十字相乘法、分组分解法
数学因式分解方法:分组分解法与十字相乘法

数学因式分解方法:分组分解法与十字相乘法3、分组分解法当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。
因此可能要综合其他分法,且分组方法也不一定唯独。
例1分解因式:x15+m12+m9+m6+m3+1解原式=(x15+m12)+(m9+m6)+(m3+1)=m12(m3+1)+m6(m3+1)+(m3+1)=(m3+1)(m12+m6++1)=(m3+1)[(m6+1)2-m6]=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)例2分解因式:x4+5x3+15x-9解析可依照系数特点进行分组解原式=(x4-9)+5x3+15x=(x2+3)(x2-3)+5x(x2+3)=(x2+3)(x2+5x-3)4、十字相乘法关于形如ax2+bx+c结构特点的二次三项式能够考虑用十字相乘法,即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行操作。
例3分解因式:①x2-x-6②6x2-x-12解①1x21x-3原式=(x+2)(x-3)②2x-33x4原式=(2x-3)(3x+4)我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
因式分解_十字相乘法与分组分解法

“十字相乘法”教学设计【教学内容】十字相乘法【教学目标】1、能较熟练地用十字相乘法把形如x2 + px + q的二次三项式分解因式;2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质.【教学重点】能较熟练地用十字相乘法把形如x2 + px + q 的二次三项式分解因式.【教学难点】把x2 + px + q分解因式时,准确地找出a、b,使a ·b = q;a + b = p.【教学过程】一、复习导入1.口答计算结果:(1) (x+2)(x+1) (2) (x+2)(x-1) (3) (x-2)(x+1) (4) (x-2)(x-1) (5) (x+2)(x+3) (6) (x+2)(x-3) (7) (x-2)(x+3) (8) (x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?[在多项式的乘法中,有(x + a)(x + b) = x2 +(a + b)x + ab ]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算.反过来可得 x2 +(a + b)x + ab = (x + a)(x + b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解.2、体会与尝试:①试一试因式分解: x2 + 4x + 3 ; x2 - 2x -3将二次三项式x2 + 4x + 3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3 + 1= 4,恰好等于一次项系数,所以用十字交叉线表示:x2 + 4x + 3 = (x + 3)(x + 1).x +3x +13x + x = 4x②定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.③拆一拆将下列各数表示成两个整数的积的形式(尽所有可能): 6= ; 12= ; 24= ; -6= ; -12= ; -24= .④练一练将下列各式用十字相乘法进行因式分解:(1) x2 -7x + 12; (2) x2-4x-12; (3) x2 + 8x + 12;(4) x2 -11x-12; (5) x2 + 13x + 12; (6) x2 -x-12;⑤探索符号规律,完成填空.3、思考与归纳:要将二次三项式x2 + px + q因式分解,就需要找到两个数a、b,使它们的积等于常数项q,和等于一次项系数p, 满足这两个条件便可以进行如下因式分解,即x2 + px + q = x2 +(a + b)x + ab = (x + a)(x + b).用十字交叉线表示: x +ax +bax + bx = (a + b)x由于把x2 + px + q中的q分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行因式分解.三、课堂小结对二次三项式x2 + px + q进行因式分解,应重点掌握以下三个方面:掌握方法: 拆分常数项,验证一次项.符号规律: 当q>0时,a、b同号,且a、b的符号与p的符号相同;当q<0时,a、b异号,且绝对值较大的因数与p的符号相同.因式分解 十字相乘法與分組分解法【学习要求】1. 理解十字相乘法与分组分解法;2. 会运用十字相乘法与分组分解法分解因式。
十字相乘法和分组分解(经典教学课件)

想一想:
(4)
2 2 a -12a(b+c)+36(b+c)
=[a-6(b+c)][a-6 (b+c)]
2 =(a-6b-6c)
把下列各式因式分解:
(1)x2+2xy+y2-z2 (2)ab+a+b+1
解:(1)
( 2 ) 原式=(x2+2xy+y2)-z2 原式 =(ab+a)+(b+1) =(x+y)2-z2 =a(b+1)+(b+1) =(x+y+z)(x+y-z) =(b+1)(a+1)
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b)
这个方法也称为十字相乘法
