当前微电子学与集成电路解析
微电子与集成电路技术的发展

微电子与集成电路技术的发展随着社会的发展,微电子与集成电路技术也不断地得到了改进和革新。
它们的发展带来了许多新的机遇和挑战,为人们的生活、工作和娱乐带来了许多的便利。
本文将从微电子、集成电路技术的发展历程、应用领域、未来趋势等方面进行探讨。
一、微电子与集成电路技术的发展历程微电子作为电子学的一个分支,与传统的电子学相比,它更加注重在微观层面上对电子器件的设计和制造。
微电子技术的出现是伴随着半导体材料和晶体管等器件的发明而来的。
1947年,贝尔实验室的威廉·肖克利发明了第一个晶体管,这标志着晶体管时代的来临。
经过长期的发展,1958年,Jacques Beurrier教授在法国成功制造出了第一片晶体管集成电路。
而到了1960年,犹太大学的Jack S. Kilby也在美国研制出了第一片微型集成电路,这标志着微电子和集成电路技术的开端。
然而,最初的微电子和集成电路依然面对着许多的挑战。
微电子器件体积大、精度不够,工艺控制水平不够,集成电路缺乏标准化等问题一直未得到很好的解决。
为了解决这些问题,人们在不断地研究和实践中不断地革新和改进微电子和集成电路技术。
现在,微电子技术已经成为一个成熟的学科,而集成电路技术也得到了广泛应用。
从最早的模拟集成电路、数字集成电路到现在的微处理器、存储芯片、微机电系统、光电集成电路等,微电子和集成电路技术在各个领域的应用都不断地增加。
二、微电子与集成电路技术的应用领域微电子和集成电路技术的应用十分广泛,几乎覆盖了人们的生活和工作的各个方面。
在通信领域中,现代的移动电话、计算机、电视机、收音机等设备都是采用集成电路技术制成的。
而现代的互联网、无线通信、3G、4G、5G等技术的发展在很大程度上依赖于微电子和集成电路技术的进步。
在计算机领域中,微处理器的出现极大地推动了计算机领域的发展。
现代计算机和服务器都是依靠微处理器、存储芯片、芯片组等集成电路制成的。
在汽车、医疗等领域中,微电子和集成电路技术也被广泛的应用。
集成电路-微电子-学习中概念解释

1:SOI(Silicon-On-Insulator,绝缘衬底上的硅)技术是在顶层硅和背衬底之间引入了一层埋氧化层。
通过在绝缘体上形成半导体薄膜,SOI材料具有了体硅所无法比拟的优点:可以实现集成电路中元器件的介质隔离,彻底消除了体硅CMOS 电路中的寄生闩锁效应;采用这种材料制成的集成电路还具有寄生电容小、集成密度高、速度快、工艺简单、短沟道效应小及特别适用于低压低功耗电路等优势,因此可以说SOI将有可能成为深亚微米的低压、低功耗集成电路的主流技术。
通常根据在绝缘体上的硅膜厚度将SOI分成薄膜全耗尽FD(Fully Depleted)结构和厚膜部分耗尽PD(Partially Depleted)结构。
由于SOI的介质隔离,制作在厚膜SOI结构上的器件正、背界面的耗尽层之间不互相影响,在它们中间存在一中性体区,这一中性体区的存在使得硅体处于电学浮空状态,产生了两个明显的寄生效应,一个是"翘曲效应"即Kink 效应,另一个是器件源漏之间形成的基极开路NPN寄生晶体管效应。
如果将这一中性区经过一体接触接地,则厚膜器件工作特性便和体硅器件特性几乎完全相同。
而基于薄膜SOI结构的器件由于硅膜的全部耗尽完全消除"翘曲效应",且这类器件具有低电场、高跨导、良好的短沟道特性和接近理想的亚阈值斜率等优点。
因此薄膜全耗尽FDSOI应该是非常有前景的SOI结构。
目前比较广泛使用且比较有发展前途的SOI的材料主要有注氧隔离的SIMOX(Seperation by Implanted Oxygen)材料、硅片键合和反面腐蚀的BESOI(Bonding-Etchback SOI)材料和将键合与注入相结合的Smart Cut SOI材料。
