数字滤波器的原理和设计方法
数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理在数字信号处理中,滤波器是一种用于处理信号的重要工具。
它可以通过选择性地改变信号的频率特性,滤除不需要的频率成分或增强感兴趣的频率成分。
滤波器的设计原理可以分为两个方面:频域设计和时域设计。
一、频域设计频域设计是一种以频率响应为初始条件的设计方法。
其基本思想是通过指定理想频率响应来设计滤波器,并将其转化为滤波器的参数。
常见的频域设计方法包括理想滤波器设计、窗函数法设计和频率抽取法设计。
1. 理想滤波器设计理想滤波器设计方法是基于理想滤波器具有理想的频率响应特性,如理想低通滤波器、理想高通滤波器或理想带通滤波器等。
设计过程中,我们首先指定滤波器的理想响应,然后通过傅里叶变换将其转化为时间域中的脉冲响应,最终得到频率响应为指定理想响应的滤波器。
2. 窗函数法设计窗函数法是一种将指定的理想滤波器响应与某种窗函数相乘的设计方法。
常见的窗函数有矩形窗、汉宁窗、汉明窗等。
通过将理想滤波器响应与窗函数相乘,可以获得更实际可行的设计结果。
3. 频率抽取法设计频率抽取法是一种通过对滤波器的选择性抽取来设计的方法。
在该方法中,我们通常先设计一个频域连续的滤波器,然后通过采样抽取的方式,将频域上的滤波器转化为时域上的滤波器。
二、时域设计时域设计是一种以时域响应为初始条件的设计方法。
其基本思想是通过直接设计或优选设计时域的脉冲响应,进而得到所需的滤波器。
常用的时域设计方法包括有限脉冲响应(FIR)滤波器设计和无限脉冲响应(IIR)滤波器设计。
1. FIR滤波器设计FIR滤波器是一种具有有限长度的脉冲响应的滤波器。
在设计FIR滤波器时,我们可以通过多种方法,如频率采样法、窗函数法、最小二乘法等来优化滤波器的设计参数。
2. IIR滤波器设计IIR滤波器具有无限长度的脉冲响应,其设计涉及到环节函数的设计。
常见的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
综上所述,数字信号处理中的滤波器设计原理可以基于频域设计和时域设计。
低通滤波器的设计

低通滤波器的设计一、理论基础1.数字滤波器基本原理数字滤波器是一种利用数字信号进行滤波的设备,通常由差分方程或差分方程的图解形式表示。
常见的数字滤波器类型包括递归滤波器(IIR)和非递归滤波器(FIR)。
2.数字滤波器的特性数字滤波器的特性包括通带增益、阻带增益和截止频率等。
根据不同的应用需求,我们可以选择合适的特性来设计我们所需的低通滤波器。
二、设计方法1.IIR滤波器设计IIR滤波器的设计主要基于模拟滤波器的特性转换方法,其中一种常用的方法是双线性变换法。
该方法将模拟滤波器的差分方程转换为数字滤波器的差分方程,从而实现数字滤波器的设计。
2.FIR滤波器设计FIR滤波器的设计主要基于窗函数法,该方法通过选择合适的窗函数来设计滤波器。
常见的窗函数包括矩形窗、汉宁窗和哈密顿窗等。
设计时,我们需要确定滤波器的阶数和窗函数类型,并选择合适的截止频率来满足需求。
三、设计实例以下是一个设计实例,假设我们需要设计一个以1kHz为截止频率的低通滤波器。
1.IIR滤波器设计(1)选择一个合适的模拟滤波器类型,如巴特沃斯滤波器。
(2)根据设计需求,选择合适的阶数和阻带增益。
(3)使用双线性变换法将模拟滤波器转换为数字滤波器。
(4)根据设计的数字滤波器的差分方程,计算滤波器系数。
(5)实现滤波器功能,可采用MATLAB等工具进行实现。
2.FIR滤波器设计(1)确定滤波器的阶数和窗函数类型,如选择100阶汉宁窗。