即:只要一个形如x2+mx+n的 二次三项式的常数项可以分解 成两个有理数相乘,且这两个有 理数的和恰好等于一次项的系 数,这个多项式就能用十字相乘 法分解因式
(5)
b2-b-2 =(b+1)(b-2)
把下列各式分解因式 (1) x2-7x-8 =(x+1)(x-8) (2) m2-3m-10 =(m+2)(m-5) (3) y2+4y+4 =(y+2)2 2 (4) a -2a-8 =(a+2)(a-4)
(5)
b2-2b-3 =(b+1)(b-3)
把下列各式分解因式 (1) x2-5x+4 =(x-1)(x-4) (2) m2-5m-6 =(m+1)(m-6) (3) y2-8y+16 =(y-4)2 2 (4) a +4a-21 =(a-3)(a+7)
十字相乘法及分组分解法(基础)

十字相乘法及分组分解法(基础)【学习目标】1. 熟练掌握首项系数为1的形如pq x q p x +++)(2型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】【十字相乘法及分组分解法 知识要点】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号(2)若2x b x c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形. 添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、将下列各式分解因式:(1); (2)21016x x -+; (3)2310x x -- 【答案与解析】 解:(1)因为78x x x -=-所以:原式=()()78x x +-(2)因为2810x x x --=-所以:原式=()()28x x --(3)()()()2210331052x x x x x x --=-+-=-+- 【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【 十字相乘法及分组分解法 例1】【变式1】分解因式:(1)1072++x x ; (2)822--x x ; (3)2718x x --+【答案】解:(1)()()271025x x x x ++=++ (2) ()()22842x x x x --=-+ (3) ()()22718(718)29x x x x x x --+=-+-=--+ 【变式2】(优质试题春•苏州期末)因式分解:m 2n ﹣5mn+6n.【答案】解:m 2n ﹣5mn+6n=n (m 2﹣5m+6)=n (m ﹣2)(m ﹣3).【十字相乘法及分组分解法 例1】2、将下列各式分解因式:(1)22355x x +-; (2)25166x x ++ (3)22616x xy y --; (4). 【思路点拨】(3)题216y -可看成常数项,21682,826y y y y y y -=-⨯-+=-.(4)题可将()2x +看成一个整体来分解因式.【答案与解析】解:(1)22355x x +-=()315x x ⎛⎫+- ⎪⎝⎭; (2)251116623x x x x ⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭. (3)()()2261682x xy y x y x y --=-+;(4)因为()()()25242292x x x -+-+=-+所以:原式()()225522x x =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()()2158x x =-+【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.注意观察式子结构,能够看作整体的看作整体.举一反三:【变式】将下列各式分解因式:(1)21136x x -+; (2)251124a a --; (3)10722+-xy y x ; (4)()()342++-+b a b a .【答案】解: (1)22111121366332x x x x x x ⎛⎫⎛⎫-+=+-=+- ⎪⎪⎝⎭⎝⎭; (2)2513112443a a a a ⎛⎫⎛⎫--=-+ ⎪⎪⎝⎭⎝⎭; (3)()()2271025x y xy xy xy -+=--; (4)()()()()24313a b a b a b a b +-++=+-+-.3、将下列各式分解因式:(1);(2)【答案与解析】解:(1)因为 91019y y y +=所以:原式=()()2335y y ++(2)因为21183x x x -=所以:原式=()()2379x x +-【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.举一反三:【变式】分解因式:(1)2314x x +-;(2)2344x x --+;(3)2631105x x +-;【答案】解:(1)()()22314341311x x x x x x +-=-+=--;(2)()()223444432123x x x x x x --+=--=+-;(3)()()263110521537x x x x +-=+-.类型二、分组分解法4、(优质试题春•重庆校级期中)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )如“3+1”分法:2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x 2﹣y 2﹣x ﹣y=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)45am 2﹣20ax 2+20axy ﹣5ay 2=45am 2﹣5a (4x 2﹣4xy+y 2)=5a[9m 2﹣(2x ﹣y )2]=5a (3m ﹣2x+y )(3m+2x ﹣y );(3)4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1=(4a 2+4a+1)﹣b (4a 2+4a+1)。