在这三种材料中,SIMOX适合于制作薄膜全耗尽超大规模集成电路,BESOI 材料适合于制作部分耗尽集成电路,而Smart Cut材料则是非常有发展前景的SOI 材料,它很有可能成为今后SOI材料的主流。
《微电子与集成电路设计导论》第五章 集成电路基础

图5.2.10 与非门电路
图5.2.11-5.2.14 电路图
图5.2.15 与非门输出响应
当A、B取不同组合的 逻辑电平时,与非门 电路的输出响应如图 5.2.15所示。
2. 或非门电路
A=0,B=0
A=0,B=1
A=1,B=0
A=1,B=1
图5.2.16 或非门电路
图5.2.17-5.2.20 A=0,B=0时的电路图
性能指标:除增益和速度外,功耗、电源电压、线性度、噪声和最大 电压摆幅等也是放大器的重要指标。此外,放大器的输入输出阻抗将 决定其应如何与前级和后级电路进行相互配合。在实际中,这些参数 几乎都会相互牵制,一般称为“八边形法则”,茹右下图所示。
➢ 增益:输出量Xout与输入量Xin的比值
➢ 带宽:指放大器的小信号带宽。
特性参数相同,当电压翻转上升时,漏极电流
ID
Kn
W L
Vin
VTN
2
0
I
Imax
即一周期的平均电流
Imean
1 6
Kn
W L
1 VDD
VDD VTN
3
Tclk
综上,短路功耗最终为
Psc VDDImean
CMOS逻辑门电路
1.与非门电路
A=0,B=0
A=0,B=1
A=1,B=0
A=1,B=1
许的临界电平和理想逻辑电平之间的范围为 CMOS电路的直流噪声容限,定义为
VNH VOH VIH
VNL VIL VOL
图5.2.6 极限输出电平定义的噪声容限
(2)极限输出电平定义的噪声容限 根据实际工作确定所允许的最低的输出
高电平VOHmin,它所对应的输入电平定义为 关门电平VOFF;给定允许的最高的输出低电 平VOLmax,它所对应的输入电平定义为开门 电平VON。开门电平和关门电平与CMOS电 路的理想输入逻辑电平之间的范围就是 CMOS电路的噪声容限。如左图所示是反相 器的噪声容限 输入高电平噪声容限:
微电子技术与集成电路设计

微电子技术与集成电路设计电子与电气工程是现代科技发展中不可或缺的重要学科,而微电子技术与集成电路设计则是电子与电气工程领域中的一个重要分支。
随着科技的不断进步和社会的快速发展,微电子技术与集成电路设计在各个领域都起到了至关重要的作用。
微电子技术是电子与电气工程中研究微型电子器件和电路的一门学科,它主要研究微型电子器件的制备、工艺和性能等方面。
微电子技术的发展使得电子器件的体积不断缩小,性能不断提高,功耗不断降低,从而实现了电子设备的迅猛发展和智能化的提升。
微电子技术的应用非常广泛,涵盖了通信、计算机、医疗、汽车、航天等众多领域。
在微电子技术的基础上,集成电路设计则是将多个电子器件集成在一个芯片上,形成一个完整的功能电路系统。
集成电路设计的核心是设计和优化电路的结构和功能,以满足特定的应用需求。
集成电路设计需要综合考虑电路的性能、功耗、可靠性、成本等因素,并通过模拟、数字和混合信号设计技术实现。
集成电路设计的发展使得电子设备的功能更加强大,体积更加小巧,功耗更加低,从而推动了信息技术的快速发展和社会的智能化进程。
在微电子技术与集成电路设计领域,有许多重要的技术和方法。
例如,半导体工艺技术是微电子器件制备的基础,通过不同的工艺步骤,可以实现不同类型的电子器件。
而电路设计方法包括了模拟电路设计、数字电路设计和混合信号电路设计等,通过不同的设计方法,可以实现不同功能和性能的电路。
