电涡流传感器实验

合集下载

03实验三 电涡流传感器实验

03实验三 电涡流传感器实验

电涡流传感器实验
实验台简介
DRZZS-A型多功能转子试验台由:1底座、2主轴、3飞轮、4直流电机、5主轴支座、6含油轴承及油杯、7电机支座、8连轴器及护罩、9RS9008电涡流传感器支架、10磁电转速传感器支架、11测速齿轮(15齿)、12保护挡板支架,几部分组成,如图1所示。

图1 DRZZS-A型多功能转子试验台传感器安装位置示意图
主要技术指标为:
可调转速范围:0~2500转/分,无级
电源:DC12V
主轴长度:500mm
主轴直径:12mm
外形尺寸:640×140×160mm
重量:12.5kg
轴心轨迹是转子运行时轴心的位置,在忽略轴的圆度误差的情况下,可以将两个电涡流位移传感器探头安装到实验台中部的传感器支架上,相互成90度,并调好两个探头到主轴的距离(约1.6mm),标准是使从前置器输出的信号刚好为0(mV)。

这时,转子实验台启动后两个传感器测量的就是它在两个垂直方向(X,Y)上的瞬时位移,合成为李沙育图就是转
图5 轴心轨迹测量
子的轴心运动轨迹。

利用轴心运动轨迹可以对转轴进行故障诊断。

轴心运动轨迹示意图:
(利用软件仿真产生,拷屏)。

电涡流传感器实验报告

电涡流传感器实验报告

电涡流传感器实验报告电涡流传感器实验报告摘要:本实验旨在研究电涡流传感器的原理和应用。

通过实验,我们探索了电涡流传感器的工作原理、特性以及在工业领域的应用。

实验结果表明,电涡流传感器具有高灵敏度、快速响应和广泛的应用前景。

引言:电涡流传感器是一种常用的非接触式传感器,广泛应用于工业领域。

它通过感应电磁场中的涡流来检测目标物体的位置、形状、材料和表面缺陷等信息。

本实验旨在深入了解电涡流传感器的原理和特性,并通过实验验证其性能。

一、电涡流传感器的原理电涡流传感器利用法拉第电磁感应原理,当导体在变化的磁场中运动或受到变化的磁场作用时,会在其内部产生涡流。

电涡流传感器通过检测涡流的变化来获取目标物体的信息。

涡流的强度与目标物体的导电性、形状、运动速度等因素有关。

二、电涡流传感器的特性1. 高灵敏度:电涡流传感器可以检测微小的涡流变化,对目标物体的微小变化有很高的响应能力。

2. 快速响应:电涡流传感器的响应时间较短,可以实时检测目标物体的变化。

3. 非接触式:电涡流传感器无需与目标物体直接接触,减少了磨损和损坏的风险。

4. 宽频率范围:电涡流传感器可以适应不同频率范围内的磁场变化,具有较广泛的应用范围。

三、实验方法1. 实验器材:电涡流传感器、交流电源、信号发生器、示波器等。

2. 实验步骤:a. 将电涡流传感器连接到交流电源和信号发生器上。

b. 调节信号发生器的频率和幅度,观察示波器上的涡流信号变化。

c. 改变目标物体的材料、形状和距离等参数,观察涡流信号的变化。

四、实验结果与分析通过实验,我们观察到了不同频率和幅度下涡流信号的变化。

当频率较高时,涡流信号的幅度减小,响应时间变短。

当目标物体的材料为导体时,涡流信号较强;当目标物体的材料为绝缘体时,涡流信号几乎消失。

此外,目标物体的形状和距离也会对涡流信号产生影响。

五、电涡流传感器的应用电涡流传感器具有广泛的应用前景,主要应用于以下领域:1. 金属材料检测:电涡流传感器可以检测金属材料中的缺陷、裂纹和变形等问题,用于质量控制和安全检测。

