工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案
工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
工程力学材料力学第四版(北京科技大学与东北大学)习题答案

(北京科技大学与东 北大学)
第 一意轴向拉伸和压缩
, 1-1 lfJ截 Illi法 求 下列各轩指 定的 lii fl'J 内 )J
2
f
2
F 2k N
I
(a 1
2
f
(bl
3P
11
(d 1
2kN P
2
2
(e 1
题 1 ) [fI
解
P
({)
P rlp|p
iE
『
e-
I Iz Il
F
5,
为 20 俐 , 许用应力 I δ]=50 Mpa . 试
根据吊钩螺纹部分的强主确定吊钩的阵 111 起重盐 1 解 P= 119kN
P
3m
B
P
E
题1-1 8 固
lIlí l - l ~ 罔
1 - 1 9 如入所示结构的 ABH 为钢轩,其帧故而积 -4.:::6 cm2 • 咛用阻力 ( σ 1=140 MPa ; BC
<.l
(bl
题 1-3 归
且ø 1 -4 因
1-4 : 桩杆起lli:机如 l 国所示,起lli:忏 AB 为钢管 , J[外径 。=2ûrnm , 内径 d= 1 8mrn;制绳
CB 的棋极而而积为 01cnEZe 己知l起重证
P=2脱lO N ,
试计fI起重机轩;归 钢丝绳的应 )J.
解 受力分析得
解
E = GPa . v = 0.3 17
1- 10: i主杆端部与的如1I相迹 , 其构应如罔 ,谊作用在连杆的轴向 jJ P=l28KN , 蝉挟处的内
径 d = 3.7cm , 螺栓材料的冉川剧
工程力学第4版答案

第一章习题下列习题中,凡未标出自重的物体,质量不计。
接触处都不计摩擦。
1-1试分别画出下列各物体的受力图。
1-2试分别画出下列各物体系统中的每个物体的受力图。
1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。
1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。
1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。
1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。
1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。
1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH 部分的受力图。
参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章习题参考答案2-1解:由解析法,故:2-2解:即求此力系的合力,沿OB建立x坐标,由解析法,有故:方向沿OB。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a)由平衡方程有:联立上二式,解得:(拉力)(压力)(b)由平衡方程有:联立上二式,解得:(拉力)(压力)(c)由平衡方程有:联立上二式,解得:(拉力)(压力)(d)由平衡方程有:联立上二式,解得:(拉力)(拉力)2-4解:(a)受力分析如图所示:由由(b)解:受力分析如图所示:由联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D,其封闭的力三角形如图示所以:(压力)(与X轴正向夹150度)2-6解:受力如图所示:已知,,由由2-7解:受力分析如图所示,取左半部分为研究对象由联立后,解得:由二力平衡定理2-8解:杆AB,AC均为二力杆,取A点平衡由联立上二式,解得:(受压)(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程(1)取D点,列平衡方程由(2)取B点列平衡方程由2-10解:取B为研究对象:由取C为研究对象:由由联立上二式,且有解得:取E为研究对象:由故有:2-11解:取A点平衡:联立后可得:取D点平衡,取如图坐标系:由对称性及2-12解:整体受力交于O点,列O点平衡由联立上二式得:(压力)列C点平衡联立上二式得:(拉力)(压力)2-13解:(1)取DEH部分,对H点列平衡联立方程后解得:(2)取ABCE部分,对C点列平衡且联立上面各式得:(3)取BCE部分。
工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案

第六章习题6—1用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-3、用叠加法求图示各梁中指定截面的挠度和转角。
已知梁的抗弯刚读EI为常数。
6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。
用积分法求B端的转角以及挠度。
6-5一齿轮轴受力如图所示。
已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]=0.005rad。
近似的设全轴的直径均为d=60mm,试校核轴的刚度。
回答:6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。
设材料的许用应力[]=160Ma,梁的许用挠度[]=。
试选择槽钢的号码,并校核其刚度。
梁的自重忽略不计。
m壁厚=4mm,单位长度重量6-7两端简支的输气管道,外径D=114m。
q=106N/m,材料的弹性模量E=210Gpa。
设管道的许用挠度试确定管道的最大跨度。
6-845a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。
若梁的最大挠度不得超过,求梁所能承受的布满全梁的最大均布载荷q。
6-9一直角拐如图所示,AB段横截面为圆形,BC段为矩形,A段固定,B段为滑动轴承。