此外,集成电路设计还需要考虑电磁兼容性、故障诊断和可靠性等方面的问题,以确保电路系统的稳定运行和长期可靠性。
微电子技术与集成电路设计在现代科技和工业生产中起到了重要的推动作用。
它们不仅改变了人们的生活方式,也推动了社会的发展和进步。
例如,智能手机、计算机、无线通信设备等现代电子产品的快速发展,离不开微电子技术与集成电路设计的支持。
此外,微电子技术与集成电路设计在医疗设备、汽车电子、航空航天等领域也发挥着重要的作用,为人类提供了更加便捷、高效和安全的生活方式。
微电子学、集成电路

TN386.32006020387跨导线性原理及应用研究/郭继昌,汪林,滕建辅(天津大学电子信息工程学院)//固体电子学研究与进展.―2005,25(2).―250~254.跨导线性电路是电流模式电路中应用非常广泛的电路形式,可以用于分析和构造很多实用的电路。
文中介绍了跨导线性的基本原理,给出了几种用双极型晶体管和MOS管实现的跨导线性电路形式。
最后给出了跨导线性电路在电流模式电路中的应用实例。
图6表0参12TN386.32006020388大束流离子注入形成C O Si2/Si肖特基结电学特性/张浩,李英,王燕,田立林(清华大学微电子学研究所)//固体电子学研究与进展.―2005,25(2).―265~268.文中研究了使用大束流金属离子注入形成的COSi2/Si肖特基结的特性。
肖特基结由离子注入和快速热退火两步工艺形成。
Co离子注入剂量为3×1017ion/cm2,注入电压25kV。
快速热退火温度为850℃,时间为1min。
应用I-V和C-V测量进行参数提取。
I-V分析得到势垒高度约为0.64eV,理想因子为1.11,C-V分析得到势垒为0.72eV。
最后依据实验结果对工艺提出了改进意见。
图4表1参5TN386.3,TM304.2+42006020389 n沟道4H-S i C M ESFET研究/陈刚(南京电子器件研究所)//固体电子学研究与进展.―2005,25(2).―177~179,218.报告了4H-SiC MESFET的研制。
通过对SiC关键工艺技术进行研究,设计出初步可行的工艺流程,并且制成单栅宽120μm n沟道4H-SiC MESFET,其主要直流特性为:在V d s=30V时,最大漏电流密度I d ss为56mA/mm,最大跨导G m为15mS/mm;漏源击穿电压最高达150V;微波特性测试结果:在f0=1GHz、V d s=32V时该器件最大输出功率7.05mW,在f o=1.8GHz、V d s=32V时最大输出功率3.1mW。
微电子学、集成电路

的衬底材料应满足的吸收曲线。
数值模拟结果表明:利用这种新材料制成的三沟道BCCD,其光敏特性曲线可以分别在1.0,1.1和1.26μm处出现最大值。
图6表0参11TN386.52006010538红外焦平面阵列盲元检测技术研究/赖睿,刘上乾,周慧鑫,申建华(西安电子科技大学技术物理学院)//半导体光电.―2005,26(3).―199~201.盲元的数量及其分布对红外焦乎面阵列器件成像质量的影响较大。
在给出盲元定义的基础上,对盲元的各种产生机理进行了分析,并给出了具体的盲元检测方法,为盲元补偿技术的研究提供了理论基础。
图3表0参7TN386.52006010539多CCD拼接相机中图像传感器不均匀性校正/王军,杨会玲,刘亚侠,何昕,郝志航(中国科学院长春光学精密机械与物理研究所)//半导体光电.―2005,26(3).―261~263.CCD图像传感器不均匀特性是影响光电测量设备精度的一个重要因素。