分组分解法十字相乘法

(5) (x-y)2 +(x-y) -6
分组后运用乘法公式 分解因式: 1-m2-n2+2mn
解: 原式=1-(m2-2mn+n2) =1-(m-n)2 =[1+(m-n)][1-(m-n)]
=(1+m-n)(1-m+n)
分解因式: x2-y2-x+y
(x2-y2)-(x-y) =(x+y)(x-y)-(x-y) =(x-y)(x+y-1) 分解因式: x3+3x2-4x-12 解:原式= (x3+3x2)-(4x-12) =x2(x+3)-4(x+3) =(x+3)(x2-4) =(x+3)(x+2)(x-2)
(a+b)(m+n)
am+an+bm+bn
=a(m+n)+b(m+n) 整 =a(m+n)+b(m+n) 式 =am+an+bm+bn 乘 =(a+b)(m+n) 因
法
定义: 这种把多项式分成几组来分解因式的方法叫分 组分解法。 注意:如果把一个多项式的项分组并提出 公因式后,它们的另一个因式正好相同, 那么这个多项式就可以用分组分解法来分 解因式。
(3) (x-3)(x+4)
(4) (x-3)(x-4)
2 (x+a)(x+b)=x +(a+b)x+ab
反过来
2 x +(a+b)x+ab=(x+a)(x+b)
(x+2)(x+3) = (x +2)
初中数学因式分解2十字相乘法、分组分解法

【知识要点】1.十字相乘法(1)二次项系数为1的二次三项式q px x ++2中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成()()()b x a x ab x b a x q px x ++=+++=++22 (2)二次项系数不为1的二次三项式c bx ax ++2中,如果能把二次项系数a 分解成两个因数21,a a 的积,把常数项c 分解成两个因数21,c c 的积,并且1221c a c a +等于一次项系数b ,那么它就可以分解成:()=+++=++2112212212c c x c a c a x a a c bx ax ()()221c x a a x a ++。
2.分组分解法(1)定义:分组分解法,适用于四项以上的多项式,例如22a b a b -+-没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。
再提公因式,即可达到分解因式的目的。
例如:22a b a b -+-=22()()()()()()(1)a b a b a b a b a b a b a b -+-=-++-=-++,这种利用分组来分解因式的方法叫分组分解法。
(2)原则:分组后可直接提取公因式或可直接运用公式,但必须使各组之间能继续分解。
(3)有些多项式在用分组分解法时,分解方法并不唯一,无论怎样分组,只要能将多项式正确分解即可。
【典型例题】例1 把下列各式分解因式(1)2914x x ++= (2)212x x --=(3)2812x x ++= (4)2710x x -+=(5)228x x --= (6)2922x x --=(7)2295x x +-= (8)2376x x --=(9)28103x x ++= (10)210275x x ++=例2 把下列各式分解因式(1)bc ac ab a -+-2(2)bx by ay ax -+-5102(3)n mn m m 552+-- (4)bx ay by ax 3443+++(5)22144a ab b --- (6)223443ax ay bx cy cx by +-++-例3 把下列各式分解因式(1)22421x xy y --; (2)()()267a b a b +-+-;(3)()()22524x x -+-+ (4)()()()()22310a b a b a b a b -+-+-+;(5)()()2224221x y x y y y +-+- (6)222()14()24x x x x +-++例4 把下列各式分解因式(1)()()z y y z x x +-+ (2)()()b a x ab x 34322-+-(3)()()cd b adc ab 2222--- (4)()()y a bx by b y ax 2233+++思考题(5)()()()()2222d b d c c a b a +-+-+++【练 习】给下列各式分解因式1.221x x +-= 2.2352x x ++=3.232x x +-= 4.221315x x ++=5.2122512x x -+= 6.2310x x +-=7.ax +ay -bx -by = 8.x 2-xy -ax +ay =9.x 2+6y -xy -6x = 10.a 2-b 2-a +b =11.4x 2-y 2+2x +y = 12.a 2-2ab +b 2-c 2=13.1-x 2-2xy -y 2= 14.x 2-9a 2+12a -4=15.x 2y +3xy 2-x -3y= 16.na 2-2ba 2+mn -2bm=17.x 3+3x 2+3x +9= 18.20ax 2+5xy -8axy -2y 2=19.bx +ax +by +bz +ay +az=20.2ax -3bx +x -2a +3b -1=一、分解因式1.2249y x -3、2a 4-324、a 2(3a +1)-b 2(3a +1)5、x 2-8x +166、a 2b 2-10ab +257、-x 4+2x 2y 2-y 48、(2x 2+1)2+2(2x 2+1)+1二、分解因式1、9222+--a b ab 2.x 3+3x 2-4x -123.x 2-b x -a 2+a b 4.m -m 3-mn 2+2m 2n5.9ax 2+9bx 2-a -b 6.a 2-2a +4b -4b2C 组三、分解因式1、(a2+b2)2-4a2b22、a4(x-y)+b4(y-x)3、(a2+1)2-4a(a2+1)+4a2 4.a2+2ab+b2-ac-bc5.m2+2mn+n2-p2-2pq-q26.(x2-3)2-4x27. (x2-3)2+(x2-3)-28.(x2-2x)2-4(x2-2x)-59.a4-2a2b2-8b4 10.x4-6x3+9x2-16。
十字相乘法和分组分解法

利用十字交叉线来分解系数,把二次三 项式分解因式的方法叫做十字相乘法.
用十字相乘法把形如x2+px+q的二次三 项式分解因式: q=ab,p=a+b
当q>0时,q分解的因数a、b( 同号 ) 当q<0时,q分解的因数a、b( 异号 )
x2+px+q= x2+(a+b)x+ab= (x+a)(x+b)
对二次三项式
注
x2+px+q进行因式分解, 应重点掌握以下三个问题:
意
1.掌握方法:拆分常数项,验证一次项.
2.符号规律: 当q>0时,a、b同号,且a、b的符号与p 的符号相同; 当q<0时,a、b异号,且绝对值较大的 因数与p的符号相同.
3.书写格式:竖分横积.
知识要 点
分组分解法分解因式:
练一 练
把下列各式因式分解: (1)x2+2xy+y2-z2 (2)ab+a+b+1
解:(1)原式=(x2+2xy+y2)-z2 =(x+y)2-z2 =(x+y+z)(x+y-z)
(2)原式=(ab+a)+(b+1) =a(b+1)+(b+1) =(b+1)(a+1)
(3)9a4-4a2+4a-1 解:9a4-4a2+4a-1
x
a
xห้องสมุดไป่ตู้
ax +
b
bx = (a+b)x
步骤: ①竖分二次项与常数项; ②交叉相乘,和相加; ③检验确定,横写因式.
十字相乘法及分组分解法

a a i a 2,常数项 C 可以分解成两个因数之积,即C C i C 2,把a i ,a 2,C i , C 2排列如下:按斜线交叉相乘,再相加,得到a 1C 2 a 2C 1,若它正好等于二次三项式 ax 2bx C 的一次项系数b ,即a 1C 2 a 2C 1 b ,那么二次三项式就可以分解为两个因式ax c i 与 a 2X C 2 之2积,即 ax bx C qx q a 2x C .要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号 里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时, 可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式 分解一一分组分解法.即先对题目进行分组,然后再分解因式十字相乘法及分组分解法【要点梳理】 要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法2pq C 2三项式x bx C ,若存在,则x bx Cp q b要点诠释:(1)在对x 2 bx C 分解因式时,要先从常数项2(2)若x bx C 中的b 、C 为整数时,要先将 C 分解成两个整数的积分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止.要点二、首项系数不为1的十字相乘法2ax bx C (a 丰0中,如果二次项系数 a 可以分解成两个因数之积,即•对于二次则P 、q 同号(若c 0,则P 、q 异号),然后依据一次项系数 b 的正负再确定 P 、 q 的符号;c 的正、负入手,(要考虑到在二次三项式要点诠释:分组分解法分解因式常用的思路有:要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法例1将下列各式分解因式:(1)X27x 10 (2) X22x 8变式分解因式:2 (1) X 7x 182 (2) a b 4 a b 3将下列各式分解因式:2 2 3(1) X -x —5 5(2) x2变式将下列各式分解因式:2 1 1 (1) x - - x3 6 (2) a25—a12将下列各式分解因式:2 (1) 6y 19y 152(2) 14x 3x 272 2x 6xy 16 y变式分解因式:2 2(1) 3 4x 4x (2) 10(x 2) 29(x 2) 10 2 2(3) x y 7xy 10例4 分解因式:(x25x 3)(x25x 2) 6变式分解因式:(x 1)(x 2)(x 3)(x 4) 24类型二、分组分解法例5 把3ax 4by 4ay 3bx 分解因式.变式分解因式:a24b24ab c2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2 拓展应用
1.若n是整数,证明(2n+1)2-(2n-1)2是8的倍 数. 2. 某工厂需加工一批零件,由甲、乙、丙 三工人每天加工18个零件,三人需共同 做12天才能做完,要加工的零件共有多 少?