C端作用一集中力P=60N。
有关尺寸如图所示。
材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。
试求C端的挠度。
提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得C端的挠度6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知,梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。
(完整word版)(整理)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑ 12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故:223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin300ACAB FF -= 0Y =∑ cos300ACFW -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos700ACAB FF -= 0Y =∑ sin700ABFW -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos60cos300ACAB FF -= 0Y =∑ sin30sin600ABAC FF W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin30sin300ABAC FF -=0Y =∑ cos30cos300ABAC FF W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由x =∑22cos 45042RA F P -=+15.8RA F KN ∴=由Y =∑22sin 45042RA RB F F P +-=+7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 45010RA RB F F P --= 0Y =∑sin 45sin 45010RA RB F F P +-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑ cos45cos450RA CB P F F --=0Y =∑ sin 45sin 450CBRA F F '-=联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=0Y =∑ sin30sin600ABAC FF W +-=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=0DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+ ⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑ sin75sin750AB AD F F -=0Y =∑ cos75cos750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑ cos5cos800AD ND F F '-=cos5cos80ND ADF F '=⋅由对称性及 AD AD F F '=cos5cos5222166.2cos80cos802cos75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O点,列O点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '-= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q2RE F Q '=(2)取ABCE 部分,对C 点列平衡x =∑ cos450RE RA F F -=0Y =∑ sin 450RBRA FF P --=且 RE RE F F '=联立上面各式得: 22RA F Q =2RB F Q P =+(3)取BCE 部分。
工程力学--静力学(北京科大、东北大学版)第4版 第六章习题答案

第六章 习题参考答案6-1解:(a )1()cos602Z M P P R P R =⋅⋅=⋅(b) 3()sin sin 602Z M P P R P R PRβ=-⋅⋅=-⋅⋅=-6-2解:sin 45cos 60sin 45212cos 45cos 60cos 45212sin 60520()0.242.4()0.50.268.4()0.0510.6X XY Y XY Z X Y Y Z X Z Y F F F N F F F N F F N M F F N mM F F F N m M F F N m=⋅=⋅==⋅=⋅====⨯=⋅=-⨯-⨯=-⋅=⨯=⋅6-3解:受力如图所示,为空间汇交力系。
0XF =∑cos 60cos30cos 60cos300AD BD F F -+=0YF =∑cos 60cos 60sin 30cos 60sin 30cos 600CD AD BD F F FG --+=0ZF=∑()sin 60sin 600AD BD CD F F F G G ++--=解得:31.5AD F KN=(压力)31.5BD F KN=(压力)1.5CD F KN=(压力)6-4解:受力分析如图所示,为空间汇交力系,由几何关系可得:2002OB OC mm ==;2003BD CD mm ==;5AD mm =XF =∑0335CD BD AD F F F --=YF =∑22032325CD BD AD F F F Q --= 0ZF=∑2203232CDBD F F -+= 解得:7.45AD F KN=-(压力)2.89BD F KN =(拉力)2.89CD F