在分析了单片CCD图像传感器不均匀特性基础上,提出了多CCD拼接相机系统中不均匀特性的校正方法。
大量实验结果表明,利用该校正方法不仅保持原图像的目标,而且简单快速,具有通用性,能够显著提高系统测量精度。
该方法可行且对其他光电测量设备有参考意义。
图4表0参6TN386.52006010540 CCD微阵列生物芯片扫描仪的研制/周强,宗光华,毕树生,赵然(北京航空航天大学机器人研究所)//仪器仪表学报.―2005,26(2).―164~167,176.报导了CCD微阵列生物芯片扫描仪的光学系统,给出了光学系统的参考标准构型,并依据该构型研制出多分辨率CCD生物芯片扫描仪。
实验采用不同浓度系列Cy3NHS ester的DMS0溶液样点与微池溶液测定CCD 生物芯片扫描仪的检测性能。
初步实验数据表明,该扫描仪光路合理,精度满足生物芯片检测要求。
图9表3参10TN386.52006010541面阵CCD摄像机光学镜头参数及选用/杨明,白烨,王秋良,余运佳(中科院电工研究所)//光电子技术与信息.―2005,18(3).―27~30,43.先简要介绍面阵CCD光学摄像机以及摄像机镜头的参数,比如成像尺寸规格、焦距、F数、景深、卡口等,然后介绍各个参数的相互关系,为如何合理选择面阵CCD光学镜头提供参考。
微电子学、集成电路

5.0nm时,器件具有最低的启动电压与最高的发光效率;当DLC厚度继续增加时,器件的性能随着DLC厚度增加而变差。
并对ITO/MEH-PPV/DLC/Al和ITO/MEH-PPV/LiF/Al的器件性能进行了比较研究。
图3表0参15TN386.12007010754双栅动态阈值S O I nM O SFE T数值模拟/毕津顺,吴峻峰,海潮和(中国科学院微电子研究所)//半导体学报.―2006,27(1).―35~40.提出了新型全耗尽SOI平面双栅动态阈值Nmos场效应晶体管,模拟并讨论了器件结构、相应的工艺技术和工作机理。
对于Nmos器件,背栅n 阱是通过剂量为3×1013cm-2,能量为250keV的磷离子注入实现的,并与n+前栅多晶硅直接相连。
该技术与体硅工艺完全兼容。
通过Tsuprem4和Medi ci模拟,发现全耗尽SOI平面双栅动态阈值Nmosfet保持了传统全耗尽SOI nMOSFET的优势,消除了反常亚阈值斜率和kink效应,同时较传统全耗尽SOI nMOSFET有更加优秀的电流驱动能力和跨导特性。
图9表0参14TN386.12007010755功率LD M O S阈值电压温度系数的优化分析/丁峰,柯导明,陈军宁,叶云飞,刘磊,徐太龙(安徽大学电子科学与技术学院)//安徽大学学报(自然科学版).―2006,30(1).―36~40.讨论高压LDMOS阈值电压的温度特性,并给出了它的温度系数计算公式。
根据计算结果,可以得到以下结论:通过提高沟道掺杂浓度或减少栅氧化层能够降低阈值电压随温度的变化。
阈值电压的温度系数可以用温度的线性表达式来计算,从而可以得出功率LDMOS阈值电压的温度系数最优化分析。
图4表1参8TN386.22007010756 IG B T串联应用中动态过压的控制/李勇,邵诚(大连理工大学先进控制技术研究所)//华南理工大学学报(自然科学版).―2006,34(1).―43~47.对高压大功率变流设备中绝缘栅双极型晶体管(IGBT)串联应用的动态过压问题进行了研究。
集成电路设计学习思考题参考答案

集成电路设计学习思考题参考答案集成电路设计学习思考题参考答案参考答案⼀、概念题:1、微电⼦学:主要是研究电⼦或离⼦在固体材料中的运动规律及应⽤,并利⽤它实现信号处理功能的科学,是电⼦学的分⽀,其⽬的是实现电路和系统的集成,这种集成的电路和系统⼜称为集成电路和集成系统。