(2)根据截止频率和采样频率,计算滤波器的归一化频率。
(3)使用窗函数和归一化频率,计算滤波器的频域响应。
(4)根据频域响应,计算滤波器的时域响应。
(5)实现滤波器功能,可采用MATLAB等工具进行实现。
四、总结低通滤波器的设计是一个复杂的过程,需要根据具体的需求选择合适的滤波器类型和设计方法。
在设计过程中,需要考虑滤波器的特性、阶数、截止频率等因素,并利用数学工具进行计算和实现。
同时,设计的效果也需要进行验证和调试,以确保滤波器能够实现预期的功能。
数字低通滤波器算法

数字低通滤波器算法概述数字低通滤波器是一种用于信号处理的重要算法,它可以有效地去除信号中高频成分,保留低频成分。
在音频处理、图像处理、通信系统等领域都广泛应用。
本文将介绍数字低通滤波器的基本原理和常见的实现算法。
一、数字低通滤波器的原理数字低通滤波器的原理基于信号的频域特性。
在频域中,信号可以表示为不同频率成分的叠加。
低通滤波器的目的是去除高于某一截止频率的成分,保留低于该频率的成分。
其基本原理是通过滤波器将高频成分的幅度衰减,从而实现频率的选择性。
二、数字低通滤波器的设计数字低通滤波器的设计涉及到选择合适的滤波器类型、确定截止频率和滤波器阶数等参数。
常见的数字低通滤波器包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。
1. 巴特沃斯滤波器巴特沃斯滤波器是一种常见的数字滤波器,具有平坦的幅频特性和线性相位特性。
其设计方法是首先选择滤波器的阶数和截止频率,然后根据设计要求计算滤波器的传递函数,最后进行离散化处理得到巴特沃斯滤波器的系数。
2. 切比雪夫滤波器切比雪夫滤波器是一种具有截止频率附近波纹特性的数字滤波器。
其设计方法是选择滤波器的阶数、截止频率和波纹系数,然后根据设计要求计算滤波器的传递函数,最后进行离散化处理得到切比雪夫滤波器的系数。
3. 椭圆滤波器椭圆滤波器是一种具有特定截止频率和衰减系数的数字滤波器。
其设计方法是选择滤波器的阶数、截止频率、衰减系数和波纹系数,然后根据设计要求计算滤波器的传递函数,最后进行离散化处理得到椭圆滤波器的系数。
三、数字低通滤波器的实现算法数字低通滤波器的实现算法有多种,常见的包括FIR滤波器和IIR 滤波器。
1. FIR滤波器FIR(Finite Impulse Response)滤波器是一种线性相位滤波器,其输出只与输入信号的有限个历史样本有关。
FIR滤波器的实现算法主要有直接形式、频率抽取形式和多相形式等。
2. IIR滤波器IIR(Infinite Impulse Response)滤波器是一种具有无限长脉冲响应的滤波器,其输出与输入信号的无限个历史样本有关。
基于matlab的fir数字滤波器的设计

一、引言数字滤波器是数字信号处理中至关重要的组成部分,它能够对数字信号进行滤波处理,去除噪音和干扰,提取信号中的有效信息。
其中,fir数字滤波器作为一种常见的数字滤波器类型,具有稳定性强、相位响应线性等特点,在数字信号处理领域得到了广泛的应用。
本文将基于matlab软件,探讨fir数字滤波器的设计原理、方法和实现过程,以期能够全面、系统地了解fir数字滤波器的设计流程。
二、fir数字滤波器的基本原理fir数字滤波器是一种有限长冲激响应(finite impulse response, FIR)的数字滤波器,其基本原理是利用线性相位特性的滤波器来实现对数字信号的筛选和处理。
fir数字滤波器的表达式为:$$y(n) = \sum_{k=0}^{M}h(k)x(n-k)$$其中,y(n)为输出信号,x(n)为输入信号,h(k)为滤波器的系数,M为滤波器的长度。
