误差理论与测量平差基础习题集
误差理论和测量平差5道经典习题

误差理论和测量平差5道经典习题1、以下对于随机变量的描述,正确的是:A. 其数值的符号和大小均是偶然的B. 其数值的符号和大小均是随机的C. 数值的符号和大小均是无规律的D. 随机变量就其总体来说具有一定的统计规律2、以下关于偶然误差的描述正确的是:A. 在一定的观测条件下,误差的绝对值有一定的限值;B. 绝对值较小的误差比绝对值较大的误差出现的概率大;C. 绝对值相等的正负误差出现概率相同;D. 偶然误差的数学期望为零3、下列关于偶然误差的特性描述正确的是:A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关4、下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测第四次作业:1、求随机变量σμ-=x t 的期望和方差2、设随机变量X~N (0,9),求随机变量函数Y=5X 2的均值3、为了鉴定经纬仪的精度,对已知精确测定的水平角α=45°00′00″作12次观测,结果为:45°00′06″ 44°59′55″ 44°59′58″ 45°00′04″ 45°00′03″ 45°00′04″ 45°00′00″ 44°59′58″ 44°59′59″ 44°59′59″ 45°00′06″ 45°00′03″设α没有误差,试求观测值的中误差。
1、对真值为L ~=100.010m 的一段距离以相同的方法进行了10次独立的观测,得到的观测值见下表,试求该组观测值的系统误差、中误差、均方误差。
误差理论与测量平差习题

−1 1 2
试求函数方差1 ,2 和相互协方差1 2 。
解:1 =421 +322
2 =18
1 2 =72 - 1
3.2.14 已知边长 S 及坐标方位角 α 的中误差各位 和 ,试求坐标增量 ΔX=S·cosα 和 ΔY=S·sinα 的
中误差。
2
解: =√cos 2 2 + ()2 2 ∕
3.2.10 设有观测值向量 = [1
31
4
=[0
0
试分别求下列函数的方差:
(1)1 =1 -33 ;
(2)2 =32 3 。
解:1 =22
2 =1822 +2723
2 3 ]T,其协方差阵为
0 0
3 0],
0 2
6 −1 −2
3.2.11 设有观测值向量 = [1 2 3 ] ,其协方差阵为 =[−1 4
误差理论与测量平差习题
第一章
绪论
1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定
(1)误差的性质及符号:
(2)长不准确;
(3)尺尺不水平;
(4)估读小数不准确;
(5)尺垂曲;
(6)尺端偏离直线方向。
1.1.05 在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的
̂2 =2.4
̂1 =2.7
̂2 =3.6
两组观测值的平均误差相同,而中误差不同。由于中误差对大的误差反应灵敏,故通常采用中误差作
为衡量精度的指标。本题中,̂1 <̂2 ,因此,第一组观测值的精度高。
2.6.18 设有观测值向量 = [1
21
4 −2
2
解: =(
误差理论与测量平差基础试题

误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)尺不水平;系统误差,符号为“-”。
(3)估读小数不准确;偶然误差,符号为“+”或“-”。
(4)尺垂曲;系统误差,符号为“-”。
(5)尺端偏离直线方向。
系统误差,符号为“-”。
第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。
^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中?1<?2,因此,第一组观测值的精度高。
^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。
令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。
其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。
TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。
误差理论与测量平差基础试卷一及答案

误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
2、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。
( × )2、观测值iL 与其偶然真误差i∆必定等精度。
(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( × )4、或然误差为最或然值与观测值之差。
( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。
( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。
A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。
A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。
误差理论与测量平差基础习题集

第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础习题

《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
可使用计算器。
一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。
已知1212σσ=,取单位权中误差02σσ=。
要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。
2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。
3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。
二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。
2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。
3. 对某控制网进行了两期观测。
由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。
误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年