KN=(拉力)6-5解:受力分析如图所示:3F 和3F '构成一力偶,且有33F F '=0ZM=∑1122332220F r F r F r ⋅-⋅-⋅=1122333F r F r F F r ⋅-⋅'∴==6-6解:该平行力系的合力大小为:12345200()R RZ Z F F F P P P P P N ===++--=↑∑该合力RF 与平面的交点为(,C CX Y ),由合力矩定理有:12354()()13524650X R X M F M F P P P P P N cm==⨯+⨯+⨯-⨯-⨯=⋅∑1235()()43211200Y R Y M F M F P P P P KN==-⨯-⨯-⨯+⨯=-∑12006200Y C R M X cm F -∴=-=-=650 3.25200X C R M Y cm F ===6-7解:齿轮传动轴受力如图:0XF=∑120AX BX F R P F +++=0YF =∑0AY F =0ZF=∑120AZ BZ F P R F --+=0XM=∑121001502700BZ P R F -⨯-⨯+⨯=0Y M =∑12022P dP P -⨯+⨯=0zM=∑121001502700BX R P F -⨯-⨯-⨯=且有:1120R Ptg =2220R P tg =联立后解得: 12121950;3900;710;1420;P KN P KN R KN R KN ====2180;0;1860;AX AY AZ F N F F N =-==2430;1510BX BZ F N F N=-=6-8解:取轮I :0Y M =∑ 1102D m P '-⋅= 118713P P N'∴==111203172R Ptg Ptg N θ===取AB :0X F =∑120AX BX F F R R ++-=0ZF=∑120AZ BZ F F P P +--=0XM=∑212024375820AZ P P F -⨯-⨯+⨯=0Y M =∑3221022D D P P ⨯-⨯=0ZM=∑212024375820AX R R F ⨯-⨯-⨯=‘且有:2220R P tg=联立后解得:1.03;15.9AX AZ F KN F KN==5.64;19.8BX BZ F KN F KN==6-9解:0X F =∑12sin 20cos15cos150AX BX F N F S S -+--=0YF =∑0AY F =0ZF=∑12cos 20sin15sin150AZ BZ F N F S S +++-=0XM=∑12cos 20250500sin15650sin156500BZ N F S S ⨯+⨯+⨯-⨯=0Y M =∑12cos 20cos15cos150222d D DN S S -⨯+⨯-⨯=0ZM=∑12sin 20250500cos15650cos156500BX N F S S ⨯-⨯+⨯+⨯=联立后解得: 2130N N =500;0;919AX AY AZ F N F F N =-==-4130;1340BX BZ F N F N==-6-10(a )解:由对称性c x =11222705016530030152705030030105iicy A y A y A y A A mm+⨯⨯+⨯⨯===⨯+⨯=∑(b)解:由对称性 0c y =用负面积法求cx2107537.52007040210752007017.5iic x Ax Amm⨯⨯-⨯⨯==⨯-⨯=∑6-11解:由对称性 0c y =由减面积法求cx500560280400420320500560400420220iicx A x Amm⨯⨯-⨯⨯==⨯-⨯=∑6-12解:105002100105010501050500(2100)232100105010505000.51179i i c x A x A mm +⨯⨯+⨯⨯⨯+==⨯+⨯⨯=∑ 11050210010505251050500232100105010505000.5506i i c y A y A mm ⨯⨯+⨯⨯⨯==⨯+⨯⨯=∑ 6-13解:由对称性c y =由负面积法求cx2222()9.6iicx A R R r R a x AR r cmππππ⋅-⋅+==-=∑6-14解:受力分析如图所示0AM=∑()0N l W l b ⋅-⋅-=1.33Nlb l m W ∴=-=6-15解:由对称性,0c y =11223399...303 3.4595.6 5.178.6 4.0242.5 3.3885.5 2.632.51.6836.6 1.4356 1.7495.50.520.192930395.678.642.585.532.536.65695.5292.89i i keke C iZ A w z w z w z w z w z Awm ⋅+⋅++++==⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++++=∑∑。
工程力学材料力学第四版 北京科技大学与东北大学 习题答案

F ,气 in 15=F2*sin45
F I*co s 15= P+ F2*s in45
F
.:..L
OAF SI= 477MPa
FZ Oasc= 5 24035MPa
1- 5 罔 a 所示为一斗式提升机斗与 1- .i:间用链条连接 ! 链盔的计fI简罔如同 b 所示,每个
料斗连 l uj 物抖的总豆 -IIH二 2 0 00 N 制链卫
d =40mm 在压盐的外 :&íl目上沿姐户l 贴有测韭JlNIJ 电阳 l 含金片若测得轧辑两 端两个压头的辄 lúJ
!也 变均为 ε =0 .9* 1 0.2 武斗占轧机 WJAA 轧
制压力压J、材料的神tl 棋盘E=2仅JGp,
解
A-E -J UN 川
N
e=
EA N = eEA = 2 . 54 叫 0' N
l'! 1 - 21 图
1-2 1 一小变形的问 m梁 AB 搁于三 个相同的弹iE t , 在梁 r. D 扯作用 -)J p ,如同所示,
5
设 已知 弹i齿 刚性系数 C (= 1 ) , 试求
A 、 B 、 C 处 三 个弹贺各圭 )J 多少?