电涡流传感器实验报告

电涡流传感器实验报告

电涡流传感器实验报告电涡流传感器实验报告引言电涡流传感器是一种常见的非接触式传感器,广泛应用于工业领域。

本实验旨在通过实际操作和数据分析,深入了解电涡流传感器的原理、特点和应用。

实验目的1. 理解电涡流传感器的工作原理;2. 掌握电涡流传感器的基本操作方法;3. 分析电涡流传感器在不同应用场景下的性能表现。

实验装置与方法本实验使用了一台电涡流传感器测试仪和一组标准试样。

首先,将试样固定在传感器上,然后通过测试仪的操作面板设置相应的参数,如频率、电流等。

随后,观察传感器输出的电压信号,并记录下相应的数据。

实验结果与分析通过实验操作,我们得到了一系列关于电涡流传感器的数据。

首先,我们观察到传感器输出信号的幅值与试样的导电性质有关。

当试样的导电性越好时,传感器输出的电压信号幅值越大,反之亦然。

这是因为电涡流传感器通过感应试样中的涡流产生电磁场变化,并通过电感耦合原理转换为电压信号。

其次,我们发现传感器输出信号的频率对试样的尺寸和形状有一定的敏感性。

当试样的尺寸较大或形状复杂时,传感器输出信号的频率会有所变化。

这是由于试样的尺寸和形状会影响涡流的形成和消散过程,从而影响到传感器的工作频率。

此外,我们还测试了传感器在不同环境条件下的性能表现。

实验结果显示,传感器对温度和湿度的变化具有一定的抗干扰能力。

然而,在极端环境条件下,如高温和高湿度下,传感器的性能可能会受到影响。

因此,在实际应用中,需要根据具体情况选择合适的传感器型号和工作条件。

讨论与展望电涡流传感器作为一种非接触式传感器,具有许多优点,如高灵敏度、快速响应和无磨损等。

在工业领域,电涡流传感器被广泛应用于材料检测、无损检测和精密测量等领域。

然而,目前电涡流传感器的应用还存在一些局限性,如对试样尺寸和形状的限制以及对环境条件的敏感性。

因此,未来的研究可以致力于改进传感器的性能,拓展其应用范围。

结论通过本实验,我们深入了解了电涡流传感器的工作原理、特点和应用。

电涡流效应实验报告(3篇)

电涡流效应实验报告(3篇)

第1篇一、实验目的1. 了解电涡流效应的基本原理和产生过程。

2. 通过实验验证电涡流效应的存在及其与金属导体距离的关系。

3. 掌握电涡流传感器的原理和位移测量方法。

二、实验原理电涡流效应是指当金属导体置于变化的磁场中时,导体内会产生感应电流,这种电流在导体内形成闭合回路,类似于水中的漩涡,故称为电涡流。

电涡流效应的产生主要依赖于法拉第电磁感应定律和楞次定律。

三、实验器材1. 电涡流传感器2. 信号发生器3. 示波器4. 金属样品5. 实验台6. 连接线四、实验步骤1. 将电涡流传感器固定在实验台上,确保传感器水平且与金属样品保持一定的距离。

2. 将金属样品放置在传感器的检测区域内,并确保金属样品表面平整。

3. 连接信号发生器和示波器,设置合适的频率和幅度,使传感器产生交变磁场。

4. 打开信号发生器,观察示波器上的信号变化,记录下不同金属样品距离传感器时的信号波形。

5. 逐渐改变金属样品与传感器之间的距离,重复步骤4,记录不同距离下的信号波形。

6. 分析实验数据,探讨电涡流效应与金属导体距离的关系。

五、实验结果与分析1. 实验过程中,随着金属样品与传感器距离的增加,示波器上的信号波形逐渐减弱,说明电涡流效应随距离的增加而减弱。

2. 当金属样品与传感器距离较远时,示波器上几乎无信号显示,说明电涡流效应随距离的增加而消失。

3. 当金属样品与传感器距离较近时,示波器上的信号波形明显,说明电涡流效应随距离的减小而增强。

六、实验结论1. 电涡流效应确实存在,且与金属导体距离密切相关。

2. 当金属导体与传感器距离较近时,电涡流效应较强;当距离较远时,电涡流效应较弱。

3. 电涡流效应可用于电涡流传感器的位移测量,通过测量电涡流效应的变化,可以实现对金属导体位移的精确测量。

七、实验讨论1. 电涡流效应的产生与金属导体的电阻率、磁导率以及几何形状等因素有关。

2. 实验过程中,金属样品表面平整度对实验结果有一定影响,表面不平整可能导致实验误差。

实验06(电涡流传感器)实验报告

实验06(电涡流传感器)实验报告

实验六-电涡流传感器实验1:电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验原理通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。

涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表面的距离x等参数有关。

电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线线圈阻抗,涡流传感器就是基于这种涡流效应制成的。

电涡流工作在非接触状态(线圈与金属体表面不接触),当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量。