fir数字滤波器的频率响应特性由其系数h(k)决定,通过设计合适的系数,可以实现对不同频率成分的滤波效果。
三、fir数字滤波器的设计方法fir数字滤波器的设计方法主要包括窗函数法、频率抽样法、最小最大法等。
在matlab中,可以通过信号处理工具箱提供的fir1函数和firls函数等来实现fir数字滤波器的设计。
下面将分别介绍这两种设计方法的基本原理及实现步骤。
1. 窗函数法窗函数法是fir数字滤波器设计中最为常见的方法之一,其基本原理是通过对理想滤波器的频率响应进行窗函数加权来满足设计要求。
在matlab中,可以使用fir1函数实现fir数字滤波器的设计,其调用格式为:h = fir1(N, Wn, type)其中,N为滤波器的阶数,Wn为滤波器的截止频率,type为窗函数的类型。
通过调用fir1函数,可以灵活地设计出满足特定要求的fir数字滤波器。
2. 频率抽样法频率抽样法是fir数字滤波器设计中的另一种重要方法,其基本原理是在频域上对理想滤波器的频率响应进行抽样,并拟合出一个最优的滤波器。
基于 FPGA 的数字滤波器设计与实现

基于 FPGA 的数字滤波器设计与实现引言:数字滤波器是现代信号处理的重要组成部分。
在实际应用中,为了满足不同信号处理的需求,数字滤波器的设计与实现显得尤为重要。
本文将围绕基于 FPGA的数字滤波器的设计与实现展开讨论,介绍其工作原理、设计方法以及优势。
同时,还将介绍一些实际应用场景和案例,以展示基于 FPGA 的数字滤波器在实际应用中的性能和效果。
一、数字滤波器的基本原理数字滤波器是一种将输入信号进行滤波处理,改变其频谱特性的系统。
可以对频率、幅度和相位进行处理,实现信号的滤波、去噪、增强等功能。
数字滤波器可以分为无限脉冲响应滤波器(IIR)和有限脉冲响应滤波器(FIR)两种类型。
IIR滤波器是通过递归方式实现的滤波器,其输出信号与过去的输入信号和输出信号相关。
FIR滤波器则是通过纯前馈结构实现的,其输出信号仅与过去的输入信号相关。
两种类型的滤波器在性能、复杂度和实现方式上存在一定差异,根据具体的应用需求选择适合的滤波器类型。
二、基于 FPGA 的数字滤波器的设计与实现FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,通过可编程逻辑单元(PLU)、可编程连线(Interconnect)和可编程I/O(Input/Output)实现。
其可编程性使得 FPGA 成为数字滤波器设计与实现的理想平台。
1. FPGA的优势FPGA具有以下几个优势,使得其成为数字滤波器设计与实现的首选平台:灵活性:FPGA可以根据设计需求进行自定义配置,可以通过修改硬件逻辑来满足不同应用场景的需求。
可重构性:FPGA可以重复使用,方便进行修改和优化,减少芯片设计过程中的成本和风险。
高性能:FPGA具有并行处理的能力,可以实现多通道、高速率的实时数据处理,满足对于实时性要求较高的应用场景。
低功耗:FPGA可以进行功耗优化,通过减少冗余逻辑和智能布局布线来降低功耗。
2. 数字滤波器的实现方法基于 FPGA 的数字滤波器的实现方法主要有两种:直接法和间接法。
脉冲响应不变法设计iir数字滤波器

脉冲响应不变法设计iir数字滤波器以脉冲响应不变法设计IIR数字滤波器引言:数字滤波器是数字信号处理中的重要组成部分,用于处理和改变数字信号的频率特性。
