、图4 ∴点M 的横坐标为45,纵坐标为:125+2=225或 125-2=25∴M 1(45,225),M 2(45,25)若AP 是平行四边形的对角线,则△AMP ≌PQA ,如图5∵点Q的横坐标为45,∴点M的横坐标为-45∵点A的纵坐标比点Q的纵坐标大3 5∴点M的纵坐标比点P的纵坐标大3 5即点M的纵坐标为:1+35=85∴M3(-45,85)(4)存在.N1(43,13),N2(32,5516),N3(-2017,3617)提示:有三种情况若AP=AQ,则在坐标平面内存在点N,使四边形APNQ是菱形,如图6∴t=5-2t,解得t=53,∴AQ=53∴Q(43,2),∴N1(43,13)若AP=PQ,则在坐标平面内存在点N,使四边形APQN是菱形,如图7由题意,P(0,3-t),Q(4-85t,65t)∴PQ2=(4-85t)2+(3-t-65t)2∴t2=(4-85t)2+(3-t-65t)2,解得t=2516或t=52当t=52时,点Q与点A重合,不合题意,舍去∴t=2516,∴Q(32,158)∴N2(32,5516)若AQ=PQ,则在坐标平面内存在点N,使四边形ANPQ是菱形,如图8连接NQ交AP于O′,则NQ⊥AP,AO′=O′P∴AP=2AO′,∴t=65(5-2t)解得t=3017,∴Q(2017,3617)∴N3(-2017,3617)46.(吉林)如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm .动点P 从点A 出发,沿AB 方向以1cm /s 的速度向点B 运动,动点Q 从点B 同时出发,沿BA 方向以1cm /s 的速度向点A 运动.当点P 到达点B 时,P ,Q 两点同时停止运动.以AP 为一边向上作正方形APDE ,过点Q 作QF ∥BC ,交AC 于点F .设点P 的运动时间为t s ,正方形APDE 和梯形BCFQ 重合部分的面积为S cm 2.(1)当t =_________s 时,点P 与点Q 重合; (2)当t =_________s 时,点D 在QF 上;(3)当点P 在Q ,B 两点之间(不包括Q ,B 两点)时,求S 与t 之间的函数关系式.解:(1)1 (2)45提示:点D 在QF 上时∵QF ∥BC ,∠DPQ =CAB =90° ∴△PQD ∽△ABC ,∴ PDPQ=ACAB即t2-2t=42,解得t =45B Q D PC A EF BCA (备用图)47.(吉林模拟)如图,梯形OABC中,OA在x轴上,CB∥OA,∠OAB=90°,B(4,4),BC=2.动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到点A停止,过点E 作ED⊥x轴交折线O-C-B于点D,以DE为一边向右作正方形DEFG.设运动时间为t (秒),正方形DEFG与梯形OABC重叠面积为S(平方单位).(1)求tan∠AOC的值;(2)求S与t的函数关系式,并求出S的最大值;(3)连接AC,AC的中点为M,t为何值时,△DMG为等腰三角形?解:(1)过C 作CD ⊥x 轴于H∵B (4,4),BC =2,∴OH =2,CH =4 ∴tan ∠AOC =CHOH=42=2,(2)当点F 与点A 重合时,OE =t ,AE =DE =4-t∴tan ∠AOC =DEOE=4-t t=2,解得t =43当0<t≤4 3时,S =DE 2=( 2OE )2=( 2t)2=4t 2当4 3≤t ≤2时,S =DE ²AE =2t ²( 4-t)=-2t 2+8t 当2≤t ≤4时,S =4AE =4( 4-t)=-4t +16当0<t ≤4 3 时,t = 4 3 时,S 最大=64 9当43≤t≤2时,t =2时,S 最大=8 当2≤t≤4时,t =2时,S 最大=8 综上,t =2时,S 的最大值为8(3)t 1= 13-213 9 ,t 2= 32,t 3=23-1提示:由题意,A (4,0),C (2,4) ∴M (3,2)当0<t≤2时,D (t ,2t ),G (3t ,2t )∴DM 2=( t -3 )2+( 2t -2)2,DG 2=4t 2MG 2=( 3t -3 )2+( 2t -2)2若DG =MG ,则4t 2=( 3t -3 )2+( 2t -2)2解得t = 13+2 13 9 >2(舍去)或t =13-2139若MD =MG ,则( t -3 )2+( 2t -2 )2=( 3t -3 )2+( 2t -2)解得t =0(舍去)或t =32若DM =DG ,则(t -3 )2+( 2t -2)2=4t2,无实数解 当2<t≤4时,D (t ,4),G (t +4,4)∴DM 2=(t -3 )2+ 2 2,DG 2=42MG 2=( t +1 )2+ 22 若DG =MG ,则4 2=( t +1 )2+ 22解得t =23-1或t =-23-1(舍去)若MD =MG ,则( t -3 )2+ 2 2=( t +1 )2+ 22备用图解得t=1(舍去)若DM=DG,则(t-3)2+22=42解得t=3±23(舍去)48.(吉林长春)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以5cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AQ上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为______________cm(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连接CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.