2、集成电路:(Integrated Circuit,缩写为IC)是指通过⼀系列特定的加⼯⼯艺,将多个晶体管、⼆极管等有源器件和电阻、电容器等⽆源器件,按照⼀定的电路连接集成在⼀块半导体单晶⽚(如硅或GaAs等)或者说陶瓷等基⽚上,作为⼀个不可分割的整体执⾏某⼀特定功能的电路组件。
3、综合:从设计的⾼层次向低层次转换的过程,它是在给定了电路应实现的功能和实现此电路的约速条件(如速度、功耗、成本、电路类型等),找到满⾜上述要求的⽬标结构的过程。
如果是靠⼈⼯完成,通常简单地称之为设计;⽽依靠EDA ⼯具⾃动⽣成,则称之为综合。
4、模拟验证:指对实际系统加以抽象,提取其模型,输⼊计算机,然后将外部激励信号施加于此模型,通过观察模型在激励信号作⽤下的反应,判断该系统是否实现预期的功能。
5、计算机辅助测试(CAT)技术:把测试向量作为测试输⼊激励,利⽤故障模拟器,计算测试向量的故障覆盖率,并根据获得的故障辞典进⾏故障定位的技术。
6、图形转换技术:是指将掩膜板上设计好的图形转移到硅⽚上的技术,包括光刻与刻蚀技术。
7、薄膜制备技术:指通过⼀定的⼯序,在衬底表⾯⽣产成⼀层薄膜的技术,此薄膜可以是作为后序加⼯的选择性的保护膜,作为电绝缘的绝缘膜,器件制作区的外延层,起电⽓连接作⽤的⾦属膜等。
8、掺杂:是指将需要的杂质掺⼊特定的半导体区域中以达到改变半导体电学性质,形成PN结、电阻、欧姆接触等各种结构的⽬的。
9、系统功能设计:是最⾼⼀级的设计,主要是指根据所设计系统的要求(包括芯⽚的功能、性能、尺⼨、功耗等),进⾏功能划分和数据流、控制流的设计,完成功能设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 3 )产业规 模不 断扩大 ,更 多企业参 与 到微电子学的研究和 电路 中,有效推动 了微 电 子 产 业 的 发 展 , 促 使 微 电子 技 术 得 到 了进 一 步
好 的发 展 空 间 , 目前 国 内微 电 电子 发 展 特 点如
下:
生 的新 技 术 , 能够 更 为 有 效 推 动 相 关 产 业 的 发 展 ,为 经 济 发 展 奠 定 基 础 。
( 1 )微 电子 技 术 创 新 取 得 了具 有 突 破 性
的进展 ,且逐渐形成具有较大规模 的集成 电路 设 计产业 规模 。对 于集成 电路 的技 术水 平在 微 电子 学与集 成 电路 的研 究不断深 入 , 0 . 8 ~1 . 5 p o ,部分 尖端 企业 的技术 水平 可 以达 微 电子 技 术 逐 渐 的应 用 到 人 们 的 日常 生 活 中 , r
长 可 以 达 到每 年 5 8 %。
在 未来 一 段时 间 内,微 电子技 术将 按照 微 电子 学是 电子 学 的分支 学科 ,主要致 电子产 品的微型化 ,达到提升 电子产 品应 提 升集 团系统的性能和性价 比,如下为当前微 利 和 应 用 空 间 的 目的 。微 电子 学 还 属 于 一 电子 的发 展 方 向 。 . 2 . 1 硅 基 互补 金 属 氧 化 物 半 导体 ( C M 0s ) : 合性较强学科类型 , 具体 的微 电子 研 究 中 , 2 C MOS电路将 成 为微 电子 的主 流 工艺 , l 到相关物理学 、量子力学和材料工艺等知 微 电子学研 究中,切实将集成 电路纳入 到
的完善和发展。
在 实 际的微 电子技 术应 用 中,借助微 电 子技术和微加工技术可 以完成对微机 电系统的 构建 ,在完成信息采集 、处理 、传递等功能的 基础上 , 还 可 以 自主 或是 被 动 的执 行 相 关 操 作 ,