脉冲响应不变法(Impulse Invariance Method)是一种常用的IIR数字滤波器设计方法,其基本原理是通过将连续时间域中的模拟滤波器的脉冲响应与采样脉冲响应进行匹配,从而实现滤波器的设计。
一、脉冲响应不变法基本原理脉冲响应不变法的基本原理是将连续时间域中的模拟滤波器的脉冲响应与离散时间域中的数字滤波器的脉冲响应进行匹配。
在这种方法中,首先需要确定模拟滤波器的脉冲响应,然后通过采样得到数字滤波器的脉冲响应,最后将其离散化得到数字滤波器的差分方程。
二、脉冲响应不变法的设计步骤1. 确定模拟滤波器的脉冲响应:选择适当的模拟滤波器类型,并设计其频率响应。
根据滤波器的阶数和截止频率,确定模拟滤波器的差分方程。
2. 采样得到数字滤波器的脉冲响应:通过将连续时间域中的模拟滤波器的脉冲响应与采样脉冲进行卷积,得到数字滤波器的脉冲响应。
3. 离散化得到数字滤波器的差分方程:将数字滤波器的脉冲响应离散化,得到数字滤波器的差分方程。
根据差分方程,可以计算数字滤波器的各个系数。
三、脉冲响应不变法的优缺点脉冲响应不变法具有以下优点:1. 设计方法简单:通过匹配模拟滤波器和数字滤波器的脉冲响应,可以直接得到数字滤波器的差分方程,设计方法相对简单。
2. 精度较高:脉冲响应不变法可以保持模拟滤波器的频率响应特性,因此可以实现较高的滤波器精度。
3. 适用范围广:脉冲响应不变法适用于各种模拟滤波器类型和滤波器规格的设计。
然而,脉冲响应不变法也存在一些缺点:1. 频率响应失真:由于采样过程中的截断和抽样误差,脉冲响应不变法可能导致数字滤波器的频率响应失真。
2. 高阶滤波器设计困难:对于高阶滤波器的设计,脉冲响应不变法可能会导致数字滤波器的稳定性问题和数值计算问题。
四、脉冲响应不变法的应用领域脉冲响应不变法广泛应用于数字信号处理领域,特别是在音频信号处理、图像处理和通信系统中的滤波器设计中。
第4章5-7 数字滤波器的原理和设计方法

为了减小波纹幅度,一方面可以加大窗的长度N,但效果并不 显著;另一方面可采用不同的窗函数来改善不均匀收敛性。图 4.50所示的是几种常用的窗函数:
它们的定义式和频谱函数分述如下: 1、矩形窗
2、Bartlett窗(三角形窗)
3、汉宁(Hanning)窗(升余弦窗)
或
ห้องสมุดไป่ตู้
利用傅里叶变换的调制特性,即利用 和
图4.53所示的是用这5种窗函数设计的低通FIR数字滤波器的频 率响应特性。窗函数的长度N=51,理想低通滤波器的截止频 ωc=π/2。 从图中可看出,用矩形窗设计的滤波器的过渡带最窄,但阻带 衰减指标最差,仅有-21dB左右。而用布莱克曼窗设计的阻带衰 减指标最好,可达-74dB,但过渡带最宽,约为矩形窗的3倍。
对比等式两边,有
如果把变量代换的有理函数F(z-1)看成是一个系统函数,那么该系 统的幅频特性曲线在任何ω处恒为1,这样的函数就是全通函数。 任何全通函数都可表示为
其中αk是F(z-1)的极点。为了满足稳定性的要求,必须有|αk|<1。这 样,通过选择适当的N值和αk值,可以得出各种各样的映射。
1)低通→低通的z平面变换
这里用v-1是因为系统函数的标准形 式,一般写成z-1的形式,换到v平面 即是v-1。
频率变换中的变量代换公式必须满足下列条件: (1)F(z-1)必须是z-1的有理函数; (2)v平面的单位圆内部映射到z平面的单位圆内部。
从这些条件出发,我们可推导出频率变换的实用公式。 设v平面单位圆是v=ejθ,z平面单位圆是z=ejω,则
其中 矩形窗ωR(n)的频谱的图形如下 图所示。
ω从-2π/N到-2π/N之间的WR(ω)称 为窗函数的主瓣,主瓣两侧呈衰 减振荡的部分称为旁瓣。
数字滤波器的原理和设计方法