(1)(t-2)(2)①当点P在线段DE上时,如图①PD=PN=PQ=2,∴t-2=2∴t=4②当点P在线段EB上时,如图②PN=2PB∵PN=PC=(t-6)+2=t-4PB=2-(t-6)=8-t∴t-4=2(8-t),解得t=20 3∴当点N落在AB边上时,t的值为4或20 3(3)①当2<t<4时,如图③S=22-14(4-t)2即S=-14t2+2t②当203<t<8时,如图④图①图②(Q)图③S =(t -4)2-1 4(3t -20)2即S =-54t2+22t -84 (4)t =143或t =5或6≤t≤8提示:当点H 第一次落在线段CD 上时 2.5(t -4)+1 2 ( t -4 )=2,解得t =143当点H 第二次落在线段CD 上时 2.5(t -4)-2= 12( t -4),解得t =5当点H 第三次落在线段CD 上时 6-2.5(t -4)= 12( t -4),解得t =6当6≤t≤8时,点H 恒在线段CD 上 49.(长春模拟)如图,在△AOB 中,∠AOB =90°,OA =OB =6,C 为OB 上一点,射线CD ⊥OB 交AB 于点D ,OC =2.点P 从点A 出发以每秒 2个单位长度的速度沿AB 方向运动,点Q 从点C 出发以每秒2个单位长度的速度沿CD 方向运动,P ,Q 两点同时出发,当点P 到达点B 时停止运动,点Q 也随之停止.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,得到矩形PEOF ,以点Q 为直角顶点向下作等腰直角三角形QMN ,斜边MN ∥OB ,且MN=QC .设运动时间为t (秒).(1)求t =1时FC 的长度. (2)求MN =PF 时t 的值.(3)当△QMN 和矩形PEOF 有重叠部分时,求重叠(阴影)部分图形面积S 与t 的函数关系式.(4)直接写出△QMN 和矩形PEO F 的边有三个公共点时t 的值.解:(1)根据题意,△AOB 、△AEP 都是等腰直角三角形∵AP =2t ,∴OF =EP =t ∵OC =2,∴FC =|2-t| ∴当t =1时,FC =1(2)∵AP =2t ,∴AE =t ,PF =OE =6-t ∵MN =QC =2t ,MN =PF ∴2t =6-t ,∴t =2(3)当点F 在点C 左侧时,设MQ 、MN 分别与PF 交于点G 、H 当△QMN 和矩形PEOF 有重叠部分时则MH =GH =t -(2-t )=2t -2≥0,得t≥1当点F 与点C 重合时,t =2当1≤t≤2时,重叠部分为△MGH ,如图①图④(Q )B图①B图③图②∵MH =GH =t -(2-t)=2t -2∴S=1 2(2t -2)2=2t 2-4t +2当点E 落在MQ 上时,如图②∵AE =t ,EK =MK =t -2,AK =6-t ,AE +EK =AK ∴t +(t -2 )=6-t ,∴t =83当2<t≤83时,重叠部分为五边形IJKLP ,如图③ ∵JK =MK =t -2,AK =6-t ,∴AJ =6-t -(t -2)=8-∴EK =6-t -t =6-2t ,EI =EJ =8-2t -t =8-3t∴S=S 矩形EKLP-S △EJI =t (6-2t )- 1 2 ( 8-3t )2=- 13 2t 2+当MN 与EP 重合时,t =3 当83<t≤3时,重叠部分为矩形EKLP ,如图④ ∴S=t (6-2t)=-2t 2+6t(4)t =2或t =83提示:如图⑤、图②50.(长春模拟)如图,在平面直角坐标系中,梯形ABCD 的顶点A 、B 、D 的坐标分别为A (-3,0),B (15,0),D (0,4),且CD =10.一条抛物线经过C 、D 两点,其顶点M 在x 轴上.点P 从点A 出发以每秒5个单位的速度沿AD 向点D 运动,到点D 后又以每秒3个单位的速度沿DC 向点C 运动,到点C 停止;同时,点E 从点B 出发以每秒5个单位的速度沿BO 运动,到点O 停止.过点E 作y 轴的平行线,交边BC 或CD 于点R .设P 、E 两点运动的时间为t (秒).(1)写出点M 的坐标,并求这条抛物线的解析式; (2)当点Q 和点R 之间的距离为8时,求t 的值;(3)直接写出使△MPQ 成为直角三角形时t 值的个数;(4)设P 、Q 两点直径的距离为d ,当2≤d ≤7时,求t 的取值范围.解:(1)M (5,0)设抛物线的解析式为y =a (x -5)2∵抛物线经过点D (0,4),∴25a =4,∴a =425∴抛物线的解析式为y = 4 25 ( x -5 )2或y = 4 25 x 2- 8 5x +4 (2)作CN ⊥AB 于N ,则CN =4,BN =5①当0≤t ≤1时,由△BQE ∽△BCN 得: BE QE = BN CN =54图⑤∵BE =5t ,∴QE =4t ∵RQ =8,∴RE =4t +8 ∴R (15-5t ,4t +8)∵点R 在抛物线y =4 25 (x -5)2上,∴4 25(15-5t -5)2=4t +8解得t 1= 5+ 17 2 >1(舍去) ,t 2=5-172②当1≤t≤3时,QR ≤CN =4∴当t = 5-172时,点Q 和点R 之间的距离为8(3)4 提示:当0≤t ≤1时,P 在线段AD 上,Q 在线段BC 上,∠PMQ ≥∠DMC>90°当1<t ≤ 13 3 时(P 到达C 时,t =1+ 10 3=133),P 、Q 均在CD 上若∠PMQ =90°,则由射影定理得:(8-3t )(10-5t )=42解得t 1= 35- 265 15 ,t 2=35+26515若∠PQM =90°,则Q 到达M 的正上方,t = 105=2若∠QPM =90°,则P 到达M 的正上方,t =1+ 5 3=83所以使△MPQ 成为直角三角形时的t 值有4个(4)∵当t =1时,P 、Q 分别到达D 、C 两点,CD =10 ∴当2≤d≤7时,P 、Q 均在CD 上当点P 和点Q 相遇前,d =PQ =3+15-( 3t +5t)=18-8t∴2≤18-8t ≤7,解得 118≤t≤2当点P 和点Q 相遇后,d =PQ =8t -18∴2≤8t -18≤7,解得 5 2 ≤t ≤258∵25 8 >3,而3t -3=7时,t =10 3∴5 2 ≤t ≤10 3综上所述,当2≤d ≤7时,t 的取值范围为 11 8 ≤t ≤2或 5 2 ≤t ≤10351.(辽宁大连)如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm /s 的速度分别沿CA 、CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ ′R .