2 . 2发展趋 势
微 电 子 技 术 的 发 展 中 , 将 微 电 子 技 术 与 其 他 技 术 联 合 应 用 , 可 以衍 生 出更 多 新 型 电子
结合 的技术实例较 多,积极为社会经济发展奠 定基础 。 例姬 微光机 电系统和 D NA生物芯片 , 微 光 机 电系 统 是 将 微 电子 技 术 与 光 学 理 论 、机 械技术等结合 ,可 以发挥三者 的综合性能 ,可
以实现光 开关 、扫 描和成 像等功 能。DNA生 需求 ,并朝 向信 息化 、高集成和高性 能的发展 物芯 片是将微 电子技术 与生物技术相结合 ,能 方 向。 有 效完成对 D NA、R NA 和 蛋 白质 等 的 高 通 量 现 阶段 ,国 内对 微 电子 的发展 创造 了良 快速分析 。借助微 电子技术与其他技术结合衍
器件,为推动学科完善提供帮助 。另外微 电子 此 ,本文对 当前微 电子学与集成 电路展开 技 术 与 其 他 产 业 结 合 , 可 以极 大 的 拉 动 产 业 的 具体 内容如下 。 发 展,推 动国内生产总值的增加。微 电子芯片
,
嵌 电子学 与集成 电路解读
的发 展遵循 摩 尔定律 ,其 C AGR累计平 均增
到 0 . 1 3 p m。
3 微 电子 技 术 的 应 用 解 读
对 于 改 变 人 们 的生 活 品质 具 有 积 极 的 作 用 。且 微 电子 技 术 逐 渐 成 为 一 个 国家 科 学 技 术 水 平 和 综 合 国力 的指 标 。
键词 】微 Leabharlann 子学 集成 电路 半导体 ( 2)微 电子 产 业 结 构 不 断 优 化 , 随 着 技 术 的 革 新 产 业 结 构 逐 渐 生 成 完 整 的产 业 链 ,上
E l e c t r o n i c T e c h n o l o g y● 电子技术
当前微 电子学与集成电路解析
文/ 胥 亦 实
为基础 的混合元件 ( 锗集成 电路 )一 半导体场 效应 晶体管一 M0S电路一微 电子 。这一发展 过程 中,电路涉及 的内容逐渐增 多,电路 的设 计和过程也更加复杂 ,电路制造成本也逐渐增 高 ,单纯 的人工设计逐渐不能满足 电路 的发展
下游关系处理完善。
微 电子 学 与 集 成 电 路 是 现 代 信 息 技 术 的
,
各类高新行业在具体 发展中,均会对 微
: 学和 集成 电路进 行应用 。其中,集成 电路 半 导体镜 片作为基 片,并结合相 关工艺, l 阻、电容等 元件 与基 片连接 ,最 终形成 一 I 备 完整电路功能的系统或是电路。较 比集
: 体 系 中 。此 外 ,微 电子 学 还 对 集 成 电子 器
主 要是借助 MOS技术 ,完成 对沟道程度 的缩 小,达 到提升电路的集成度和速度 的效果 。运
用 CMOS电 路 , 改 善 芯 片 的 信 号 延 迟 、提 升
具有 极高的应用价值 。对 于 D N A生物芯 片可 以用于生物学研究和相关医疗 中,效果显著 ,
对 改善 人 类 生 活 具 有 积 极 的 作 用和 意 义 。
4 结 束 语
微 电子 学与集 成 电路 均为 信息技 术 的基 础 ,其 中微 电子学中囊括集成 电路。在对微 电 子学和集成 电路的解析中,需要对集成电路和 微 电子技术展开综合解读,分析微 电子技术的 现状和发展趋势 ,再结合具体情况对微电子技 术 的当前应用展开解读 ,为微 电子学与集成 电 路 的创 新 和 完 善 提 供 参 考 , 进 而 推 动 微 电 子 技 术 的发展 ,创造更大的产值,实现国家的持续 健康发展 。