误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年1.参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。
( )参考答案:正确2.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个进行间接平差,则下列选项正确的是( )。
参考答案:误差方程的个数为15个_待求量的个数为5个3.间接平差中测方向三角网函数模型中,网中所有测站均存在一个定向角平差值参数,其系数为( )。
参考答案:-14.某平差问题有12个同精度观测值,必要观测数为t=6,现选取2个独立的参数参与平差,应列出( )个条件方程。
参考答案:85.在附有参数的条件平差中,法方程的个数为C个。
参考答案:错误6.观测值与最佳估值之差为观测值的真误差。
参考答案:错误7.通过平差可以消除误差,从而消除观测值之间的矛盾。
参考答案:错误8.在附有参数的条件平差法中,任何一个量的平差值都可以表达成( )的函数。
参考答案:观测量平差值和参数平差值9.单位权方差估值与具体采用的平差方法相关。
参考答案:错误10.测量成果精度主要包括观测值的实际精度、观测值经平差得到的观测值函数的精度两个方面。
参考答案:正确11.条件方程类型包括图形条件、极条件、边条件、方位角条件、基线条件等。
参考答案:正确12.极条件方程是以某点为极,列出各图形边长比的和为1。
参考答案:错误13.水准网的条件方程式为符合水准路线。
参考答案:错误14.为了确定一个几何模型,并不需要知道该模型中所有元素的大小,而只需要知道其中部分元素的大小就行了。
参考答案:正确15.必要元素的个数t与几何模型和实际观测量有关。
参考答案:错误16.平差的最终目的都是对参数和观测量作出某种估计,并评定其精度。
参考答案:正确17.间接平差的函数模型中的未知量是t个独立参数,多余观测数会随平差方法不同而异。
误差理论与测量平差试题+答案