设点Q 的运动时间为t (s ),△PQ ′R 与△P AR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q ′ 恰好落在AB 上?(2)求S 与t 的函数关系式,并写出t 的取值范围;(3)S 能否为98cm 2?若能,求出此时的t 值,若不能,说明理由.B lACQ PRQ ′BA 备用图CBA备用图C解:(1)过点Q ′ 作Q ′H ⊥AC ,垂足为H (如图1) ∴∠Q ′HA =90°=∠C ,Q ′H ∥BC ∴AQ ′H △∽△ABC ,∴Q ′HBC=AHAC由题意知QC =CP =PH =Q ′H =t ∴ t6=AH8 ,即AH =43t ∵CP +PH +HA =CA ,即t +t +43t =8∴t =12 5,即t 为125s 时,点Q ′ 恰好落在AB 上 (2)①当0<t≤125时(如图2) 同理RPBC=APAC,即RP6 =8-t8∴RP =34(8-t)∴S =S △PQ ′R=S △PQR=12RP ²CP =1 2 ×3 4 (8-t )×t =- 3 8t 2+3t ②当125<t≤6时(如图3) 设PQ ′ 与AB 相交于点M ,过点M 作MH ⊥AC ,垂足为H 设MH =a ,由对称性知,∠MPH =∠QPC =45°,则PH =MH =a 同理MHBC =AHAC,即a6 =AH8 ,∴AH = 4 3a∵CP +PH +HA =CA ,即t +a +43a =8∴a =37(8-t)∴S =12RP ²PH =1 2 ×3 4 (8-t )×3 7 ( 8-t )= 9 56 ( 8-t )2=- 9 56 t 2- 18 7 t +72 7综上,S =⎩⎨⎧-3 8t2+3t (0<t ≤125)- 9 56t2- 18 7 t + 72 7 (125<t≤6)(3)若S = 98,则 ①当0<t≤125时,-38t 2+3t =98,解得t 1=4+13(舍去),t 2=4-13 ②当125<t≤6时,956(8-t)2=98,解得t 1=8+7(舍去),t 2=8-7 Bl ACQ PRQ ′图1HBl ACQ PRQ ′图2B l ACQP RQ ′图3MH即S 能为98cm 2,此时t 为(4-13 )s 或( 8-7)s 52.(辽宁葫芦岛)△ABC 中,BC =AC =5,AB =8,CD 为AB 边的高,如图1,A 在原点处,点B 在y 轴正半轴上,点C 在第一象限.若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动△ABC 在平面内滑动,如图2.设运动时间为t 秒,当B 到达原点时停止运动. (1)当t =0时,求点C 的坐标;(2)当t =4时,求OD 的长及∠BAO 的大小;(3)求从t =0到t =4这一时段点D 运动路线的长;(4)当以点C 为圆心,CA 为半径的圆与坐标轴相切时,求t 的值.解:(1)∵BC =AC ,CD ⊥AB∴D 为AB 的中点,∴AD =12AB =4在Rt △CAD 中,CD =5 2-42=3∴点C 的坐标为(3,4)(2)如图2,当t =4时,AO =4 在Rt △ABO 中,D 为AB 的中点∴OD =12AB =4∴△AOD 为等边三角形,∴∠BAO =60°(3)如图3,从t =0到t =4这一时段点D 的运动路线是DD ′︵其中OD =OD ′=4,又∠D ′OD =90°-60°=30° ∴DD ′︵的长为 30π×4 180 =2π 3(4)由题意,AO =t当⊙C 与x 轴相切时,A 为切点,如图4 ∴CA ⊥OA ,∴CA ∥y 轴∴∠CAD =∠ABO ,∴Rt △CAD ∽Rt △ABO ∴ABCA=AOCD,即85=t3∴t =245当⊙C 与y 轴相切时,B 为切点,如图5图2图1 图2图3图5图4同理可得t =325∴t 的值为245或32553.(辽宁丹东)已知抛物线y =ax2-2ax +c 与y 轴交于C 点,与x 轴交于A 、B 两点,点A的坐标是(-1,0),O 是坐标原点,且|OC |=3|OA |. (1)求抛物线的函数表达式;(2)直接写出直线BC 的函数表达式;(3)如图1,D 为y 轴负半轴上的一点,且OD =2,以OD 为边向左作正方形ODEF .将正方形ODEF 以每秒1个单位的速度沿x 轴的正方向移动,当点F 与点B 重合时停止移动.在移动过程中,设正方形O ′DEF 与△OBC 重叠部分的面积为S ,运动时间为t 秒. ①求S 与t 之间的函数关系式;②在运动过程中,S 是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由;(4)如图2,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由.解:(1)∵A (-1,0),|OC |=3|OA |,∴C (0,-3) ∵抛物线y =ax2-2ax +c 经过A 、C 两点∴⎩⎪⎨⎪⎧a +2a +c =0c =-3 解得⎩⎪⎨⎪⎧a =1b =-3 ∴抛物线的函数表达式为y =x2-2x -3 (2)直线BC 的函数表达式为y =x -3 (3)①设D (m ,-2),则E (m -2,-2) 当正方形ODEF 的顶点D 运动到直线BC 上时 有-2=m -3,∴m =1正方形ODEF 的边EF 运动到与OC 重合时 m =2当正方形ODEF 的顶点E 运动到直线BC 上时 有-2=(m -2)-3,∴m =3图2图1在y =x -3中,当y =0时,x =3,∴B (3,0) 当正方形ODEF 的顶点F 运动到与点B 重合时 有m =3+2=5当0<t ≤1时,重叠部分为矩形OGDO ′ S =2t当1<t≤2时,重叠部分为五边形OGHIO ′ HD =ID =t -1S =S 矩形OGDO ′-S △HID=2t -1 2 (t -1)2=-1 2 t 2当2<t≤3时,重叠部分为五边形FEHIO ′S =S 正方形O ′DEF-S △HID=22-1 2 (t -1)2=-1 2 当3<t≤5时,重叠部分为△FKBFB =FK =2-(t -3)=5-tS =1 2 (5-t)2=1 2 t 2-5t +25 2②当t =2秒时,S 有最大值,最大值为 72(4)存在.M 1(-2-1,0),M 2(2-1,0) M 3(3-6,0),M 4(3+6,0) 提示:如图54.