三、实验器械主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体(铁圆片)。

四、实验接线图五、实验数据记录以及数据分析实验数据如下:实验数据拟合图像如下:数据分析:由图像可知,位移-输出电压曲线的线性区域是0.4mm~4.4mm,进行正、负位移测量时的最佳工作点2.4mm处。

实验拟合直线方程为:y=1.9885x-0.8639灵敏度和非线性误差计算:测量范围为1mm时,灵敏度为1.0677(V/mm),非线性误差为20.426%测量范围为3 mm时,灵敏度为1.7738(V/mm),非线性误差为12.244%六、实验备注电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器?与被测物体的磁导率,电导率,尺寸因子,探头线圈的电流强度和频率有关。

通过调节前面五个因素的组合来达到所需要的量程。

实验2:被测体材质对电涡流传感器特性影响一、实验目的了解不同的被测体材料对电涡流传感器性能的影响。

二、实验原理涡流效应与金属导体本身的电阻率和磁导率有关,因此不同的材料就会有不同的性能。

三、实验器械和实验1相同,另加铜和铝的被测体。

四、实验接线图和实验1相同。

五、实验数据记录以及数据分析实验数据记录如下:被测物体材料为铝时被测物体材料为铜时实验数据拟合图像如下:材料为铝,量程为1mm和3mm数据分析:由图像可知,位移-输出电压曲线的线性区域是0.1mm~1.0mm。

电涡流传感器位移实验

电涡流传感器位移实验

实验二十电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验内容用铁圆片检测电涡流传感器的位移特性。

三、实验仪器电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。

四、实验原理电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。

当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。

将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。

五、实验注意事项被测体与涡流传感器测试探头平面尽量平行,并将探头尽量对准被测体中间,以减少涡流损失。

六、实验步骤1、根据图20-1安装电涡流传感器。

2、观察传感器结构,这是一个平绕线圈。

3、将涡流传感器输出线接入实验模板上标有L的两端插孔中,作为振荡器的一个元件。

图20-1 电涡流传感器安装示意图图8-2 电涡流传感器位移实验接线图4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

5、将实验模板输出端Vo与数显单元输入端Vin相接。

数显表量程切换到选择电压20V 档。

6、用连结导线从主控台接入15V直流电源接到模板上标有+15V的插孔中。

7、使测微头与传感器线圈端部接触,开启主控台电源开关,此时数显表读数为最小,然后每隔0.1mm读一个数,直到输出几乎不变为止。

将结果列入下表。

(实验结论:1、本实验每隔0.1mm是相对位置,起始值看做0.1mm即可,无需从测微头上读绝对位置。

每旋转0.1mm,输出的电压的增量应该大致相等。

2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表)8、根据上表数据画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3 mm及5mm时的灵敏度和线性度(可以用端基法或其它拟合直线)。

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告

电涡流式位移传感器实验报告引言:电涡流式位移传感器是一种常用于测量物体位移的传感器。

它通过感应物体表面的涡流引起的感应电磁场变化来实现位移测量。

本实验旨在通过实验验证电涡流式位移传感器的工作原理,并探究其在位移测量中的应用。

实验目的:1. 了解电涡流式位移传感器的工作原理;2. 学习使用电涡流式位移传感器进行位移测量;3. 分析位移测量结果的准确性和稳定性。

实验仪器和材料:1. 电涡流式位移传感器;2. 示波器;3. 可调直流电源;4. 待测物体。

实验步骤:1. 将待测物体固定在实验台上,并将电涡流式位移传感器的感应头靠近物体表面;2. 连接电涡流式位移传感器和示波器,并调节示波器的参数以观察信号波形;3. 通过调节可调直流电源的电压,改变电涡流式位移传感器的工作距离,记录不同工作距离下的信号波形;4. 根据示波器上的信号波形,计算出不同工作距离下的位移值;5. 重复上述步骤,以获得多组位移测量数据。

实验结果和分析:根据实验记录的信号波形和位移测量数据,可以得出以下结论:1. 电涡流式位移传感器的工作距离与信号波形的变化呈反比关系,即工作距离越小,信号波形的振幅越大;2. 通过对信号波形的观察和分析,可以较准确地计算出位移值;3. 在一定范围内,电涡流式位移传感器的测量结果具有较高的准确性和稳定性。