数字滤波器的原理和设计方法数字滤波器是一种用于信号处理的重要工具,其通过对输入信号进行滤波操作,可以去除噪声、改变信号频谱分布等。
本文将介绍数字滤波器的原理和设计方法,以提供对该领域的基本了解。
一、数字滤波器的原理数字滤波器是由数字信号处理器实现的算法,其原理基于离散时间信号的滤波理论。
离散时间信号是在离散时间点处取样得到的信号,而数字滤波器则是对这些取样数据进行加工处理,从而改变信号的频谱特性。
数字滤波器的原理可以分为两大类:时域滤波和频域滤波。
时域滤波器是通过对信号在时间域上的加工处理实现滤波效果,常见的时域滤波器有移动平均滤波器、巴特沃斯滤波器等。
频域滤波器则是通过将信号进行傅里叶变换,将频谱域上不需要的频率成分置零来实现滤波效果。
常见的频域滤波器有低通滤波器、高通滤波器等。
二、数字滤波器的设计方法数字滤波器的设计是指根据特定的滤波要求来确定相应的滤波器参数,以使其能够满足信号处理的需求。
下面介绍几种常见的数字滤波器设计方法。
1. IIR滤波器设计IIR滤波器是指具有无限长单位响应的滤波器,其设计方法主要有两种:一是基于模拟滤波器设计的方法,二是基于数字滤波器变换的方法。
基于模拟滤波器设计的方法使用了模拟滤波器的设计技术,将连续时间滤波器进行离散化处理,得到离散时间IIR滤波器。
而基于数字滤波器变换的方法则直接对数字滤波器进行设计,无需通过模拟滤波器。
2. FIR滤波器设计FIR滤波器是指具有有限长单位响应的滤波器,其设计方法主要有窗函数法、频率采样法和最优化法。
窗函数法通过选择不同的窗函数来实现滤波器的设计,常见的窗函数有矩形窗、汉宁窗、海明窗等。
频率采样法则是基于滤波器在频率域上的采样点来设计滤波器。
最优化法是通过将滤波器设计问题转化为一个最优化问题,使用数学优化算法得到最优解。
3. 自适应滤波器设计自适应滤波器是根据输入信号的统计特性和滤波器自身的适应能力,来实现对输入信号进行滤波的一种方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
� 2. v平面的单位圆内部映射成z平面的单位 圆内部。
� 最简单的映射:把一个LPF变换成另一个 LPF
� 由图可见,除a = 0外,频率标度有明显的扭 曲。
� 如果数字原型低通滤波器的截止频率 θ p , � 要求的数字低通滤波器的截止频率为ωp, � 则有
实现方法: IIR:N阶IIR,常采用递归结构; FIR: N阶FIR,常采用非递归结构
4.2 IIR数字滤波器的基本网络结构
� 无限脉冲响应(IIR)滤波器有以下特点 � (1)系统的单位脉冲响应是无限长的; � (2)系统函数在有限z平面上有极点存在; � (3)结构上存在着输出到输入的反馈,也就是
� �表示方法:线性差分方程、系统函数、框
图或流图。
N
M
� �差分方程: y(n) = ∑ ak y(n − k) + ∑ bk x(n − k)
k =1
k=0
� �系统函数:
M
∑ H (z) =
bk z −k
k =0
= Y(z)
∑N
1− ak z −k
X (z)
k =1
基本运算的方框图及流图表示图
双线性变换法的频率变换关系
� 如果采用双线性变换法,边界频率要先预畸 变,转换关系为
21 ΩP = T tan( 2 ωP )
21 ΩS = T tan( 2 ωS )
� 双线性变换是一种稳定的变换。
(1)双线性变换是简单映射; (2)双线性变换是稳定的变换;即模拟滤 波器在s平面左半平面的所有极点经映射 后均在z平面的单位园内。
� 例 设IIR数字滤波器的系统函数为
。
8z3 − 4z2 + 11z − 2