(辽宁本溪)如图,已知抛物线y =ax2+bx +3经过点B (-1,0)、C (3,0),交y 轴于点A ,将线段OB 绕点O 顺时针旋转90°,点B 的对应点为点M ,过点A 的直线与x 轴交于点D (4,0).直角梯形EFGH 的上底EF 与线段CD 重合,∠FEH =90°,EF ∥HG ,EF =EH =1.直角梯形EFGH 从点D 开始,沿射线DA 方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG 与直线AD 始终..重合,设运动时间为t 秒. (1)求此抛物线的解析式;(2)当t 为何值时,以M 、O 、H 、E 为顶点的四边形是特殊的平行四边形;(3)作点A 关于抛物线对称轴的对称点A ′,直线HG 与对称轴交于点K .当t 为何值时,以A 、A ′、G 、K 为顶点的四边形为平行四边形,请直接写出符合条件的t 值.解:(1)∵抛物线y =ax2+bx +3经过点B (-1,0)、C (3,0)∴⎩⎪⎨⎪⎧a -b +3=09a +3b +3=0 解得⎩⎪⎨⎪⎧a =-1b =2 ∴抛物线的解析式为y =-x2+2x +3(2)过点F ′ 作F ′N ⊥OD 轴于点N ,延长E ′H ′ 交x 轴于点P ∵点M 是点B 绕O 点顺时针旋转90°后得到的 ∴点M 的坐标为(0,1) ∵点A 是抛物线与y 轴的交点 ∴A 点坐标为(0,3),∴OA =3 ∵D (4,0),∴OD =4∴AD =3 2+42=5∵E ′H ′∥OM ,E ′H ′=OM =1∴四边形MOH ′E ′ 是平行四边形(当EH 不与y 轴重合时)∵F ′N ∥OA ,∴△F ′ND ∽△AOD ,∴F ′NAO=NDOD=F ′DAD∵直角梯形E ′F ′G ′H ′ 是直角梯形EFGH 沿射线DA 方向平移得到的 ∴F ′D =t ,∴F ′N3=ND4=t5,∴F ′N =35t ,ND =45t ∵E ′F ′=PN =1,∴OP =OD -ND -PN =4- 45t -1=3-45t ∵E ′P =F ′N =35t ,E ′H ′=1,∴H ′P =35t -1 若平行四边形MOH ′E ′ 是矩形,则∠MOH ′=90°此时H ′G ′ 与x 轴重合,∴F ′N =1 ∵35t =1,∴t =53即当t =53秒时平行四边形MOH ′E ′ 是矩形若平行四边形MOH ′E ′ 是菱形,则OH ′=E ′H ′=1 在Rt △H ′OP 中,(3-45 t)2+(35t -1 )2=12备用图解得t =3即当t =3秒时平行四边形MOH ′E ′ 是菱形 综上:当t =53秒时平行四边形MOH ′E ′ 是矩形; 当t =3秒时平行四边形MOH ′E ′ 是菱形 (3)t 1=3512 秒,t 2=9512秒提示:∵KG ∥AA ′,∴当KG =AA ′=2时,以A 、A ′、G 、K 为顶点的四边形为平行四边形 当点E 与点C 重合、点F 与点D 重合时KG =KH +HG =KH +CD +CHtan ∠ADO=2+1+43 =133∴移动t 秒时,KG =13 3-45t (直线HG 在AA ′ 下方)或KG = 45t -133(直线HG 在AA ′上方) 由 13 3-45 t =2,得t =3512由45t -13 3 =2,得t =951255.(辽宁模拟)将Rt △ABC 和Rt △DEF 按图1摆放(点F 与点A 重合),点A 、E 、F 、B 在同一直线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习——压轴题1.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22).2. (08浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. (08浙江温州)如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(08山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk(k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ; (2)如图2,过原点O 作另一条直线l ,交双曲线y=xk(k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,P 图 3BD 图 2B图 1A BC D ER P H Q四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.7.(2008浙江义乌)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =12,求22BE DG +的值.8. (2008浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E . (1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4. ①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2008山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2008山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a .(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF . 则:AD AB 的值是 ,AD AB ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.(2008山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.ABCD BCA D EGHF FE B '4开2开8开16开 图1图2 图3a14.