解
P_ 7 FA = 同 F. =-'-- P,F" ='- P
F o mllX= 5 2 =38.1 MPa
' -6 一长为 30cm 的钢 材,其受力恬况如国所示己知什 JX 面面积 A= I Oc rn2 材料的于l'性愤主 t E=2阳Gpa ,试求
(1) AC. CD DB 各段的应力和 l 变形
(2) AB 村 的 IJ、变形
解 ( 1 ) 0 Ac=-20MPa , σ co=û , σm=20MPa, NL σ'AC L
工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案

第六章习题6—1用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-3、用叠加法求图示各梁中指定截面的挠度和转角。
已知梁的抗弯刚读EI为常数。
6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。
用积分法求B端的转角以及挠度。
6-5一齿轮轴受力如图所示。
已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]=0.005rad。
近似的设全轴的直径均为d=60mm,试校核轴的刚度。
回答:6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。
设材料的许用应力[]=160Ma,梁的许用挠度[]=。
试选择槽钢的号码,并校核其刚度。
梁的自重忽略不计。
m壁厚=4mm,单位长度重量6-7两端简支的输气管道,外径D=114m。
q=106N/m,材料的弹性模量E=210Gpa。
设管道的许用挠度试确定管道的最大跨度。
6-845a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。
若梁的最大挠度不得超过,求梁所能承受的布满全梁的最大均布载荷q。
6-9一直角拐如图所示,AB段横截面为圆形,BC段为矩形,A段固定,B段为滑动轴承。
C端作用一集中力P=60N。
有关尺寸如图所示。
材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。
试求C端的挠度。
提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得C端的挠度6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知,梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章
习题
6—1 用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-3、用叠加法求图示各梁中指定截面的挠度和转角。
已知梁的抗弯刚读EI为常数。
6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。
用积分法求B端的转角以及挠度。
6-5一齿轮轴受力如图所示。
已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]
=0.005rad。
近似的设全轴的直径均为d=60mm,试校核轴的刚度。
回答:
6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。
设材料的许用应力[]=160Ma,梁的许
用挠度[]=。
试选择槽钢的号码,并校核其刚度。
梁的自重忽略不计。
6-7两端简支的输气管道,外径D=114mm。
壁厚=4mm,单位长度重量q=106N/m,材料的弹性模量E=210Gpa。
设管道的许用挠度
试确定管道的最大跨度。
6-8 45a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。
若梁的最大挠度不得超过,求梁所能承受的布满全梁的
最大均布载荷q。
6-9一直角拐如图所示,AB段横截面为圆形,BC 段为矩形,A段固定,B段为滑动轴承。
C端作用一集中力P=60N。
有关尺寸如
图所示。
材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。
试求C端的挠度。
提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受
集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得
C端的挠度
6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知,
梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。
试问当百分表F指针转动一小格(1/100mm)时,载荷P增加多少?
6-11试求以下各梁的支反力,并做弯矩图。
由图可见有三个支反力,但在平面能够力系中,只可列出二个静力平衡方程,可知此梁是静不定梁问题。
(1)选取静定基,建立变形条件
假想解除多余约束C,选取静定基如图(b),变形条件为(2)计算变形
(3)建立补充方程,解出多余反力
利用变形条件,可得补充方程
算出中间支座的反力,
(4)由平衡条件求其他支座反力
因为此梁的载荷和结构有对称性,可知
(5)作弯矩图如图c) 在中间支座处
6-12加热炉内的水管横梁,支持在三个支点上,承受纵管传来的钢锭载荷。
求A、B、C处的反力。
并作横梁的弯矩图。
提示:横管简化成三支点的静不定梁。
6-13在车床加工工件,已知工件的弹性模量E=220GP a,试问(1)按图(a)方式加工时,因工件而引起的直径误差是多少?
(2)如在工件自由端加上顶尖后,按车刀行至工作中点时考虑(b),这时因工件变形而引起的直径误差又是多少?(3)二
者误差的百分比如何?
提示:(a)情形可简化成在右端作用一集中力P的静定是悬臂梁,(b)情形可简化成左端固定右端简支的静不定梁,在中点作
用一集中力P。
计算直径的误差时,应是所求得挠度的二倍。
6-14、悬臂梁AB因强度和刚度不足,用同材料同截面的一根短梁AC加固,如图所示。
问(1)支座C处的反力为多
少?(2)梁AB的最大弯矩和最大挠度要比没有梁AC支撑时减少多少?