实验结论:通过本实验,验证了电涡流式位移传感器的工作原理,并探究了其在位移测量中的应用。

实验结果表明,电涡流式位移传感器具有较高的测量精度和稳定性,在工业自动化控制和机械加工等领域有着广泛的应用前景。

参考文献:[1] Xie Y, Zhang H, Fu C, et al. Design and fabrication of an eddy current displacement sensor[J]. Sensors, 2018, 18(10): 3243.[2] Wei D, Zhao J, Yan Y. Design and evaluation of a noveleddy current displacement sensor for in-situ monitoring of turbine blades[J]. IEEE Sensors Journal, 2019, 19(13): 5284-5291.。

电涡流式传感器实验报告

电涡流式传感器实验报告

电涡流式传感器实验报告电涡流式传感器实验报告引言:电涡流式传感器是一种广泛应用于工业领域的非接触式传感器,它利用了涡流的原理来检测金属材料中的缺陷和变化。

本实验旨在探究电涡流式传感器的工作原理、应用领域以及实验结果的可靠性。

一、工作原理电涡流式传感器利用了电磁感应的原理,当电磁场通过金属材料时,会在材料内部产生电涡流。

这些电涡流会改变电磁场的分布,从而反映出材料的性质和状态。

传感器通过测量电涡流的变化来判断材料的缺陷和变化。

二、应用领域1. 材料缺陷检测:电涡流式传感器可以用于检测金属材料中的裂纹、疲劳和腐蚀等缺陷。

通过测量电涡流的变化,可以精确地定位和评估材料中的缺陷程度,为后续的修复和保养提供依据。

2. 金属排序:由于不同材料的电导率和磁导率不同,电涡流式传感器可以用于对金属进行分类和排序。

通过测量电涡流的强度和频率,可以快速准确地区分不同种类的金属材料。

3. 无损检测:电涡流式传感器是一种非接触式的检测方法,可以在不破坏材料表面的情况下进行检测。

因此,它被广泛应用于对复杂结构和精密零件的无损检测,如航空航天、汽车制造和电子设备等领域。

三、实验设计与结果在本实验中,我们选择了一块铝合金板作为被测材料,利用电涡流式传感器对其进行了缺陷检测。

实验过程中,我们将传感器靠近铝合金板表面,并通过测量电涡流的变化来判断板材中是否存在缺陷。

实验结果显示,当传感器靠近板材表面时,电涡流的强度和频率发生了明显的变化。

在板材表面平滑的区域,电涡流强度较弱,频率较高;而在存在缺陷的区域,电涡流强度增强,频率降低。

通过对实验结果的分析,我们可以准确地定位和评估板材中的缺陷。

四、实验结果的可靠性在实验过程中,我们注意到实验结果的可靠性受到多种因素的影响。

首先,传感器与被测材料的距离和角度会对测量结果产生影响。

因此,在实际应用中,需要根据具体情况进行传感器的位置和角度调整。

其次,被测材料的性质和状态也会对实验结果产生影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电涡流式传感器传感器是现代检测和控制装置的重要组成部分,在现代科学技术领域中的地位越来越重要。

各类传感器的研制、推广和使用飞速发展,作为现代信息技术三大支柱之一的传感器技术将是二十一世纪人们在高新技术发展方面争夺的一个制高点。

实际应用中,人们通常把将非电量信号转换成电量信号的装置叫做传感器。

电涡流式传感器是建立在涡流效应原理上的一种传感器。

利用它可以把距离的变化转换为电量的变化,从而做成位移、振幅、厚度等传感器;也可以利用它把电阻率的变化转换成电量的变化,做成表面温度、电介质的浓度等传感器;还可以利用它把磁导率的变化转换为电量的变化,做成应力、硬度等传感器。

电涡流式传感器能够实现非接触测量,而且还具有测量范围大、灵敏度高、抗干扰能力强、不受油污等介质的影响、结构简单及安装方便等优点。

因此广泛应用于工业生产和科学研究的各个领域。

【实验目的】1.了解电涡流式传感器的工作原理。

2.掌握静态标定的方法,了解被测材料对电涡流式传感器特性的影响。

3.掌握电涡流传感器测量振幅的方法4.了解由电涡流式传感器组成的电子称的标定和测量方法。

【实验原理】1.电涡流式传感器工作原理电涡流传感器有高频反射式和低频透射式两种,高频反射式应用较广。

本实验使用高频反射式。

如图6.2-2所示,在一金属导体上方放置一个线圈,当线圈中通入交变电流I 1时,线圈的周围空间就产生了交变磁场H 1,则金属导体中将产生感生电流I 2,由于I 2呈涡旋状,故称为电涡流。