《误差理论与测量平差》(1)1.正误判断。
正确“T”,错误“F”。
(30分)2.在测角中正倒镜观测是为了消除偶然误差()。
3.在水准测量中估读尾数不准确产生的误差是系统误差()。
4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
5.观测值与最佳估值之差为真误差()。
6.系统误差可用平差的方法进行减弱或消除()。
7.权一定与中误差的平方成反比()。
8.间接平差与条件平差一定可以相互转换()。
9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
15.定权时σ0可任意给定,它仅起比例常数的作用()。
16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
17.用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
18. 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差理论与测量平差基础习题集TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第五章条件平差§5-1条件平差原理条件平差中求解的未知量是什么能否由条件方程直接求得5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t ,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少5. 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。
图5-15. 1. 04 在图5-2中,已知A ,B 的高程为H a = m , H b =11. 123m,观测高差和线路长度为:图5-2S1=2km,S 2=Ikm,S 3=,h 1 =,h 2= m,h3= m ,求改正 数条件方程和各段离差的平差值。
在图5-3的水准网中,A 为已知点B 、C 、D 为待定点,已知点高程H A =,观测了5条路线的高差: h 1=,h 2=0. 821 m ,h 3=, h 4=, h 5= m 。
各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差 值。
有水准网如图5-4所示,其中A 、B 、C 三点高程未知,现在其间进行了水准测 量,测得高差及水准路线长度为 h 1 =1 .335 m ,S 1=2 km; h 2= m ,S 2=2 km;h 3= m ,S 3=3km 。
试按条件平差法求各高差的平差值。
如图 5-5 所示,L 1=63°19′40″,=30″;L 2 =58°25′20″,=20″; L 3=301°45′42″,=10″. (1)列出改正数条件方程;(2)试用条件平差法求∠C 的平差值(注: ∠C 是指内角)。
5-2条件方程5. 对某一平差问题,其条件方程的个数和形式是否惟一列立条件方程时要注意哪些问题如何使得一组条件方程彼此线性无关. 10 指出图5-6中各水准网条件方程的个数(水准网中P i 表示待定高程点,h i 表 示观测高差)。
(a) (b)图5-65. 2. 11指出图5-7中各测角网按条件平差时条件方程的总数及各类条件的个数(图 中P i 为待定坐标点)。
(2) (b)(3)(d)图5-7. 12 指出图5-8中各测角网按条件平差时条件方程的总数及各类条件的个数(图中P i 为待定坐标点, s ~i 为已知边,a ~i 为已知方位角)。
(a ) (b)(4) (d)图5-85. 2. 13试指出图5-9中各图形按条件平差时条件方程的总数及各类条件的个数(图 中p i 为待定坐标点,βi 为角度观测值,S i 为边长观测值,S -i 为已知边长,a ~i 为已知方位角)。
5. 2. 14如图5-10所示的三角网中,A 、B 为已知点,P 1一P;为待定点,a ~0为已知方位角。
s ~0为已知边长,观测了23个内角,试指出按条件平差时条件方程的总数及各类条件的个数。
5. 2. 15试按条件平差法列出图5-11所示的水准网的全部条件方程(P i 为待定点,h i为观测高差)。
在图5-12所示的GPS 基线向量网中,用GPS 接收机同步观测了网中5条边的基线向量( △X 12 △Y 12 △Z 12) 、( △X 13 △Y 13 △Z 13) 、( △X 14 △Y 14 △Z 14 ) 、( △X 23 △Y 23 △Z 23) 、(△X 34 △Y 34 △Z 34 ),试按条件平差法列出全部条件方程。
图5-13中,A 、B 为已知点,}', ,J-'},P ,为待定坐标点,观测了11个角度,试列出全部平差值条件方程。
5. 2. 18图5-14中,.} , }3为己知坐标点,P 1、P 2、P 3为待定点,观测了12个角度和2条边长S 1、S 2,试列出全部平差值条件方程。
图5-95. 2. 19有如图5-15所示的三角网,B,C 为已知点,观测角L i (i=1l ,2,…,10),用文字符号列出全部条件式。
如图5-16所示的三角网中,A 、B 为已知点,FG 为已知边长,观测角Li(i=1, 2,…、20),观测边S j =1,2),则{1)在对该网平差时,共有儿种条件每种条件各有几个 (2)用文字符号列出全部条件式(非线性不必线性化)。
如图5-17所示,A 、B 为已知点,CP 为已知方位角,试列出全部条件方程。
5. 2. 22如图5-18所示的三角网中.指出条件方程的总数和各类条件方程式的个数图 5-27并用平差值列出所有非线性条件方程。
,.23如图5 -19所示的三角网中,用文字符号列出全部条件式。