6-15、图示一铣床齿轮轴AB,已知传动功率,转速n=230rpm,D轮为主动轮。
若仅考虑齿轮切向力的影响,试求此
轴的弯矩图。
参考答案
6—1 解:(a)
挠曲线微分方程为:
积分得:
(1)
(2)
在固定端A,转角和挠度均应等于零,即:
当x=0时,;
把边界条件代入(1),(2)得
C=0
D=0
再将所得积分常数
(3)
(4)
求B点处转角和挠度
x=l时代入(3),(4)
(b)任意截面上的弯矩为:
挠曲线的微分方程:
积分得
(1)
(2)在固定端B
当x=0时
将边界条件代入(1)、(2)中,得:
C=D=0
再将所得积分常数C和D代回(1)、(2)式,得转角方程和挠曲线方程
以截面C的横坐标x=l/2代入以上两式,得截面C的转角和挠度分别为
(c)求支座反力:
=0
选取如图坐标,任意截面上的弯矩为:
挠曲线的微分方程为:
积分得:
(1)
(
2)
铰支座上的挠度等于零,故
x=0时
因为梁上的外力和边界条件都对跨度中点对称,挠曲线也对该点对称。
因此,在跨度中点,挠曲线切线的斜率
截面的转角都应等于零,即
x=时=0
分别代入(1)、(2)式,得
,D=0
以上两式代入(1)(2)得
当x=0时,
当x=l/2时,
6-2解:AC段,
(d)、
解:取坐标系如图。
(1)、求支坐反力、列弯矩方程
支座反力,
AB段,
BC段,
(2)列梁挠曲线近似微分方程并积分
AB段,
BC段,
(3)确定积分常数
利用边界条件:
处,,代入上面式中,得,
处,,再代入式中,得
处,,由和式可得。
处,,代入式中,得
(4)转角方程和挠度方程
AB段,
BC段,
最后指出,列弯矩方程时,不变,也可取截面右侧的载荷列
出,,这样可使计算大为简化。
6-3、解:(a)计算转角左、右集中力P分别为和表示集中力作用下引起的转角,
集中力作用下引起的转角,
所以
(1)计算挠度
集中力作用下引起的挠度,
集中力作用下引起的挠度
所以
答(b)
,
(c)(1) 计算转角
力偶作用下引起的转角
力P作用下引起的转角
所以
(2)、计算挠度
力偶作用下引起的挠度力P作用下引起的转角
所以
回答
(d ),
(e) ,
(f) 解答:
(1计算转角力P作用下引用的转角
力偶作用下引起的转角
所以
(2计算挠度力P作用下引起的挠度
力偶作用下引起的挠度
所以
6-5回答:
6-6解:(1)选择截面
采用迭加法可求得最大弯矩
由正应力强度条件可得
(2)校核刚度
采用迭加法可求得最大挠度
计算可知,此钢梁的刚度够。
6-7 答:
6-8 答:
6-9提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受
集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得
C端的挠度
6-11答:(b)
提示:题(c)在固定端处,除有反力偶及竖直反力外,还有水平反力,此梁是一次静不定梁。
可以解除支
座B,选择反力作多余反力,建立补充方程求解。
答:
答(d),在固定端。
6-12答:在距离两端的处。
6-13答:(1)二者误差百分比为2.73%
6-14解:(1)计算约束反力
根据在加固处两个悬臂梁的挠度相等这个变形条件,来计算约束反力。
即
可得
(2)比较最大弯矩
没有加固梁时,
有加固时,
比较可知,梁AB加固后,最大弯矩可减少一半。
(3)比较最大挠度
没有加固梁时,
有加固时,
经加固后,梁AB在右端的最大挠度要减少
6-15解:
(1)计算AB轴上的外力
AB轴上的外力偶矩
作用于AB轴的左右齿轮上的切向力为
(2)求AB轴上的约束反力
AB轴是一次静不定梁,取静定基如图(b),变形条件为而
代入有关数据,再代回变形条件中,可得
由平衡条件,
(3)作弯矩图
AB轴的弯矩图如图(c)。