(2008山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为 .C D A BE F NM友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.16.(2008年浙江省绍兴市)将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t 时,如图1,将O P Q △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(4) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.图117.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2008年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2008年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.21.(2008年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由L`22.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)23.(天津市2008年)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.(2008年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示).(1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △; (3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由. .25. (2008年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.26. (2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处DCBAEFGGF EACD ①②B ADME C图13 B A D C 备用图的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27.(2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(2cm),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2008年江苏省南通市)已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.P'图①C C(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求? 答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)图1 图2 图3 图4压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,=====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOBDBE ∆∆.2. (1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32), ∴381032OAB tan =-=∠,∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´, ∴△A ´TA 是等边三角形,且A T TP '⊥, ∴)t 10(2360sin )t 10(TP -=︒-=,)t 10(21AT 21AP P A -===',∴2TPA )t 10(83TP P A 21S S -=⋅'=='∆, 当A ´与B 重合时,AT=AB=460sin 32=︒, 所以此时10t 6<≤.(2)当点A ´在线段AB 的延长线,且点P 在线段AB(不与B 重合)上时, 纸片重叠部分的图形是四边形(如图(1),其中E 是TA ´与CB 的交点), 当点P 与B 重合时,AT=2AB=8,点T 的坐标是(2,又由(1)中求得当A ´与B 重合时,T 的坐标是(6,0) 所以当纸片重叠部分的图形是四边形时,6t 2<<.(3)S 存在最大值 ○1当10t 6<≤时,2)t 10(83S -=, 在对称轴t=10的左边,S 的值随着t 的增大而减小,∴当t=6时,S 的值最大是32.○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-=∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----=34)2t (83)28t 4t (8322+--=++-=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点),∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4,∴3432421OC EF 21S =⨯⨯=⋅=综上所述,S 的最大值是34,此时t 的值是2t 0≤<. 3. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.4. 解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴ △AMN ∽ △ABC . ∴ AM AN AB AC=,即43x AN=.ABCD ERP H QM21 HQA B CD E R PHQB图 1∴ AN =43x . ……………2分 ∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .BD 图 2QP图 4BP 图 3∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分5. 