如图5 -20所示的测角网中,A 、B 为已知点,P 1、P 2、P 3为待定点,观测了11个角度,试列出全部改正数条件方程。
. 25如图5-21所示的测角网中,A 、B 为已知点,P 1、P 2、P 3为待定点,观测了13个角度和1条边长S ,试列出全部改正数条件方程。
有水准网如图5-22所示,试列出该网的改正数条件方程。
已知数据= 31. 100m ,165m = 1. 001m,5i : Lktn = 1, 002m ,S 2 ~ 2km; -0. 060m,=2km ;fe 4 = 1. 000m,S 4 = lkm ;^5 =0. 500m,5;, =2km ;A 6 =0. 560m,5^ = 2km ; A 7 - 0. 504m ,57 = km ; h s = 1. 064m ,S s =2. 5km t图5-23中, A 、B 为已知坐标点,P 为待定点,观测了边长S 和方位角α1、α2、α3试列出全部改正数条件方程。
5. 2. 28在图5-24中,已知A 、B 两点的坐标,P 1、P 2:为待定点,同精度测得各角5. 2. 29为量测一房屋面积(如图5-25所示),测该房屋四角得四个角上的坐标观测值试列出条件方程。
5. 如图5 -26所示,在数字化地图上进行一条道路两边(平行)的数字化,每边各数字化了2个点,试按条件平差写出其条件方程。
§5-3精度评定在条件平差中,能否根据已列出的法方程计算单位权方差? 条件平差中的转库评定主要是解决哪些方面的问题在图5-27的△ABC 中,按同精度测得L 1、L 2及L 3,试求;(1)平差后 A 角的权P A ;(2)在求平差后 A 角的权P A 时;若设F 1=L ^1或F ^2 =180°-L ^2-L ^3,最后求得的与P F 1,P F2为什么(3)求A 角平差前的权与平差后的权之比;(4)求 平差后三角行内角和的权倒数;(5)平差后三内角之和的权倒数等于零,这是为什么 . 34在图5 -28中,同精度侧得L 1= 35°20′ 15", L 2= 35°20′15″,L 3=35°20′15″ 试求平差后∠AOB 的权。
如图5-29所示的水准网中,侧得各点间高差为h 1=1. 357m, h 2=2. 008m, h 3=0. 353m, h 4=,h 5=-0. 657m, S 1=1km , S 2=1km, S 3= 1km,.S 4 = 1km,.S 5=2km 。
设C=1,试求:(1)平差后l}}$两点间高差的权;(2)平差后A,C 两点间高差的权。
5. 有水准网如图5-30所示,侧得各点何高差为气h i (i=1,2……,7),已算得水准网平差后高差的协因数阵为:Q L ^= 试求:}1)待定点A,B,C,D 平差后高程的权;(2)C,D 两点间高差平差值的权。
5. 3. 37如图5-31所示的三角网中,A,B 为已知点, C,D,E,F 为待定点,同精度观测了15个内角,试写出: (1)图中CD 边长的权函数式;(2)平差后L B 的权函数式。
5. 3. 38 有大地四边形如图5-32所示,A,C 为已知点,B,D 为待定点.同精度观测了8个角度,各观测值为;L1=63°14′″,L2=23°28′″,L3=23°31′″,L4=69°45′″, L5=61°40′″,L6=25°02′″,L7=27°24′″,L8=65°52′″,试列出平差后BD 边的权函数式。
如图5-33所示,试按条件平差法求证:在单一水准路线中平差后高程最弱点在水准路线中央。
已知条件式为AV--W =0,其中W =-AL ,观测值协因数阵为Q 。
现有函数式F=f T (L+V),(1)试求Q FF (2)试证:V 和F 是互不相关的。
§5-4水准网平差示例在进行水准网平差时,当网形及观测路线或方案确定后,能否在观测前估计出网中的精度最弱点5. 4. 42如图5 -34所示的水准网中,A,B,C 为已知点,H A = 12. 000m,H B = 12. 500m,H C =14. OOOm ;高差观测值h 1 =2. 500m,h 2 =2. 000m,h 3=I. 352m,h 4=1. 851m;S 1=1 km , S 2=1 km, S 3=2 km , S 4=1 km,试按条件平差法求高差的平差值h ^及P 2点的精度P 2 。
5. 4. 43有水准网如图5-35所示,A,B,C,D 均为待定点:独立同精度观测.了6条路线的高差:h 1=1 .576 m ,h 2= m ,h 3= m ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡104-2-265-5-4-105-5-62225-138-3-1-1-25-8-133-1-1-663-3-123-3-5-21-1-3-138-5-21-1-3-8-13h 4= m ,h 5= m ,h 6 =-1. 350 m试按条件平差法求各高差的平差值。
A HB = ,试用条件平差法求:(1)各高差的平差值;(2)平差后P1到P2点间高差的中误差。
点到C 点平差后高差的中误差。
§5-5 综合练习题5. 5. 46 有三角形如图5-38所示,L 1~L 4为独立同精度角度观测值,试按条件平差法导出L 3的平差值。
5. 5. 47 如图5 -39所示,一矩形两边的独立同精度观测值L =[ L 1 L 2]T=[8. 50 ] Tcm ,已知矩形的对角线为10cm(无误差),求平差后矩形的面积S ^及精度在图5-40所示的直角三角形ABA 中,为确定C 点坐标观测了边长S 1,S 2和角度β。
得观测值列于下表,试按条件平差法求(1)观侧值的平差值;(2)C 点坐列观测值;β1=52°30'20", β2=56°18'20", β3=71°11'40" S1=S2=设测角中误差为10",边长观测值的中误差为 cm. (1)试按条件平差法列出条件方程; (2)试计算观测角度和边长的平差值。