例:把下列各式分解因式 (1)( x p ) ( x q ) (2)16(a b) 9(a b)
(r=3.75×108米 R=6.25×108米)
小 结: 分解因式时,有公因式先提公因式; 然后再运用公式进行分解(两项考虑 平方差公式,三项考虑完全平方公式); 若都不行则考虑十字相乘或分组分解. 要分解到每个多项式因式不能再分 解为止.
思考题: 1、多项式:
2 2 2 2 (x+y) -2(x -y )+(x-y) 能
苏州工业园区 东沙湖学校 李明 树
我们还学习了 (x+a)(x+b)=x2+(a+b)x+ab 反过来得:
x2+(a+b)x+ab=(x+a)(x+b) 这就把多项式分解为两个因式: (x+a)(x+b) 分解因式: 2 (1)x +5x+6
2 (2)x +7x+6
2 (3)x -5x+6 2 (5)x +5x-6
把单项式乘多项式法则a(b+c+d)=ab+ac+ad 反过来得到ab+ac+ad=a(b+c+d),这就是多项 式因式分解的提公因式法.
把乘法公式 (a ± b)2=a2 ± 2ab+b2, (a+b)(a-b)=a2-b2,反过来得到a2 ± 2ab+b2= (a ± b)2 a2-b2=(a+b)(a-b)这就是多项式因式分解的运 用公式法.
1、x2-y2+x+y
3 2
2 2 2、x +2x+1-y
3、 a a a 1 2 4、 a 2a ab 2b
2 5、4a 2 +b 2 +9c
-4ab+12ac-6bc
让我们一起来做数学!
我国宇航员杨利伟于2003年10月15日乘座我 国神州五号宇宙飞船升入太空,绕地球旋转 14圈后顺利返回地球,使我国成为世界历史 上第三个独力完成把人升入太空的国家。他 携带了一种探测太空的仪器,当他把探头指 向地球时,便可探测太空,若地球的半径为 r ,他与地心间的距离为R,你能计算出他一 共探测太空的面积吗?
(4)x2-5x-36
2 (6)x +x-6 2 (8)x -3x-10
(7)x2-5x-14
(9)x2+19x+60 (10)x2-10x+16 2 2 2 (11)(x +5x) -2(x +5x)-24
我们还学习过:
(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+ bc+bd 反过来就得到: ac+ad+bc+bd=a(c+d)+b(c+d) =(a+b)(c+d)
2 2 2 2
(3)9 x ( x 2 y ) (4)3 x 12 xy
2 2 3
2
用完全平方公式分解吗? 2、在括号内补上一项,使多项 式成为完全平方式:
4 2 X +4x +(
)
练习1
1. 若a=101,b=99,求a2-b2的值. 2. 若x=-3,求20x2-60x的值. 3. 1993-199能被200整除吗?还能被哪些 整数整除? 4. 计算:7652×17-2352 ×17 5. 20042+2004能被2005整除吗?
例3、分解因式 1、x2-6x+9-y2
2 2 2、x -4y +x+2y
方法:因式分解时应观察各项有无 公因式,若有先提取公因式,对于 四项或以上,考虑能否分组分解。
把下列各式因式分解: (1) a-b-a2+b2 (2) 1-a2+2ab-b2 (3) m2-n2+2m-2n (4) a2-b2-2a+1