解:(1)(-4,-2);(-m,-km)(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ一定是平行四边形 ②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=∴B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =,的以直线AB 的解析式为4y =+ (2)由旋转知,AP=AD, ∠PAD=60o,∴ΔAPD 是等边三角形,6. 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=∴B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为4y x =+ (2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=, ∴32,OH=OE+HE=OE+BG=37222+=∴D(2,72)(3)设OP=x,则由(2)可得D(,22x x +)若ΔOPD的面积为:13(2)224x x += 解得:3x -=所以P(3-7. 解:(1)①,BG DE BG DE =⊥ ………………………………………………………………2分②,BG DE BG DE=⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠= ∴BCG DCE ∠=∠…………………………………………………………………1分 ∴BCG DCE ∆≅∆ (SAS )………………………………………………………1分∴BG DE = C B G C D E∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >)∴BC CG bDC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+又∵3a =,2b =,k =12∴222222365231()24BD GE +=+++=………………………………………………1分 ∴22654BE DG +=………………………………………………………………………1分 8. 解:(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t tt t =--⨯-=-+-…………………………………………4分 (2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二: ① 以点D 为直角顶点,作1PP x ⊥轴Rt ODE ∆在中,2OE OD =∴,设2OD b OE b ==,.1Rt ODE Rt PPD ∆≈∆,(图示阴影)4b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4)E 点在0点与A 点之间不可能;② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能.以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4), E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b)的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2bP -DE ==得2332640b b -+=解得 121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -;第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即=22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即=12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出AB a OC b ==、、OA h =、设b ak h-=,则P 点的情形如下9.10.11. 解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米,由题意得1201023x x+=, ··················································································· 2分 解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ·········································· 4分 (2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元.························ 6分 (3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=, ···················································· 8分 整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ······················································· 9分∴这批货物有8车. ····················································································· 10分12. 