H(z) =
(z − 1 )(z2 − z + 1 )
4
2
解:先将H(z)写成z-1的多项式形式
8 − 4z −1 + 11z −2 − 2z −3 H(z) =
1 − 5 z −1 + 3 z −2 − 1 z −3 448
数字低通滤波器的技术要求
� 2. 设计步骤 � ①根据实际需要给定滤波器的技术指标;
� ②由技术指标计算滤波器的系统函数H(Z)或单位 � 取样响应h(n),即用一个稳定的因果系统逼近这些
指标; � ③用有限精度的运算实现H(Z)或h(n) ,包括选择运
算结构、进行误差分析和选择存储单元的字长。
4.4.1 冲激响应不变法
k =0
� FIR系统仅在处有N-1阶极点,在其它地方没有 极点,有(N-1)个零点分布在有限Z平面内的任 何位置上。
4.3.1 直接型
N −1
差分方程: y(n) = ∑ h(k)x(n − k)
k=0
系统函数:
N −1
∑ H (z) = h(n)z−k
k =0
= h(0) + h(1)z−1 + h(2)z−2 + ... + h(N −1)z−(N−1)
� 不同点:
4.4.3数字Butterworth滤波器
� 模拟Butterworth滤波器的幅度平方函数:
Ha ( jΩ) 2 =
1
2N
⎛Ω⎞
1+
⎜ ⎝
Ωc
⎟ ⎠
N称为滤波器的阶数。 当Ω=0时,|H (jΩ)|=1; Ω=Ωc时,|Ha(jΩ)|=1/ 2 , Ωc是3dB截止频率。
频谱响应图:
第4章数字滤波器的原理和设计
� 主要内容: � 4.1 引言 � 4.2 IIR数字滤波器的基本网络结构 � 4.3 FIR数字滤波器的基本网络结构 � 4.4 IIR数字滤波器的设计方法 � 4.5 IIR数字滤波器的频率变换 � 4.6 FIR数字滤波器的设计方法 � 4.7 FIR数字滤波器与IIR数字滤波器的比较
h(n)=±h(N-1-n)
� 式中h(n)为实序列,N是h(n)的长度。
考虑 h(n) = h(N −1− n)偶对称, N取偶数
�设
H (z)
=
N −1
∑
h(n)
z
−n
=
N 2−1
∑
h(n)
z
−n
+
N −1
∑
h(n)
z
−n
n=0
n=0
n=N 2
令m=N-1-n N 2−1
N 2−1
∑ ∑ H (z) = h(n)z−n + h(N −1− m)z−(N −1−m)
FIR滤波器直接型结构
� 4.3.2 级联型
� 将H(z)写成几个实系数二阶因式的乘积可得 到另一种形式:
N −1
� 系统函数: H (z) = ∑ h(n)z−k
k =0
M
∏ = (β0k + β1k z−1 + β2k z−2 )
k =1
� 特点: � 1、每一个基本节控制一对零点; � 2、乘法器较多
� ④计算Y (k) = X (k) × H(k); � ⑤计算的反变换,即:y(n) = IDFT[X (k ) × H(k )]
FIR滤波器快速卷积型结构图
特点:能对信号进行高速处理。需要实时处 理时采用此结构。
� 4.3.4 线性相位型 � FIR数字滤波器的主要特性之一就是可以设
计成严格线性相位特性。可以证明线性相 位FIR滤波器的单位脉冲响应h(n)应该满足 下面条件
� 4.3.3 快速卷积型 � 已知两个长度为N的序列的线性卷积,可用 2N-1点的循环卷积来代替。 FIR滤波器输出: y(n) = x(n) ∗ h(n)
� ①将x(n)和h(n)都延长到N点; � ②计算x(n)的N点DFT,即:X(K)=DFT[x(n)] ;
� ③计算h(n)的N点DFT,即:H(K)=DFT[h(n)] ;