而此电涡流将产生交变磁场H 2,它的方向与磁场H 1方向相反,由于磁场H 2的反作用使导电线圈的电感量、阻抗及品质因数等发生变化,这些参数变化量的大小与金属导体的电阻率、磁导率、几何形状、激励电流以及线圈与金属导体间的距离等有关。

限制其中其它参数不变,只让其中某一个参数变化,就构成了测量该参数的传感器。

涡流效应可等效为如图6.2-3所示的等效电路。

图中,R 1和L 1为传感器线圈的电阻和电感,R 2和L 2为金属导体等效的电阻和电感,各自的电流为I 1、I 2 ,U 为激励电压,M 为互感系数。

根据基尔霍夫定律可以写出方程⎩⎨⎧=-+=-+01222221111MI j I L j I R U MI j I L j I R ωωωω 以上两式联立解得传感线圈中的电流1I 为⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡++=2222222212222222211L R L M L j L R R M R UI ωωωωω 图 6.2-3 等效电路 R 2 U L 1 L 2 R 1 I 1 I 2 M 图6.2-2 电涡流传感器工作原理 I 1上式的分母即为线圈受涡流产生的磁场H 2影响后的阻抗L j R I U Z ω+==11 其中,线圈等效电阻 222222221L R R M R R ωω++= 线圈等效电抗 222222221L R L M L L ωω+-= 由此可算出线圈的品质因数 RL Q ω= 而无涡流效应时线圈的品质因数为 Q =11/R L ω。

可见,R 、L 、Q 均为M 的函数。

而互感系数M 决定于线圈靠近金属导体的程度,随着线圈与金属导体离得越近,互感M 值越大,涡流效应引起上述参数的变化也越大,表现为涡流损耗的功率增大,线圈回路的Q 值降低。

电涡流传感器的基本原理就是将传感器与被测体间的距离转换为传感器的品质因数Q 值、等效阻抗Z 及等效电感L 三个参量,并用相应的测量电路来测量。

2.电涡流传感器的测量电路本实验中电涡流传感器的测量电路采用定频调幅式测量电路。

测量电路中提供一个稳定性很高的振荡信号,它是由石英晶体振荡器产生,其频率一般选在1MHz~2MHz 。

通常采用一个电容C 与电涡流线圈L 并联,构成并联谐振回路,其谐振频率为LC πν210=传感器线圈作为振荡回路的一个电感元件与电容构成基本电路单元。

振荡器的输出信号经电阻R 加到传感器上。

其作用是将位移变化引起的振荡回路阻抗的变化转化为高频载波信号的幅度变化。

当没有被测导体时,使谐振回路产生谐振,回路谐振频率为ν0,当与被测导体接近时,回路将失谐,使回路Q 值降低,振荡幅值下降,ν也发生变化。

阻抗Z 也发生变化。

传感器LC 回路的阻抗变化既反映了电感的变化,又反映了Q 值变化。

发生谐振时回路的等效阻抗最大。

此时阻抗最高,对应的输出电压U 0最大。

当被测导体接近传感器线圈时,电感线圈L 感应的高频电磁场作用于被测导体,由表面的涡流反射作用,使电感量L 变小,导致回路失谐,回路的等效阻抗相应减小,对应的输出电压U 值减少。

因此通过对输出电压的测量,就可以确定距离x 的大小。

实际上,参数R 、L 、Q 均是M 的非线性函数,即与距离x 呈非线性关系。

但在某一小范围内可以将这些函数关系近似地用线性函数表示,即电涡流位移传感器只能在一定范围内呈线性关系。

可以用电涡流传感器在这段线性范围内测量位移、振幅等物理量。

【实验仪器】CSY 10系列传感器系统实验仪、双踪示波器等。

【实验内容】1.电涡流传感器的静态标定(1)选择实验所需部件:电涡流传感器、涡流变换器、螺旋测微仪、电压表。

(2)按图6.2-4连接电路,安装好电涡流线圈与金属片,注意两者必须保持平行,安装好测微仪,将电涡流线圈接入涡流变换器输入端。

涡流变换器输出端接电压/频率表20V 档。

(3)开启主机电源与副电源,用测微仪带动涡流片移动,当涡流片完全紧贴线圈时输出电压应为零(可适当改变支架中的线圈角度,若不为零记下零点偏移量) 。

然后旋动测微仪使涡流片离开线圈,从电压表有读数时每隔0.5mm 记录一个电压值,共记约14组数据。

将U 、x 数值填入自己设计的表格内,作出U~x 曲线,指出线性范围,求出灵敏度。

(4)将示波器接涡流变换器输入端口,观察电涡流传感器的激励信号频率,随着线圈与电涡流片距离的变化,信号幅度也发生变化,当涡流片紧贴线圈时电路停振,输出为零。

2.比较不同被测材料对电涡流传感器特性的影响电涡流传感器中线圈仅是传感器的一个组成部分,而另一部分则是被测导体,因此线圈阻抗的变化还与被测导体的材料、形状、大小有关。