解:(1144a a ,,. ·········································································· 3分(2. ·············· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠=,90HGF ∠=,90DHG CGF DGH ∴∠=∠=-∠,HDG GCF ∴△∽△, 12DG HG CF GF ∴==, 22CF DG x ∴==. ······················································································ 6分 同理BEF CFG ∠=∠. EF FG =, FBE GCF ∴△≌△,14BF CG a x ∴==-. ·················································································· 7分 CF BF BC +=,1244x a x a ∴+-=, ················································································· 8分解得14x a =.即DG =. ························································································ 9分 (4)2316a , ······························································································ 10分2. 12分 13. 解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H . ……………1分∵ AB ∥CD ,∴ DG =CH ,DG ∥CH .∴ 四边形DGHC 为矩形,GH =CD =1.∵ DG =CH ,AD =BC ,∠AGD =∠BHC =90°, ∴ △AGD ≌△BHC (HL ).∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.A BE F G H∴ ()174162ABCD S +⨯==梯形. ………………………………………………3分(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ ME =NF ,ME ∥NF .∴ 四边形MEFN 为矩形.∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴ DGME AG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN 矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分 (3)能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF .即 =34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.14. 解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分A B E F G H设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k . ∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分 15. 解:(1)解法1:根据题意可得:A (-1,0),B (3,0);则设抛物线的解析式为)3)(1(-+=x x a y (a ≠0)又点D (0,-3)在抛物线上,∴a (0+1)(0-3)=-3,解之得:a =1∴y =x 2-2x -3 ······················································································ 3分 自变量范围:-1≤x ≤3 ········································································· 4分解法2:设抛物线的解析式为c bx ax y ++=2(a ≠0)根据题意可知,A (-1,0),B (3,0),D (0,-3)三点都在抛物线上∴⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a ,解之得:⎪⎩⎪⎨⎧-=-==321c b a∴y =x 2-2x -3 ···································································· 3分自变量范围:-1≤x ≤3 ····················································· 4分(2)设经过点C “蛋圆”的切线CE 交x 轴于点E ,连结CM , 在Rt △MOC 中,∵OM =1,CM =2,∴∠CMO =60°,OC =3 在Rt △MCE 中,∵OC =2,∠CMO =60°,∴ME =4∴点C 、E 的坐标分别为(0,3),(-3,0) ··········································· 6分∴切线CE 的解析式为3x3y +=··················································· 8分(3)设过点D (0,-3),“蛋圆”切线的解析式为:y =kx -3(k ≠0) ······················· 9分由题意可知方程组⎪⎩⎪⎨⎧--=-=3232x x y kx y 只有一组解 即3232--=-x x kx 有两个相等实根,∴k =-2······································· 11分∴过点D “蛋圆”切线的解析式y =-2x -3 ············································· 12分16.解:(1)6OP t =-,23OQ t =+.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行. 若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,图1。