结构上是递归的。
� 4.2.1 直接I型
�H(z)=H1(z)H2(z)
N阶IIR滤波器的直接I型流程图
� 直接I型,先实现H1(Z),再实现H2(Z) 。
� 特点:先实现系统函数的零点,再实现极 点;需要2N个延迟器和2N个乘法器。
M
∑ H1(z) = bk z−k
k =0
1 H2(z) = N
� 由此得到所要求的低通滤波器的系统函数 � 为:
� 4.5.2频率变换的设计公式
4.6 FIR数字滤波器的设计方法
� 基本特性: � 1. FIR滤波器永远是稳定的(极点均位于原点); � 2. FIR滤波器的冲激响应是有限长序列; � 3. FIR滤波器的系统函数为多项式; � 4. FIR滤波器具有线性相位。 � 设计的基本方法: � 窗函数法,频率抽样法和等波纹逼近法等。
∑ 1− ak z−k
k =1
� 4.2.2 直接II型 当IIR数字滤波器是线性非移变系统时,有:
�H(z) =H1(z) H2(z)
� =H2(z) H1(z)
1
M
H2(z) = N
∑ H1(z) = bk z−k
∑ 1− ak z−k
k =0
k =1
N阶IIR滤波器的直接II型流程图
直接II型,先实现H2(Z),再实现H1(Z) 。 特点:先实现系统函数的极点,再实现零点; 需要N个延迟器和2N个乘法器。
的频谱相互重迭,经典滤波器无能为力。
� 现代滤波器:从含有噪声的时间序列中估计出信 号的某些特征或信号本身。现代滤波器将信号和噪
声都视为随机信号。包括Wiener Filter、 KalmanFilter、线性预测器、自适应滤波器等。
� (2)经典滤波器从功能上分:低通(LP)、高通 (HP)、带通(BP)、带阻(BS),均有AF和DF 之分。AF和DF的四种滤波器的理想幅频响应 如下图所示。
4.1 引言(Introduction)
� 4.1.1 滤波原理 对输入信号起到滤波作用。对线性非移变系 统(如图4.1所示),有:
线性非移变系统的滤波作用
� 一般情况下,数字滤波器是一个线性时不变离 散时间系统,可用差分方程、脉冲响应 h(n)、 传输函数H(z)及频率响应H(ejω)来描述
巴特沃斯幅度特性和N的关系
� 当Ω>Ωc时,随Ω加大,幅度迅速下降。下 降的速度与阶数N有关,N愈大,幅度下降的 速度愈快,过渡带愈窄。
� 特点: � 通带内幅度响应最平坦; � 通带和阻带内幅度特性单调下降; � N增大,通带和阻带的近似性越好,过渡带
越窄; � 存在极点,零点在∞。
三阶巴特沃斯滤波器极点分布
数字滤波器的描述方法
� 4.1.2 滤波器的实现方法 � 模拟滤波器(Analog Filter-AF): � 只能硬件实现-R、L、C、Op、开关电容。
� 数字滤波器(Digital Filter-DF): � 硬件实现-延迟器、乘法器和加法器; � 软件实现-线性卷积的程序。
� 4.1.3 滤波器的分类 � (1)一般分为经典滤波器和现代滤波器: � 经典滤波器:假定输入信号中的有用成分和希望 去除的成分各自占有不同的频带。如果信号和噪声
n=0
m=0
N 2−1
N 2−1
∑ ∑ = h(n)z−n + h(N −1− n)z−(N −1−n)
n=0
n=0
� 线性相位FIR DF的网络结构
4.4 IIR数字滤波器的设计方法
� IIR数字滤波器的设计方法 � 1. 技术指标 � 数字滤波器的传输函数:H(ejω)= |H(ejω)|ejω � 图表示低通滤波器的 幅度特性,ωp和ωs 分别称为通带截止频率 和阻带截止频率。通带 频率范围为0≤ω≤ωp