一般情况下,被测体导电率越高,灵敏度越高,在相同的量程下,其线性范围越宽。

此外被测体的形状和大小对测量也有影响。

当被测体的面积比传感器线圈面积大很多时,传感器灵敏度基本不发生变化;当被测体面积为传感器一半时,其灵敏度减少一半;更小时,灵敏度则显著减小。

因此需对不同的被测材料分别进行标定。

(1)按内容1的要求分别对铁、铜、铝涡流片进行测试与标定,记录数据,在同一坐标上作出U~x 曲线。

(2)分别找出不同材料被测体的线性工作范围、灵敏度、最佳工作点,进行比较并做出定性的结论。

3.振幅测量(1)选择所需部件:电涡流传感器、涡流变换器、直流稳压电源、电桥、差动放大器、激振器I 、低频振荡器等,按图6.2-5接线。

(2)差动放大器调零。

(3)换回被测铁片,将测微头旋至离开振动台,将电涡流传感器的线圈安装在与被测铁片的最佳工作距离上(即线性区域的中点位置),利用差放和电桥电位器W D 所组成的电平移动电路将输出电压调节为零,此时振动台处于平衡位置。

(4)移动振动台至上、下偏离位置,观察输出电压的变化,若平衡位置恰为传感器的最佳工作点上,则电压的双向指示值应对称,若不对称需重新安装传感器线圈与被测铁片的位置,寻找最佳工作点。

(5)选好最佳工作点后,用双踪示波器的一个通道在A 点观察涡流传感器的高频振荡波形,并测出其振荡频率ν。

(6)将低频振荡器的低频输出信号接入激振器I ,缓慢加大增益使振动台产生适当振幅的振动,调节振动频率范围1~30Hz ,观察振动台振动状态,记下共振频率ν0。

(7)再将示波器的另一个通道接入在B 点观察涡流变换器的输出电压波形,适当调节低频振荡器的增益以保证输出电压波形不失真,用示波器测出U p-p 值大小。

(8)根据实验内容1的结果(即当被测材料为铁片时,对电涡流传感器进行静态标定所得的灵敏度S n )估算出振动台振幅大小n pp S U A 2-=4.电涡流传感器组成的电子秤(1)按图6.2-5接线,调节好差动放大器的零点,将差放的输出接电压表20V 档。

(2)调整电涡流传感器的位置,使其处于线性范围的起始处,调节电桥电位器W D 使电压表指示为零(调节好以后差放增益和W D 均不可再动)。

(3)在振动台上逐步累加砝码,记下相应的砝码重量W 和输出电压U 值。

根据实验数据作出U ~W 曲线,找出线性区,计算出灵敏度W U S n∆∆='/ (4)取下砝码,在振动台上放一重量未知的物体,记下输出电压值U x 则该物体的重量为nx x S U W '= 【注意事项】1.振动台共振时,应及时减小振荡器增益,以免振动台振幅过大发生碰撞。

2.更换被测金属片时,应首先移开传感器探头(线圈)。

3.显示仪表量程宜从高档转换到低档,激励信号幅度则应从小到大。

4.涡流变换器输入端接入示波器时由于一些示波器的输入阻抗不高(包括探头阻抗)以至影响线圈的阻抗,使输出U 变小,并造成初始位置附近的一段死区,将示波器探头离开输入端即可解决这个问题。

5.若换上铜、铝和其他金属涡流片,线圈紧贴涡流片时的输出电压并不为零,这是因为电涡流线圈的尺寸是为配合铁涡流片而设计的,换了不同材料的涡流片,只有改变线圈尺寸输出才能为零。

【预习思考题】1.电涡流传感器与其它传感器比较有什么优缺点?2.本试验采用的变换电路是什么电路。

【分析讨论题】1.若此传感器仅用来测量振动频率,工作点问题是否仍十分重要?为什么?2.如何能提高电涡流传感器的线性范围?。

相关文档
最新文档